A Note on Bernardi's Integral Operators of Certain Classes of Analytic Functions

Saibah Siregar and *Maslina Darus

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D.E., Malaysia
*maslina@ukm.my

Abstract

Let $S^*(\alpha)$ denote the class of functions f analytic in the open unit disc $\mathcal{D} = \{z \in \mathbb{C}; |z| < 1\}$, normalized and satisfying

$$\left| \frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} + 1} \right| < \alpha, \qquad z \in \mathcal{D}.$$

Making use of the following integral operator, that is

$$\mathcal{F} = I_{\beta,\gamma} f(z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_0^z f^{\beta}(t) t^{\gamma - 1} dt \right]^{1/\beta},$$

where $\beta, \gamma \in \mathbb{C}$, with $\beta \neq 0$, $\beta > 0$, $\gamma \geq 0$, $Re(\beta + \gamma) > 0$, we determine δ such that whenever $f \in S^*(\alpha)$ then $\mathcal{F} \in S^*(\delta)$. Also in this paper, a similar problem for the class $R_{\beta}(\alpha)$ of all analytic functions satisfying

$$R_{\beta}(\alpha) = \left| \frac{\frac{f'(z)}{(f(z))^{1-\beta}} - 1}{\frac{f'(z)}{(f(z))^{1-\beta}} + 1} \right| < \alpha, \qquad z \in \mathcal{D}$$

is investigated. Thus generalise some known results.

Mathematics Subject Classification: 30C45

Keywords: starlike of order α , Bernardi's integral operator

1 Introduction

Let $H(\mathcal{D})$ denotes the class of functions f analytic in the open unit disc $\mathcal{D} = \{z \in \mathbb{C}; |z| < 1\}$ and $S = \{f \in H(\mathcal{D}) : f(0) = 0 = f'(0) - 1\}$. Also, let α be a given real number $0 < \alpha \le 1$ and define that $f \in S^*(\alpha)$ if

$$\left| \frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} + 1} \right| < \alpha, \qquad z \in \mathcal{D}.$$

 $S^*(1)$ is the well-known class S^* of starlike functions with respect to the origin, that is

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \quad (z \in \mathcal{D}).$$

1.1 The class of Caratheodory Functions

Let $p(z) = 1 + p_1 z + p_2 z + ...$ be a function regular and analytic in \mathcal{D} and satisfies the conditions p(0) = 1 and Re p(z) > 0. Then this type of function is known as Caratheodory functions and denoted by \mathcal{P} . If we use the subordination principle we have

$$p(z) \in p$$
 if and only if $p(z) \prec \frac{1+z}{1-z}$. (1.1)

1.2 The class of Janowski Functions

Let $p(z) = 1 + b_1 z + b_2 z + \dots$ be regular and analytic in \mathcal{D} and satisfies the condition

$$p(0) = 1$$
 Re $p(z) > 0$, $p(z) < \frac{1 + Az}{1 - Bz}$, $-1 < A < 1$, $-1 \le B < A$ (1.2)

then this function is known as Janowski functions and denoted by $\mathcal{P}(A, B)$. Geometrically, p(z) is in $\mathcal{P}(A, B)$ if and only if p(0) = 1 and $p(\mathcal{D})$ inside the open disc centered on the real axis with diameter end points:

$$p(-1) = \frac{1-A}{1-B}$$
 and $p(1) = \frac{1+A}{1+B}$.

Special selections of A and B lead to familiar sets defined by inequalities under the conditions p(0) = 1, $M > \frac{1}{2}$ and $0 \le \alpha < 1$, we have

1. p(-1,1) = p is the set defined by Rep(z) > 0 (Caratheodory's Class)

- 2. $p(1-2\alpha,-1)=p(\alpha)$ is the set defined by $\text{Re}p(z)>\alpha$
- 3. p(1,0) = p(1) is the set defined by |p(z) 1| < 1
- 4. $p(\alpha, 0) = p_*(\alpha)$ is the set defined by $|p(z) 1| < \alpha$
- 5. $p(1, \frac{1}{M} 1) = p(M)$ is the set defined by |p(z) M| < M
- 6. $p(\alpha, -\alpha) = p_{**}(\alpha)$ is the set defined by $\left| \frac{p(z)-1}{p(z)+1} \right| < \alpha$.

