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Abstract

In this paper, using the idea of quasi-coincidence of a fuzzy point
with a fuzzy set, the concepts of (∈,∈ ∨q)-fuzzy ideals, prime(resp.weak-
prime, semiprime) ideals and maximal ideals of a semigroup are intro-
duced, and the characterizations of them are given. Also, some re-
lated properties are investigated. Finally, in the sense of homomor-
phism between two crisp semigroups, the images and inverse images of
(∈,∈ ∨q)-fuzzy ideals, prime(resp.weak-prime, semiprime) ideals and
maximal ideals are studied.
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1 Introduction

The concept of fuzzy set was introduced by Zadeh[1]. Since then, many papers
on fuzzy sets appeared showing the importance of the concept and its applica-
tions to logic, set theory, group theory, groupoids, real analysis, measure the-
ory, topology, ect. Many notions of mathematics are extended to such sets, and
various properties of these notions in the context of fuzzy sets are established.
It was first applied to the theory of groups by A.Rosenfeld[2]. A.Rosenfeld’s
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definition was extended in C.V.Negoita and D.A.Ralescu[3] and redefined by
S.K.Bhakat and P.Das[5]. Afterwards, many authors further introduced fuzzy
subsemigroups, fuzzy subrings, fuzzy ideals and so on(see,e.g.,[9-13,16-18]).
The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is men-
tioned in [14], played a vital role to generate some different types of fuzzy
subgroups. It is worth pointing out that Bhakat and Das [5] gave the concept
of (α, β)-fuzzy subgroups by using the “belongs to” relation (∈) and “quasi-
coincident with” relation (q) between a fuzzy point and a fuzzy subgroup,
and introduced the concept of an (∈,∈ ∨q)-fuzzy subgroup. In particular,
(∈,∈ ∨q)-fuzzy subgroup is an important and useful generalization of Rosen-
feld’s fuzzy subgroup. Also, Bhakat and Das [6,7] considered the (∈,∈ ∨q)-
fuzzy subgroup of a group and (∈,∈ ∨q)-fuzzy ideals of a ring, respectively.
Recently, Bhakat [8] studied the (∈,∈ ∨q)-fuzzy normal, quasinormal and
maximal subgroups. Y.B. Yun and S.Z. Song [9] introduced the concept of
(α, β)-fuzzy interior ideals of a semigroup. As a further study, we will investi-
gate the (∈,∈ ∨q)-fuzzy ideals, prime(resp.weak-prime, semiprime) ideals and
maximal ideals of a semigroup.

2 Preliminaries

In this section, we will briefly recall some basics notions that will be used
in the sequel.

Let X be any non-empty set. A mapping μ : X → [0, 1] is called a fuzzy
subset in X. For any A ⊆ X and r ∈ [0, 1], r

A
: X → [0, 1] is defined by

r
A
(x) =

{
r if x ∈ A,
0 otherwise.

for all x ∈ X. In particular, if r = 1, then 1
A

is said to be the characteristic
function of A, and we shall use the symbol C

A
for 1

A
.

Defition 2.1(Cf. [14]).Let X be any non-empty set. A fuzzy subset μ in X
defined by

μ(y) =

{
r(�= 0) if y = x,
0 otherwise.

is said to be a fuzzy point with support x and value r and is denoted by xr.

Defition 2.2(Cf. [14]) A fuzzy point xr is said to belong to(resp.be quasi-
coincident with) a fuzzy set μ, written as xr ∈ μ(resp.xr q μ) ifμ(x) ≥ r
(resp.μ(x) + r > 1); If μ(x) ≥ r or μ(x) + r > 1, then we write xr ∈ ∨q μ.

Defition 2.3 Let X be a non-empty set, μ and ν be fuzzy subsets of X. If
xr ∈ ν implies xr ∈ ∨q μ, then we write ν ⊆ ∨q μ.
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Defition 2.4 Let X be any non-empty set and μ a fuzzy subset in X. For all
r ∈ (0, 1], Denote the sets μr = {x ∈ X|μ(x) ≥ r}(resp.μs

r = {x ∈ X|μ(x) >
r}), [μ]r = {x ∈ X|xr ∈ ∨q μ} and Supp(μ) = {x ∈ X|μ(x) > 0}, which
are called r−levelset(resp.r−strong levelset), r− ∈ ∨q set and supporting set,
respectively.

Defition 2.5(Cf. [10, 11]) Let S be a semigroup, μ and ν be fuzzy subsets in
S. Then the product of μ and ν denoted by μ ◦ ν is defined by

(μ ◦ ν)(x) =

{ ∨
x=yz

μ(y) ∧ ν(z) for y, z ∈ S, x = yz

0 otherwise,

for all x ∈ S.
Clearly, for any fuzzy points xr and yt in S, xr ◦ yt = (xy)r∧t. Also, for any

fuzzy subsets μ, ν and ω in S, (μ ◦ ν) ◦ ω = μ ◦ (ν ◦ ω).

Defition 2.6(Cf. [10, 11]) Let S be a semigroup. A fuzzy subset μ in S is called
a fuzzy subsemigroup of S if

μ(xy) ≥ μ(x) ∧ μ(y) ∀x, y ∈ S.

A fuzzy subset μ in S is called a fuzzy ideal of S if

μ(xy) ≥ μ(x) ∨ μ(y) ∀x, y ∈ S.

3 The (∈,∈ ∨q)-fuzzy ideals of a semigroup

In the sequel, unless otherwise stated, S always represents any given semi-
group. For any r, t ∈ [0, 1], M(r, t) will denote r ∧ t. ∈ ∨q means ∈ ∨q does
not hold and ⊆ ∨q implies ⊆ ∨q is not true.

Defition 3.1 A fuzzy subset μ in S is said to be a
(1) (∈,∈ ∨q)-fuzzy subsemigroup, if ∀x, y ∈ S, r, t ∈ (0, 1], xr, yt ∈ μ ⇒

xr ◦ yt ∈ ∨q μ;
(2) (∈,∈ ∨q)-fuzzy ideal, if ∀x, y ∈ S, r ∈ (0, 1], xr ∈ μ ⇒ (yx)r ∈ ∨q μ

,(xy)r ∈ ∨q μ.
We note that the semigroup S can be considered a fuzzy subset in itself

and we write S = C
S
(the characteristic function of S), i.e, S(x) = 1 for all

x ∈ S.

Theorem 3.2 Let μ be any non-empty fuzzy subset in S. Then the following
statements are equivalent:

(1) μ is an (∈,∈ ∨q)-fuzzy ideal of S;
(2) ∀x, y ∈ S, μ(xy) ≥ M(μ(x) ∨ μ(y), 0.5);
(3) S ◦ μ ∪ μ ◦ S ⊆ ∨q μ;
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(4) (S ◦ μ ∪ μ ◦ S) ∩ 0.5
S
⊆ μ;

(5) ∀r ∈ (0, 0.5], if μr(resp.μs
r) is non-empty, then μr(resp.μs

r) is an ideal of
S;

(6) ∀r ∈ (0, 0.5], if [μ]r is non-empty, then [μ]r is an ideal of S.

Proof. (1)⇒(2) Assume that (1) holds. For all x, y ∈ S, if possible, let μ(xy) <
M(μ(x)∨μ(y), 0.5). Choose r such that μ(xy) < r < M(μ(x)∨μ(y), 0.5). Then
xr ∈ μ or yr ∈ μ but (xy)r ∈ ∨q μ, a contradiction. Therefore (1) implies (2).

(2)⇒(3) Assume that (2) holds. For all xr ∈ S ◦ μ ∪ μ ◦ S, if possible,
let xr ∈ ∨q μ. Then μ(x) < r and μ(x) + r ≤ 1. Hence μ(x) < 0.5. Now,
r ≤ (S ◦ μ ∪ μ ◦ S)(x) = (S ◦ μ)(x) ∨ (μ ◦ S)(x) = (

∨
x=yz

μ(z)) ∨ (
∨

x=yz

μ(y)) =∨
x=yz

μ(y)∨μ(z) ≤ ∨
x=yz

μ(yz) (since 0.5 > μ(x) = μ(yz) ≥ M(μ(y)∨μ(z), 0.5) =

μ(y) ∨ μ(z)) = μ(x), a contradiction. Hence, xr ∈ ∨q μ. This implies that
S ◦ μ ∪ μ ◦ S ⊆ ∨q μ. Therefore (2) implies (3).

(3)⇒(4) Assume that (3) holds. For all xr ∈ (S ◦ μ∪ μ ◦ S)∩ 0.5
S
, namely

r ≤ 0.5 and xr ∈ S ◦ μ ∪ μ ◦ S. If xr �∈ μ, then μ(x) < r ≤ 0.5, this implies
that xr ∈ ∨q μ, which contradicts xr ∈ S ◦ μ ∪ μ ◦ S ⊆ ∨q μ. Hence xr ∈ μ.
This implies that (S ◦ μ ∪ μ ◦ S) ∩ 0.5

S
⊆ μ. Therefore (3) implies (4).

(4)⇒(5) Assume that (4) holds and let r ∈ (0, 0.5] such that μr is non-
empty. For all x ∈ S, y ∈ μr, that is μ(y) ≥ r, we then have μ(xy) ≥
((S ◦μ∪μ◦S)∩0.5

S
)(xy) = M((S ◦μ∪μ◦S)(xy), 0.5) ≥ M((S ◦μ)(xy), 0.5) =

M(
∨

ab=xy

μ(b), 0.5) ≥ M(μ(y), 0.5) ≥ M(r, 0.5) = r. This implies that xy ∈ μr.

Similarly, yx ∈ μr. Hence μr is a ideal of S. The case for μs
r can be similarly

disposed of. Therefore (4) implies (5).
(5)⇒(6) Assume that (5) holds let r ∈ (0, 1] such that [μ]r is non-empty.

For all x ∈ S, y ∈ [μ]r, then yr ∈ ∨q μ, that is, μ(y) ≥ r or μ(y) + r > 1. If
r > 0.5, then 1− r < 0.5, μ(y) > 1− r, and so y ∈ μs

1−r. Since μs
1−r is an ideal

of S by the part (5), we have xy ∈ μs
1−r and yx ∈ μs

1−r, that is, μ(xy) > 1 − r
and μ(yx) > 1 − r, so xy q [μ]r and yx q [μ]r. If r ≤ 0.5, then y ∈ μr and μr

is an ideal of S by the part (5). Thus, xy ∈ μr ⊆ [μ]r and yx ∈ μr ⊆ [μ]r. In
any case, we have xy ∈ [μ]r and yx ∈ [μ]r. Therefore (5) implies (6).

(6)⇒(1) Assume that (6) holds. For all x ∈ S, yr ∈ μ. If (xy)r ∈ ∨q μ, then
μ(xy) < r and μ(xy)+ r ≤ 1. Hence μ(xy) < 0.5. Choose t such that μ(xy) <
t ≤ M(r, 0.5). Thus μ(y) ≥ r ≥ t, but (xy)t ∈ ∨q μ, that is, y ∈ μt ⊆ [μ]t but
xy �∈ [μ]t, a contradiction. Hence ∀x ∈ S, yr ∈ μ ⇒ (xy)r ∈ ∨q μ. Similarly,
∀x ∈ S, yr ∈ μ ⇒ (yx)r ∈ ∨q μ. Therefore (6) implies (1).

Corollary 3.3 Let μ be an (∈,∈ ∨q)-fuzzy ideal of S. Then Supp(μ) is an
ideal of S.

Naturally, a corresponding result should be considered when μr is an ideal
of S for all r ∈ (0.5, 1].
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Theorem 3.4 Let μ be any non-empty fuzzy subset in S. Then the following
statements are equivalent:

(1) μ(xy) ∨ 0.5 ≥ μ(x) ∨ μ(x) for all x, y ∈ S;
(2) S ◦ μ ∪ μ ◦ S ⊆ μ ∪ 0.5

S
;

(3) ∀r ∈ (0.5, 1], if μr(resp.μs
r) is non-empty, then μr(resp.μs

r) is an ideal of
S.

Proof. The proof is analogous to that of Theorem 3.2.

Theorem 3.5 Let A be a non-empty subset in S. Then A is an ideal of S if
and only if C

A
is an (∈,∈ ∨q)-fuzzy ideal of S.

Proof. Straightforward.

Theorem 3.6 Let μ and ν be (∈,∈ ∨q)-fuzzy ideals of S. Then so is μ ◦ ν.

Proof. Assume that μ is an (∈,∈ ∨q)-fuzzy ideal of S, then by Theorem 3.2,
we have S◦(μ◦ν)∩0.5

S
= (S◦μ)◦ν∩0.5

S
= (S◦μ∩0.5

S
)◦ν ⊆ μ◦ν. Similarly,

assume that ν is an (∈,∈ ∨q)-fuzzy ideal of S, then (μ ◦ ν) ◦ S ∩ 0.5
S
⊆ μ ◦ ν.

Therefore, μ ◦ ν is an (∈,∈ ∨q)-fuzzy ideal of S.

Theorem 3.7 Let {μi|i ∈ I} be any family of (∈,∈ ∨q)-fuzzy ideals of S.
Then so are

⋂
i∈I

μi and
⋃
i∈I

μi.