1.3 The class of Janowski's Starlike Functions

Let $S^*(A, B)$ be the class of functions f(z), f(0) = 0, f'(0) = 1 regular in \mathcal{D} and satisfying the condition

$$f(z) \in S^*(A, B)$$
 if and only if $\frac{zf'(z)}{f(z)} \in p(A, B)$. (1.3)

Special selections of A and B lead to familiar sets defined by the inequality under the conditions $M > \frac{1}{2}$, $0 \le \alpha < 1$, we have

- 1. $S^*(-1,1) = S^*$ is the class of starlike functions with respect to the origin
- 2. $S^*(1-2\alpha,-1)=S^*(\alpha)$ is the class of starlike functions of order α
- 3. $S^*p(1,0) = S^*(1)$ is the class defined by $\left|\frac{zf'(z)}{f(z)} 1\right| < 1$
- 4. $S^*p(\alpha,0) = S^*_*(\alpha)$ is the class defined by $\left|\frac{zf'(z)}{f(z)} 1\right| < \alpha, \ 0 \le \alpha < 1$
- 5. $S^*(1, \frac{1}{M} 1) = S^*(M)$ is the class defined by $|\frac{zf'(z)}{f(z)} M| < M, M > \frac{1}{2}$
- 6. $S^*(\alpha, -\alpha) = S^*_{**}(\alpha)$ is the class defined by $\left|\frac{\frac{zf'(z)}{f(z)} 1}{\frac{zf'(z)}{f(z)} + 1}\right| < \alpha$.

Functions f in S^* and $S^*(\alpha)$ respectively are called the Janowski starlike functions and Janowski starlike functions of order α [5]. Since the condition $\left|\frac{w(z)-1}{w(z)+1}\right| < \alpha$, $z \in \mathcal{D}, \ w(z) = \frac{zf'(z)}{f(z)}$ implies that |w(z)-m| < M where $M = \frac{1+\alpha^2}{1-\alpha^2}$.

For this latter class $S^*(\alpha)$, Parvatham proved the following:

Theorem 1.1 [1]. Let $\gamma \geq 0$, $0 < \alpha \leq 1$ and δ be given by

$$\delta := \alpha \left[\frac{2 + \alpha + \gamma(1 - \alpha)}{1 + 2\alpha + \gamma(1 - \alpha)} \right]. \tag{1.4}$$

If $f \in S^*(\delta)$, then the function $\mathcal{F}(z)$ given by Bernardi's integral,

$$F = I_{\gamma} f(z) = \frac{\gamma + 1}{z^{\gamma}} \int_0^z t^{\gamma - 1} f(t) dt.$$
 (1.5)

is in $S^*(\alpha)$.

Theorem 1.2 [1]. Let $\gamma \geq 0$, $0 < \alpha \leq 1$ and δ be given by

$$\delta := \alpha \left[\frac{2 - \alpha + \gamma (1 - \alpha)}{1 + \gamma (1 - \alpha)} \right]. \tag{1.6}$$

If $f \in R(\delta)$, then the function $\mathcal{F}(z)$ given by Bernardi's integral (1.5) is in $R(\alpha)$.

In this paper, we study the integral operator such that

$$\mathcal{F} = I_{\beta,\gamma} f(z) = \left[\frac{\beta + \gamma}{z^{\gamma}} \int_0^z f^{\beta}(t) t^{\gamma - 1} dt \right]^{1/\beta}, \tag{1.7}$$

where $\beta, \gamma \in \mathbb{C}$, with $\beta \neq 0, \beta > 0, \gamma \geq 0, Re(\beta + \gamma) > 0$ and $f \in S$.