Proof. The case for intersection is straightforward. To see that
⋃
i∈I

μi is an

(∈,∈ ∨q)-fuzzy ideal of S. Let {μi|i ∈ I} be any family of (∈,∈ ∨q)-fuzzy
ideals of S. Then for all x ∈ S, if (S ◦ ⋃

i∈I

μi)(x) = 0, it is clear that

0 = ((S ◦
⋃
i∈I

μi) ∩ 0.5
S
)(x) ≤ (

⋃
i∈I

μi)(x).

Otherwise, there exists y, z ∈ S such that x = yz. Thus, we have

((S ◦
⋃
i∈I

μi) ∩ 0.5
S
)(x) =M((S ◦

⋃
i∈I

μi)(x), 0.5) = M(
∨

x=yz

(
⋃
i∈I

μi)(z), 0.5)

=M(
∨

x=yz

∨
i∈I

μi(z), 0.5) = M(
∨
i∈I

∨
x=yz

μi(z), 0.5)

=
∨
i∈I

∨
x=yz

M(μi(z), 0.5) ≤
∨
i∈I

∨
x=yz

μi(yz)

=
∨
i∈I

μi(x) = (
⋃
i∈I

μi)(x).



1920 Xiaokun Huang and Yunqiang Yin

This implies that (S◦⋃
i∈I

μi)∩0.5
S
⊆ ⋃

i∈I

μi. Similarly, we have (
⋃
i∈I

μi◦S)∩0.5
S
⊆⋃

i∈I

μi. Hence

((S ◦
⋃
i∈I

μi) ∩ 0.5
S
) ∪ ((

⋃
i∈I

μi ◦ S) ∩ 0.5
S
) =((S ◦

⋃
i∈I

μi) ∪ (
⋃
i∈I

μi ◦ S)) ∩ 0.5
S

⊆
⋃
i∈I

μi,

it follows that
⋃
i∈I

μi is an (∈,∈ ∨q)-fuzzy ideal of S.

By the above Theorem, the following Corollary is valid.

Corollary 3.8 The family of all the (∈,∈ ∨q)-fuzzy ideals of S equipped with
fuzzy set inclusion relation “ ⊆ ” constitutes a complete lattice. And for any
(∈,∈ ∨q)-fuzzy ideals μ and ν of S, μ ∩ ν and μ ∪ ν are the greatest lower
bound and least upper bound of {μ, ν}, respectively. Its maximal element is
C

S
. Moreover, it is closed under fuzzy set intersection and union.
Next, we will turn our attention to the relations between the (∈,∈ ∨q)-

fuzzy ideals and the ideals of S. Let us begin with the following Lemma.

Lemma 3.9 Let A be any ideal of S. Then the fuzzy subset μ in S defined by

μ(x) =

{
r if x ∈ A,
t otherwise.

for all x ∈ S, where r, t ∈ [0, 1] and r > t, is an (∈,∈ ∨q)-fuzzy ideal of S

Proof. Straightforward.

Lemma 3.9 indicates that for any ideal A of S, there must exist (∈,∈ ∨q)-
fuzzy ideals of S whose supporting set are precisely A.

Assume that μ is any (∈,∈ ∨q)-fuzzy ideal of S. Let μ = {ν|ν is an (∈,∈
∨q) − fuzzy ideal of S andSupp(μ) = Supp(ν)}. Then it’s easy to see that
μ is an equivalence class of the family of all the (∈,∈ ∨q)-fuzzy ideals of S.
Combing this with Corollary 3.3, Theorem 3.6 and Lemma 3.9, we may obtain
the following Theorem.

Theorem 3.10 Let A = {μ|μ is an (∈,∈ ∨q)-fuzzy ideal of S} and B = {P |P
is an ideal of S}. Then the mapping f : A → B, f(μ) = Supp(μ) defines a
isomorphism between A and B under the multiplication defined by μ ◦ ν =
μ ◦ ν.
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Proof. By Corollary 3.6 and Lemma 3.15, it is easy to see f is a one-to-one
correspondence between A and B. By Theorem 3.9, we know for any (∈
,∈ ∨q)-fuzzy ideals μ and ν, μ ◦ ν is an (∈,∈ ∨q)-fuzzy ideal of S, namely
μ ◦ ν ∈ A. Hence, it is easy to see the multiplication is well defined. Now,
It is not difficult to verify f is a homomorphism. Therefore, the mapping
f : A → B, f(μ) = Supp(μ) defines a isomorphism between A and B under
the multiplication defined by μ ◦ ν = μ ◦ ν.

4 The (∈,∈ ∨q)-fuzzy prime ideals of a semi-

group

Defition 4.1 Let μ be an (∈,∈ ∨q)-fuzzy ideal of S. Then μ is said to be

(1) fuzzy prime, if ∀x, y ∈ S, r, t ∈ (0, 1], xr ◦ yt ∈ μ ⇒ xr ∈ ∨q μ or
yt ∈ ∨q μ;

(2) weak-prime, if ∀x, y ∈ S, r ∈ (0, 1], xr ◦ yr ∈ μ ⇒ xr ∈ ∨q μ or
yr ∈ ∨q μ;

(3) semiprime, if ∀x ∈ S, r ∈ (0, 1], x2
r ∈ μ ⇒ xr ∈ ∨q μ.

Theorem 4.2 Let μ be an (∈,∈ ∨q)-fuzzy prime ideal of S. Then the following
statements hold:

(1) μ(x) ∨ μ(y) ≥ M(μ(xy), 0.5) ∀x, y ∈ S;

(2) ∀r ∈ (0, 0.5], if μr(resp.μs
r) is non-empty, then μr(resp.μs

r) is a prime
ideal of S.

(3) ∀r ∈ (0, 1], if [μ]r is non-empty, then [μ]r is a prime ideal of S.

Proof. (1) Assume that μ is an (∈,∈ ∨q)-fuzzy prime ideal of S. If possible,
let x, y ∈ S such that μ(x) ∨ μ(y) < M(μ(xy), 0.5). Choose r such that
μ(x)∨μ(y) < r < M(μ(xy), 0.5). Then (xy)r ∈ μ, but xr ∈ ∨q μ and yr ∈ ∨q μ,
a contradiction. Hence the part (1) holds.

(2) Assume that μ is an (∈,∈ ∨q)-fuzzy prime ideal of S and r ∈ (0, 0.5]
such that μr is non-empty. Then μr is an ideal of S by the part (5) of Theorem
3.5. For all x, y ∈ S, let xy ∈ μr. Since μ is an (∈,∈ ∨q)-fuzzy prime ideal of
S, then by the part (1) we have μ(x)∨ μ(y) ≥ M(μ(xy), 0.5) ≥ M(r, 0.5) = r.
Hence x ∈ μr or y ∈ μr. Hence μr is a prime ideal of S. The case for μs

r can
be similarly disposed of. Hence the part (2) holds.

(3) Assume that μ is an (∈,∈ ∨q)-fuzzy prime ideal of S and r ∈ (0, 1] such
that [μ]r is non-empty. Then [μ]r is an ideal of S by the part (6) of Theorem
3.5. Now, let xy ∈ [μ]r and x �∈ [μ]r. Then xr ◦ yr = (xy)r ∈ ∨q μ, xr ∈ ∨q μ,
that is, μ(x) < r and μ(x) + r ≤ 1, hence μ(x) < 0.5. If xr ◦ yr = (xy)r ∈ μ,
then yr ∈ ∨q μ by the Definition of 4.1, that is, y ∈ [μ]r. If xr ◦ yr = (xy)r q μ,
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then μ(xy) > 1 − r. Since μ(x) ∨ μ(y) ≥ M(μ(xy), 0.5) by the part (1). We
consider the following cases.

Case 1: if μ(xy) ≥ 0.5, then μ(x) ∨ μ(y) ≥ 0.5. Thus μ(y) ≥ 0.5 since
μ(x) < 0.5. Now, if r ≤ 0.5, then yr ∈ μ; if r > 0.5, then yr q μ.

Case 2: if μ(xy) < 0.5, then μ(x)∨μ(y) ≥ μ(xy) > 1−r. Thus μ(y) > 1−r
since μ(x) + r ≤ 1, and so yr q μ.

Therefore, in any case, if xy ∈ [μ]r and x �∈ [μ]r, then yr ∈ ∨q μ and so
y ∈ [μ]r. Hence [μ]r is a prime ideal of S and so the part (3) holds.

Theorem 4.3 Let A be a non-empty subset in S. Then A is a prime ideal of
S if and only if C

A
is an (∈,∈ ∨q)-fuzzy prime ideal of S.

Remark 4.4 The converse of Theorem 4.2 is not necessarily be true as shown
by the following example.

Example 4.5 Let S = {a, b, c, d} be a semigroup with the following multipli-
cation table:

a b c d
a a a a a
b a b b a
c a b c a
d a a a d

Let μ be a fuzzy subset in S such that

μ(a) = 0.6, μ(b) = 0.4, μ(c) = 0.3, μ(d) = 0.5.

Then
(1) It is easy to check that μ is an (∈,∈ ∨q)-fuzzy ideal of S and μ(x) ∨

μ(y) ≥ M(μ(xy), 0.5) for all x, y ∈ S, but μ is not an (∈,∈ ∨q)-fuzzy prime
ideal of S. In fact, b0.5 ◦ c0.4 = b0.4 ∈ μ, but b0.5 ∈ ∨q μ and c0.4 ∈ ∨q μ.

(2) Clearly, μr =

⎧⎨
⎩

{a, d} r ∈ (0.4, 0.5],
{a, b, d} r ∈ (0.3, 0.4],
{a, b, c, d} r ∈ (0, 0.3].

[μ]r =

⎧⎨
⎩

{a, d} r ∈ (0.4, 0.6],
{a, b, d} r ∈ (0.3, 0.4]or(0.6, 0.7],
{a, b, c, d} r ∈ (0, 0.3]or(0.7, 1].

For all r ∈ (0, 0.5] and t ∈ (0, 1], it is easy to check that both μr and [μ]t are
fuzzy prime ideals of S, respectively. But μ is not an (∈,∈ ∨q)-fuzzy prime
ideal of S.

But for (∈,∈ ∨q)-fuzzy weak-prime ideals and semiprime ideals, the next
Theorem is valid.

Theorem 4.6 Let μ be an (∈,∈ ∨q)-fuzzy ideal of S. Then the following
statements are equivalent:



Fuzzy prime ideals and maximal ideals 1923

(1) μ is an (∈,∈ ∨q)-fuzzy weak-prime (resp. semiprime) ideal of S;

(2) ∀x, y ∈ S, μ(x) ∨ μ(y) ≥ M(μ(xy), 0.5)(resp.μ(x) ≥ M(μ(x2), 0.5));
(3) ∀r ∈ (0, 0.5], if μr(resp.μs

r) is non-empty, then μr(resp.μs
r) is a prime

(resp. smeiprime) ideal of S;
(4) ∀r ∈ (0, 1], if [μ]r is non-empty, then [μ]r is a prime(resp.smeiprime)

ideal of S.

Proof. (1) ⇔ (2) Assume that μ is an (∈,∈ ∨q)-fuzzy weak-prime ideal of
S. Then by the proof of the part (1) of Theorem 4.2, we know ∀x, y ∈ S,
μ(x) ∨ μ(y) ≥ M(μ(xy), 0.5). Hence (1) implies (2). Conversely, assume that
the given condition holds. For all x, y ∈ S, r ∈ (0, 1], if xr ◦ yr = (xy)r ∈ μ,
then μ(x) ∨ μ(y) ≥ M(μ(xy), 0.5) ≥ M(r, 0.5) = 0.5 or r according as r > 0.5
or r ≤ 0.5. Hence, either xr ∈ ∨q μ or yr ∈ ∨q μ. Therefore, μ is an (∈,∈ ∨q)-
fuzzy weak-prime ideal of S. Hence (2) implies (1).

(1) ⇔ (3) Assume that μ is an (∈,∈ ∨q)-fuzzy weak-prime ideal of S. Then
by the proof of the part (2) of Theorem 4.2, we know for all r ∈ (0, 0.5], non-
empty set μr is a prime ideal of S. Hence (1) implies (3). Conversely, assume
the given condition holds. Then μ is an (∈,∈ ∨q)-fuzzy ideal of S by Theorem
3.5. Let x, y ∈ S and r ≤ 0.5. Now xr ◦ yr = (xy)r ∈ μ ⇒ xy ∈ μr ⇒ x ∈ μr

or y ∈ μr(since μr is an prime ideal of S)⇒ xr ∈ μ or yr ∈ μ. If r > 0.5,
then since μ0.5 is a prime ideal of S, x0.5 ◦ y0.5 = (xy)0.5 ∈ μ ⇒ x0.5 ∈ μ or
y0.5 ∈ μ ⇒ xr q μ or yr q μ. Therefore, μ is an (∈,∈ ∨q)-fuzzy weak-prime ideal
of S. The case for μs

r can be similarly disposed of. Hence (3) implies (1).