Bulboacă [4] and Bernardi [2] showed that the classes: K of convex functions, S^* of starlike functions were closed under the transform (1.7) and (1.5), respectively.

Furthermore, in this paper we determine δ so that whenever $f \in S^*(\alpha)$ we have $\mathcal{F} \in S^*(\delta)$, and also, we consider a similar problem for

$$R_{\beta}(\alpha) = \left| \frac{\frac{f'(z)}{(f(z))^{1-\beta}} - 1}{\frac{f'(z)}{(f(z))^{1-\beta}} + 1} \right| < \alpha, \qquad z \in \mathcal{D}.$$
 (1.8)

Setting $p(z) = \frac{f'(z)}{(f(z))^{1-\beta}}$, we can rewrite the condition of (1.8) in the form of the condition given by item number 6 in sections 1.2 and 1.3, or equivalent to

$$Re\{p(z)\} > \frac{1+\alpha}{1-\alpha}.$$

Here $R_1(1)$ is the class of $f \in S$ such that f' belongs to the *Caratheodory* class w(z) of functions and by Parvatham [1], $R_1(\alpha)$ is the class of $f \in S$ such that f' belongs to $R(\alpha)$.

Lemma 1.3 [3] Suppose that the functions w(z) is regular in \mathcal{D} with w(0) = 0. Then if |w(z)| attains its maximum value on a circle |z| = r < 1 at a point $z_o \in \mathcal{D}$, we have

$$1. \ z_o w'(z_o) = k z_o$$

2.
$$Re\left\{1 + \frac{z_o w''(z_o)}{w'(z_o)}\right\} \ge k$$
 where $k \ge 1$ is a real number.

2 Main Results

Theorem 2.1 Let \mathcal{F} be given by (1.7) and $f \in S^*(\delta)$, where

$$\delta = \frac{2\alpha(3\beta + \gamma - 1) + (3\beta - 1 - 2\gamma)\alpha^2 + \beta - 1}{2\alpha(3\beta - \gamma - 1) + (\beta - 1)\alpha^2 + (3\beta - 1 + 2\gamma)}.$$

Then $\mathcal{F} \in S^*(\alpha)$ for all $\beta, \gamma \in \mathbb{C}$, with $\beta \neq 0, \beta > 0, \gamma \geq 0, 0 < \alpha \leq 1$.

Proof. First, we define a function w(z) by

$$w(z) = \frac{1}{\alpha} \left\{ \frac{\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} - 1}{\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + 1} \right\}, \quad \text{for } 0 < \alpha \le 1.$$
 (2.9)

and $w(z) \neq 1$ for $z \in \mathcal{D}$. Then w(z) is analytic in \mathcal{D} and w(0) = 0. It is suffices to show that |w(z)| < 1 in \mathcal{D} .

From (2.9) we have

$$\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} = \frac{1 + \alpha w(z)}{1 - \alpha w(z)};$$

by taking the logarithmic derivative we obtain

$$1 + \frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)} = \frac{2\alpha z w'(z)}{1 - \alpha^2 w^2(z)} + \frac{1 + \alpha w(z)}{1 - \alpha w(z)}.$$
 (2.10)

From (1.7) with simple differentiation, we have

$$(\beta + \gamma)f^{\beta}(z) = \mathcal{F}^{\beta}(z) \left[\beta \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + \gamma \right].$$

By logarithmic differentiation yields

$$\frac{zf'(z)}{f(z)} = \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} \left\{ \frac{\beta\left(\frac{1+z\mathcal{F}''(z)}{\mathcal{F}'(z)}\right) - \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)}}{\beta\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + \gamma} + 1 \right\}
= \frac{1+\alpha w(z)}{1-\alpha w(z)} \left\{ \frac{\frac{2\beta\alpha zw'(z)}{1+\alpha w(z)} + (\beta-1)(1+\alpha w(z))}{\beta(1+\alpha w(z)) + \gamma(1-\alpha w(z))} + 1 \right\},$$

such that

$$\frac{zf'(z)}{f(z)} = \frac{2\beta\alpha zw'(z) + (\beta - 1)(1 + \alpha w(z))^2}{(1 - \alpha w(z))[\beta(1 + \alpha w(z)) + \gamma(1 - \alpha w(z))]} + \frac{1 + \alpha w(z)}{1 - \alpha w(z)}.$$