(1) ⇔ (4) Assume that μ is an (∈,∈ ∨q)-fuzzy weak-prime ideal of S. Then
by the proof of the part (3) of Theorem 4.2, we know for all r ∈ (0, 1], non-
empty set [μ]r is a prime ideal of S. Hence (1) implies (4). Conversely, assume
the given condition holds. Let x, y ∈ S, t ∈ (0, 1]. If (xy)r = xr ◦ yr ∈ μ, then
xy ∈ μr ⊆ [μ]r. Hence x ∈ [μ]r or y ∈ [μ]r, that is xr ∈ ∨q μ or yr ∈ ∨q μ.
Therefore, μ is an (∈,∈ ∨q)-fuzzy weak-prime ideal of S. Hence (4) implies
(1).

The case for (∈,∈ ∨q)-fuzzy semiprime ideal of S can be similarly disposed
of.

Corollary 4.7 Let μ be an (∈,∈ ∨q)-fuzzy weak-prime (resp. semiprime)
ideal of S, then Supp(μ) is a prime (resp. semiprime) ideal of S.

Naturally, a corresponding result should be considered when μr is a prime
(resp. semiprime) ideal of S for all r ∈ (0.5, 1].

Theorem 4.8 Let μ be any non-empty fuzzy subset in S. Then the following
statements are equivalent:

(1) ∀x, y ∈ S, μ(x) ∨ μ(y) ∨ 0.5 ≥ μ(xy)(resp.μ(x) ∨ 0.5 ≥ μ(x2));

(2) ∀r ∈ (0.5, 1], μr(resp.μs
r) is a prime(resp.smeiprime) ideal of S.
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Proof. The proof is analogous to that of Theorem 4.6.

Theorem 4.9 Let μ be an (∈,∈ ∨q)-fuzzy ideal of S. Then the following
statements are equivalent:

(1) μ is an (∈,∈ ∨q)-fuzzy prime ideal of S;

(2) For any fuzzy subsets ν and ω in S, ν ◦ω ⊆ μ ⇒ ν ⊆ ∨q μ or ω ⊆ ∨q μ.

Proof. (1)⇒(2) Assume that μ is an (∈,∈ ∨q)-fuzzy prime ideal of S. Let ν
and ω be fuzzy subsets in S and ν ◦ ω ⊆ μ. If ν ⊆ ∨q μ, then there exists
xr ∈ ν such that xr ∈ ∨q μ. Then for all yt ∈ ω, xr ◦ yt ∈ ν ◦ ω ⊆ μ, but
xr ∈ ∨q μ, hence yt ∈ ∨q μ(since μ is an (∈,∈ ∨q)-fuzzy prime ideal of S).
This implies that ω ⊆ ∨q μ. Hence (1) implies (2).

(2)⇒(1) is clear.

Theorem 4.10 Let μ be an (∈,∈ ∨q)-fuzzy ideal of S. Then the following
statements are equivalent:

(1) μ is an (∈,∈ ∨q)-fuzzy semiprime ideal of S;

(2) For any fuzzy subset ν in S, ν ◦ ν ⊆ μ ⇒ ν ⊆ ∨q μ.

Proof. The proof is analogous to that of Theorem 4.9.

Theorem 4.11 Let {μi|i ∈ I} be any family of (∈,∈ ∨q)-fuzzy weak-prime
(resp. semiprime) ideals of S. Then

⋃
i∈I

μi is an (∈,∈ ∨q)-fuzzy weak-prime

(resp. semiprime) ideal of S. If {μi|i ∈ I} is any family of (∈,∈ ∨q)-fuzzy
semiprime ideals of S, then

⋂
i∈I

μi is an (∈,∈ ∨q)-fuzzy semiprime ideal of S.

Proof. (1) Let {μi|i ∈ I} be any family of (∈,∈ ∨q)-fuzzy weak-prime ideals
of S. Then

⋃
i∈I

μi is an (∈,∈ ∨q)-fuzzy ideal of S by Theorem 3.10. Now, for

all x, y ∈ S

(
⋃
i∈I

μi)(x) ∨ (
⋃
i∈I

μi)(y) = (
∨
i∈I

μi(x)) ∨ (
∨
i∈I

μi(y)) =
∨
i∈I

(μi(x) ∨ μi(y))

≥ ∨
i∈I

M(μi(xy), 0.5) = M(
∨
i∈I

μi(xy), 0.5)

= M((
⋃
i∈I

μi)(xy), 0.5)

Hence
⋃
i∈I

μi is an (∈,∈ ∨q)-fuzzy weak-prime ideal of S by Theorem 4.6. The

case for (∈,∈ ∨q)-fuzzy semiprime ideal can be similarly disposed of.
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(2) Let {μi|i ∈ I} be any family of (∈,∈ ∨q)-fuzzy semiprime ideals of S.
Then

⋂
i∈I

μi is an (∈,∈ ∨q)-fuzzy ideal of S by Theorem 3.10. Now, for all

x ∈ S

(
⋂
i∈I

μi)(x) =
∧
i∈I

μi(x) ≥ ∧
i∈I

M(μi(x
2), 0.5) = M(

∧
i∈I

μi(x
2), 0.5)

= M((
⋂
i∈I

μi)(x
2), 0.5)

Hence
⋂
i∈I

μi is an (∈,∈ ∨q)-fuzzy semiprime ideal of S by Theorem 4.6.

In view of Theorem 4.11, we may obtain the following Corollaries.

Corollary 4.12 The family of all the (∈,∈ ∨q)-fuzzy weak-prime ideals of S
equipped with fuzzy set inclusion relation “ ⊆ ” constitutes a complete lattice.
Its maximal element is C

S
. Moreover, it is closed under fuzzy set union.

Proof. Let μ and ν be (∈,∈ ∨q)-fuzzy weak-prime ideals of S. Then by The-
orem 4.11, μ ∪ ν is also an (∈,∈ ∨q)-fuzzy weak-prime ideal of S and is the
least upper bound, while the unique greatest (∈,∈ ∨q)-fuzzy weak-prime ideal
contained in μ∩ ν, namely the union of the family of all (∈,∈ ∨q)-fuzzy weak-
prime ideals of S contained in μ∩ ν is their greatest lower bound. There is no
difficulty in replacing the {μ, ν} with an arbitrary family of (∈,∈ ∨q)-fuzzy
weak-prime ideals of S, and so the family of all the (∈,∈ ∨q)-fuzzy weak-prime
ideals of S equipped with fuzzy set inclusion relation “ ⊆ ” constitutes a com-
plete lattice. It is clear that its maximal element is C

S
and it is closed under

fuzzy set union.

Corollary 4.13 The family of all the (∈,∈ ∨q)-fuzzy semiprime ideals of S
equipped with fuzzy set inclusion relation “ ⊆ ” constitutes a complete lattice.
And for any (∈,∈ ∨q)-fuzzy semiprime ideals μ and ν of S, μ ∩ ν and μ ∪ ν
are the greatest lower bound and least upper bound of {μ, ν}, respectively. Its
maximal element is C

S
. Moreover, it is closed under fuzzy set intersection and

union.

Lemma 4.14(Cf. [15]) Every semiprime ideal of a semigroup can be expressed
as the intersection of a family prime ideals of the semigroup.

It is natural to extend this property to (∈,∈ ∨q)-fuzzy semiprime ideal.

Theorem 4.15 Let μ be an (∈,∈ ∨q)-fuzzy ideal of S. Then μ is an (∈,∈ ∨q)-
fuzzy semiprime ideal if and only if μ can be expressed as the intersection of
a family (∈,∈ ∨q)-fuzzy prime ideals of S.

Proof. Assume that μ is the intersection of a family (∈,∈ ∨q)-fuzzy prime
ideals of S, then by Theorem 4.11, we know μ is an (∈,∈ ∨q)-fuzzy semiprime
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ideal of S(since the (∈,∈ ∨q)-fuzzy prime ideal must be an (∈,∈ ∨q)-fuzzy
semiprime ideal).

Conversely, let μ be an (∈,∈ ∨q)-fuzzy semiprime ideal of S. Let p(μ) =
{λ′|λ′ is an (∈,∈ ∨q)-fuzzy prime ideal of S and μ ⊆ λ′}. Now, let λ =⋂
λ′∈p(μ)

λ′. Obviously, μ ⊆ λ. If μ �= λ, then there exists a ∈ S such that

μ(a) < λ(a). Let μ(a) < 0.5. Since μ is an (∈,∈ ∨q)-fuzzy semiprime ideal of
S, then μs

μ(a) is a semiprime ideal of S by Theorem 4.6 and a �∈ μs
μ(a), and so

there exists a prime ideal P of S such that μs
μ(a) ⊆ P but a �∈ P by Lemma

4.14. Now let ν be a fuzzy subset in S such that

ν(x) =

{
1 if x ∈ P,
μ(a) otherwise.

for all x ∈ S. It is easy to check that ν is an (∈,∈ ∨q)-fuzzy prime ideal
of S. Now for all x ∈ S, if x ∈ P , then μ(x) ≤ 1 = ν(x); if x �∈ P , then
μ(x) ≤ μ(a) = ν(x), this implies that μ ⊆ ν and so ν ∈ p(μ). Thus μ(a) <
ν(a) = μ(a), a contradiction. Next, let μ(a) ≥ 0.5 and ω be a fuzzy subset in
S such that

ω(x) =

{
μ(a) if x = a,
μ(x) ∨ 0.5 otherwise.

for all x ∈ S. Then obviously, ω is an (∈,∈ ∨q)-fuzzy prime ideal of S and
μ ⊆ ω. Thus ω ∈ p(μ) and so μ(a) < ω(a) = μ(a), a contradiction. Therefore,
μ =

⋂
λ′∈p(μ)

λ′.

Obviously, in Lemma 3.15 , if A is a prime(resp.semiprime) ideal of S, then
μ is an (∈,∈ ∨q)-fuzzy weak-prime(resp.semiprime) ideals of S. Combing this
with Corollary 4.7, we may obtain the following Theorem.

Theorem 4.16 Let A = {μ|μ is an (∈,∈ ∨q)-fuzzy weak-prime(resp.semiprime)
ideal of S} and B = {P |P is a prime(resp.semiprime) ideal of S}. Then the
mapping f : A → B, f(μ) = Supp(μ) defines a one-to-one correspondence
between A and B.

Proof. Straightforward.

5 The (∈,∈ ∨q)-fuzzy maximal ideals of a semi-

group

Definition 5.1 An (∈,∈ ∨q)-fuzzy ideal μ of S is said to be maximal, if for
all (∈,∈ ∨q)-fuzzy ideal λ of S satisfying:
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(i) μ ⊆ ∨q λ,
(ii) ∃y ∈ S such that μ(y) < 0.5 and λ(y) ≥ 0.5.

then λ(x) ≥ 0.5 for all x ∈ S.

Theorem 5.2 Let μ be an (∈,∈ ∨q)-fuzzy ideal of S. Then the following
statements are equivalent:

(1) μ is an (∈,∈ ∨q)-fuzzy maximal ideal of S;
(2) ∀r ∈ (0, 0.5], if μr is non-empty, then μr is a maximal ideal of S;
(3) ∀r ∈ (0, 1], if [μ]r is non-empty, then [μ]r is a maximal ideal of S.

Proof. (1)⇒(2) Assume that (1) holds. If possible, let r ∈ (0, 0.5] and non-
empty set μr be not a maximal ideal of S. Then, there exists a ideal A of S
such that μr ⊂ A ⊂ S. Define a fuzzy subset λ in S as follows.

λ(x) =

{
1 if x ∈ A,
μ(x) otherwise.

for all x ∈ S. Then, it is easy to see that λ is an (∈,∈ ∨q)-fuzzy ideal of S.
Now, we have

(i) Let xr ∈ μ. Then r ≤ μ(x) ≤ λ(x), and so xr ∈ λ. Hence μ ⊆ ∨q λ.
(ii) Since μr ⊂ A ⊂ S, then there exists y ∈ A/μr, that is, μ(y) < r ≤ 0.5

and 0.5 < λ(y) = 1. On the other hand, if x ∈ S/A, then λ(x) = μ(x) < r ≤
0.5, which contradicts the fact that μ is an (∈,∈ ∨q)-fuzzy maximal ideal of
S. Hence (1) implies (2).

(2)⇒(3) Assume that (2) holds. If possible, let r ∈ (0, 1] and non-empty
set [μ]r be not a maximal ideal of S. Then there exists an ideal A of S such
that [μ]r ⊂ A ⊂ S. If r ∈ (0, 0.5], then μr ⊆ [μ]r ⊂ A ⊂ S, which contradicts
the fact that μr is a maximal ideal of S. If r ∈ (0.5, 1], for all x ∈ [μ]r, we
have μ(x) ≥ r > 1 − r or μ(x) > 1 − r, thus there exists ε > 0 such that
1− r + ε ≤ 0.5 and μ(x) ≥ 1− r + ε, that is , x ∈ μ1−r+ε and so [μ]r ⊆ μ1−r+ε.
On the other hand, for all x ∈ μ1−r+ε, we have μ(x) ≥ 1 − r + ε > 1 − r, that
is, x ∈ [μ]r and so μ1−r+ε ⊆ [μ]r. Hence μ1−r+ε = [μ]r ⊆ [μ]r ⊂ A ⊂ S, which
contradicts the fact that μ1−r+ε is a maximal ideal of S. Hence (2) implies (3).

(3)⇒(1) Assume that (3) holds. If μ is not an (∈,∈ ∨q)-fuzzy maximal
ideal of S. Then there exist an (∈,∈ ∨q)-fuzzy ideal λ of S satisfying: (i)
μ ⊆ ∨q λ; (ii) ∃y ∈ S such that μ(y) < 0.5 and λ(y) ≥ 0.5; (iii) ∃z ∈ S
such that λ(z) < 0.5. Now, choose r such that μ(y) ∨ λ(z) < r < 0.5. Then
λ(y) ≥ 0.5 > r > μ(y), that is, y ∈ [λ]r/[μ]r and z �∈ [λ]r. On the other
hand, for all x ∈ [μ]r, we have μ(x) ≥ r or μ(x) > 1 − r > r and so xr ∈ μ.
Hence x ∈ [λ]r since μ ⊆ ∨q λ, and so [μ]r ⊆ [λ]r. Thus, [μ]r ⊂ [λ]r ⊂ S, a
contradiction. Hence (3) implies (1).

Theorem 5.3 Let A be a non-empty set in S. Then A is a maximal ideal of
S if and only if C

A
is an (∈,∈ ∨q)-fuzzy maximal ideal of S.
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Combing Theorem 4.6 with Theorem 5.2, we may obtain the following
Theorem.

Theorem 5.4 Let S be a commutative semigroup such that S · S = S. Then
every (∈,∈ ∨q)-fuzzy maximal ideal of S is an (∈,∈ ∨q)-fuzzy weak-prime
ideal of S.

Proof. Assume that μ is an (∈,∈ ∨q)-fuzzy maximal ideal of S. By Theorem
5.2, for all r ∈ (0, 0.5], non-empty set μr is a maximal ideal of S. Since S is
a commutative semigroup and S · S = S, hence every maximal ideal of S is a
prime ideal, and so for all r ∈ (0, 0.5], non-empty set μr is a prime ideal of S.
Thus by Theorem 4.6, we know μ is an (∈,∈ ∨q)-fuzzy weak-prime ideal of S.

6 Problem of homomorphism

In this section, based on the homomorphism between two crisp semigroups,
we will study the properties of the images and inverse images of (∈,∈ ∨q)-fuzzy
ideals, prime(resp.weak-prime, semiprime) ideals and maximal ideals.

Defition 6.1(Cf. [2]) Let f be any mapping from a set X into a set X ′. A
fuzzy subset μ in X is called f -invariant, if for all x, y ∈ X,f(x) = f(y) ⇒
μ(x) = μ(y).

Clearly, f−1(f(μ)) = μ, provides that μ is f -invariant.

Theorem 6.2 Let S ′ be a semigroup, μ and μ′ be (∈,∈ ∨q)-fuzzy ideals of S
and S ′ respectively, and f be a homomorphism from S onto S ′. Then

(1) f(μ) is an (∈,∈ ∨q)-fuzzy ideal of S ′;
(2) f−1(μ) is an (∈,∈ ∨q)-fuzzy ideal of S;
(3) The mapping μ → f(μ) defines a one-to-one correspondence between

the set of the f -invariant (∈,∈ ∨q)-fuzzy ideals of S and the set of the (∈,∈
∨q)-fuzzy ideals of S ′.

Proof. (1) Assume that μ is an (∈,∈ ∨q)-fuzzy ideal of S. For all x′, y′ ∈ S ′,
since f is a homomorphism from S onto S ′, we have

f(μ)(x′y′) =
∨

z∈f−1(x′y′)
μ(z) ≥ ∨

x∈f−1(x′),y∈f−1(y′)
μ(xy)

≥ ∨
x∈f−1(x′),y∈f−1(y′)

M(μ(x) ∨ μ(y), 0.5)

= M((
∨

x∈f−1(x′)
μ(x)) ∨ (

∨
y∈f−1(y′)

μ(y)), 0.5)

= M(f(μ)(x′) ∨ f(μ)(y′), 0.5)

This implies that f(μ) is an (∈,∈ ∨q)-fuzzy ideal of S ′.
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(2) Assume that μ′ is an (∈,∈ ∨q)-fuzzy ideal of S ′. For all x, y ∈ S, we
have

f−1(μ′)(xy) = μ′(f(xy)) = μ′(f(x)f(y))
≥ M(μ′(f(x)) ∨ μ′(f(y)), 0.5)
= M(f−1(μ′)(x) ∨ f−1(μ′)(y), 0.5)

This implies that f−1(μ′) is an (∈,∈ ∨q)-fuzzy ideal of S.
(3) This part is the direct consequence of the parts (1) and (2).

Theorem 6.3 Let S ′ be a semigroup, μ and μ′ be (∈,∈ ∨q)-fuzzy prime(resp.weak-
prime, semiprime) ideals of S and S ′ respectively, f be a homomorphism from
S onto S ′. Then the following statements hold:

(1) f(μ) is an (∈,∈ ∨q)-fuzzy prime(resp.weak-prime, semiprime) ideal of
S ′, provided that μ is f -invariant;

(2) f−1(μ′) is an (∈,∈ ∨q)-fuzzy prime(resp.weak-prime, semiprime) ideal
of S;

(3) The mapping μ → f(μ) defines a one-to-one correspondence between
the set of the f -invariant (∈,∈ ∨q)-fuzzy prime(resp.weak-prime, semiprime)
ideals of S and the set of the (∈,∈ ∨q)-fuzzy prime(resp.weak-prime, semiprime)
ideals of S ′.

Proof. (1) Assume that μ is an (∈,∈ ∨q)-fuzzy prime ideal of S and f is a
homomorphism from S onto S ′, then f(μ) is an (∈,∈ ∨q)-fuzzy ideal of S ′ by
the part (1) of Theorem 6.2. Now, for all x′, y′ ∈ S ′, r, t ∈ (0, 1], there exists
x, y ∈ S such that f(x) = x′, f(y) = y′, then f(xr) = f(x)r = x′

r, f(yt) =
f(y)t = y′

t. If x′
r ◦ y′

t = (x′y′)M(r,t) ∈ f(μ) but x′
r ∈ ∨q f(μ), then μ(xy) =

f−1(f(μ))(xy)(since μ is f -invariant) = f(μ)(f(xy)) = f(μ)(f(x)f(y)) =
f(μ)(x′y′) ≥ M(r, t) but μ(x) = f−1(f(μ))(x) = f(μ)(f(x)) = f(μ)(x′) < r
and ≤ 1 − r, and so xr ◦ yt = (xy)M(r,t) ∈ μ but xr ∈ ∨q μ. Since μ is
an (∈,∈ ∨q)-fuzzy prime ideal of S, then yt ∈ ∨q μ and so f(μ)(y′) =∨
a∈f−1(y′)

μ(a) ≥ μ(y) ≥ t or > 1 − t, hence y′
t ∈ ∨q f(μ). This implies that

f(μ) is an (∈,∈ ∨q)-fuzzy prime ideal of S ′.
(2) Assume that μ′ is an (∈,∈ ∨q)-fuzzy prime ideal of S ′, then f−1(μ′)

is an (∈,∈ ∨q)-fuzzy ideal of S by the part (2) Theorem 6.2. Now, for all
x, y ∈ S, r, t ∈ (0, 1], if xr ◦ yt = (xy)M(r,t) ∈ f−1(μ′) but xr ∈ ∨q f−1(μ′), then
μ′(f(xy)) = f(f−1(μ′))(f(xy)) =

∨
a∈f−1(f(xy))

f−1(μ′)(a) =
∨

a∈f−1(f(xy))

μ′(f(a)) =

μ′(f(xy)) = f−1(μ′)(xy) ≥ M(r, t), but
μ′(f(x)) = f(f−1(μ′))(f(x)) =

∨
a∈f−1(f(x))

f−1(μ′)(a) =
∨

a∈f−1(f(x))

μ′(f(a)) =

μ′(f(x)) = f−1(μ′)(x) < r and ≤ 1 − r, and so f(x)r ◦ f(y)t = f(xr) ◦ f(yt) =
f(xr ◦ yt) = f(xy)M(r,t) ∈ μ′ but f(x)r ∈ ∨q μ′. Since μ′ is an (∈,∈ ∨q)-
fuzzy prime ideal of S ′, then f(y)t ∈ ∨q μ′ and so f−1(μ′)(y) = μ′(f(y)) ≥ t or
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> 1−t. Hence yt ∈ ∨q f−1(μ′). This implies that f−1(μ′) is an (∈,∈ ∨q)-fuzzy
prime ideal of S.

(3) This part is the direct consequence of the parts (1) and (2).
The other cases can be similarly disposed of.

Theorem 6.4 Let S ′ be a semigroup, μ and μ′ be (∈,∈ ∨q)-fuzzy maximal
ideals of S and S ′ respectively, and f be a homomorphism from S onto S ′. If
every (∈,∈ ∨q)-fuzzy ideal of S is f -invariant, then

(1) f(μ) is an (∈,∈ ∨q)-fuzzy maximal ideal of S ′ ;
(2) f−1(μ) is an (∈,∈ ∨q)-fuzzy maximal ideal of S;
(3) The mapping μ → f(μ) defines a one-to-one correspondence between

the set of the (∈,∈ ∨q)-fuzzy maximal ideals of S and the set of the (∈,∈ ∨q)-
fuzzy maximal ideals of S ′.

Proof. (1) Assume that μ is an (∈,∈ ∨q)-fuzzy maximal ideal of S, then f(μ)
is an (∈,∈ ∨q)-fuzzy ideal of S ′ by the part (1) of Theorem 6.2. If possible,
let f(μ) be not an (∈,∈ ∨q)-fuzzy maximal ideal of S ′. Then there exists
an (∈,∈ ∨q)-fuzzy ideal λ′ of S ′ satisfying: (i) f(μ) ⊆ ∨q λ′; (ii) ∃y′ ∈ S ′

such that f(μ)(y′) < 0.5 and λ′(y′) ≥ 0.5; (iii) ∃z′ ∈ S ′ such that λ′(z′) <
0.5. By the part (2) of Theorem 6.2, we know f−1(λ′) is an (∈,∈ ∨q)-fuzzy
ideal of S. Now, we have (i’) if xr ∈ μ, then f(xr) = f(x)r ∈ f(μ) ⇒
f(x)r ∈ ∨q λ′, and so f−1(λ′)(x) = λ′(f(x)) ≥ r or > 1 − r. Hence xr ∈
∨q f−1(λ′) and so μ ⊆ ∨q f−1(λ′). (ii’) Let y ∈ S such that f(y) = y′. Then
μ(y) = f−1(f(μ))(y)(since μ is f -invariant by assumption) = f(μ)(f(y)) =
f(μ)(y′) < 0.5 and f−1(λ′)(y) = λ′(f(y)) = λ′(y′) ≥ 0.5. (iii’) Let z ∈ S such
that f(z) = z′. Then f−1(λ′)(z) = λ′(f(z)) = λ′(z′) < 0.5, which contradicts
the fact that μ is an (∈,∈ ∨q)-fuzzy maximal ideal of S. Hence f(μ) is an
(∈,∈ ∨q)-fuzzy maximal ideal of S ′.

(2) Assume that μ′ is an (∈,∈ ∨q)-fuzzy maximal ideal of S ′, then f−1(μ′)
is an (∈,∈ ∨q)-fuzzy ideal of S by the part (2) of Theorem 6.2. If possible,
let f−1(μ′) be not an (∈,∈ ∨q)-fuzzy maximal ideal of S. Then there exists
an (∈,∈ ∨q)-fuzzy ideal λ of S satisfying: (i) f−1(μ′) ⊆ ∨q λ; (ii) ∃y ∈ S such
that f−1(μ′)(y) < 0.5 and λ(y) ≥ 0.5; (iii) ∃z ∈ S such that λ(z) < 0.5. By the
part (1) of Theorem 6.2, we know f (λ) is an (∈,∈ ∨q)-fuzzy ideal of S ′. Now,
we have (i’) Let x′

r ∈ μ′ and x ∈ S such that f(x) = x′. Then f−1(μ′)(x) =
μ′(f(x)) = μ′(x′) ≥ r and so xr ∈ f−1(μ′). Hence xr ∈ ∨q λ and so f(λ)(x′) =∨
a∈f−1(x′)

λ(a) = λ(x)(since λ is f -invariant by assumption) ≥ r or > 1 − r.

Thus x′
r ∈ ∨q f(λ) and so μ′ ⊆ ∨q f(λ). (ii’) μ′(f(y)) = f−1(μ′)(y) < 0.5 and

f(λ)(f(y)) =
∨

a∈f−1(f(y))

λ(a) = λ(y) ≥ 0.5. But f(λ)(f(z)) =
∨

a∈f−1(f(z))

λ(a) =

λ(z) < 0.5, which contradicts the fact that μ′ is an (∈,∈ ∨q)-fuzzy maximal
ideal of S ′. Hence f−1(μ′) is an (∈,∈ ∨q)-fuzzy maximal ideal of S.
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(3) This part is the direct consequence of the parts (1) and (2).
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