According to lemma 1.3, we assume that there exist a point $z_o \in \mathcal{D}$, and

$$z_o w'(z_o) = k z_o, \qquad k \ge 1.$$

Then we get

$$\left\{ \frac{\frac{z_o f'(z_o)}{f(z_o)} - 1}{\frac{z_o f'(z_o)}{f(z_o)} + 1} \right\} = \frac{\alpha w(z_o)[(2\beta k + 4\beta - 2 + 2\gamma) + (3\beta - 1 - 2\gamma)\alpha w(z_o)] + \beta - 1}{\alpha w(z_o)[(2\beta k + 4\beta - 2 - 2\gamma) + (\beta - 1)\alpha w(z_o)] + (3\beta - 1 + 2\gamma)}$$

and

$$\left| \frac{\frac{z_{o}f'(z_{o})}{f(z_{o})} - 1}{\frac{z_{o}f'(z_{o})}{f(z_{o})} + 1} \right| = \frac{\left| \alpha e^{i\theta} [(2\beta k + 4\beta - 2 + 2\gamma) + (3\beta - 1 - 2\gamma)\alpha e^{i\theta}] + \beta - 1 \right|}{\left| \alpha e^{i\theta} [(2\beta k + 4\beta - 2 - 2\gamma) + (\beta - 1)\alpha e^{i\theta}] + (3\beta - 1 + 2\gamma) \right|} = \sigma(\theta),$$
(2.11)

where $\sigma(\theta)$

$$=\frac{\left\{\left[(\beta k+2\beta-1+\gamma)2\alpha\cos\theta+(3\beta-1-2\gamma)\alpha^{2}\cos2\theta+(\beta-1)\right]^{2}+\left[(\beta k+2\beta-1+\gamma)2\alpha\sin\theta+(3\beta-1-2\gamma)\alpha^{2}\sin2\theta\right]^{2}\right\}^{1/2}}{\left\{\left[(\beta k+2\beta-1-\gamma)2\alpha\cos\theta+(\beta-1)\alpha^{2}\cos2\theta+(3\beta-1+2\gamma)\right]^{2}+\left[(\beta k+2\beta-1-\gamma)2\alpha\sin\theta+(\beta-1)\alpha^{2}\sin2\theta\right]^{2}\right\}^{1/2}}.$$

Let $\varphi(t)$

$$=\frac{4\alpha^{2}(\beta k+2\beta-1+\gamma)^{2}+\alpha^{4}(3\beta-1-2\gamma)^{2}+(\beta-1)^{2}+2\alpha\left[\alpha(2t^{2}-1)(3\beta-1-2\gamma)(\beta-1)+(\beta k+2\beta-1+\gamma)[(3\beta-1-2\gamma)\alpha^{2}+(\beta-1)]4t\right]}{4\alpha^{2}(\beta k+2\beta-1-\gamma)^{2}+\alpha^{4}(\beta-1)^{2}+(3\beta-1+2\gamma)^{2}+2\alpha\left[\alpha(2t^{2}-1)(3\beta-1+2\gamma)(\beta-1)+(\beta k+2\beta-1-\gamma)[(3\beta-1+2\gamma)\alpha^{2}+(\beta-1)]4t\right]};$$

we can show that $\varphi(t)$ is a decreasing function of $t = \cos \theta$ in [-1,1] for $\gamma \geq 0$, $\beta \geq 0$.

Hence from (2.11), we obtain

$$\left\{ \frac{\frac{z_o f'(z_o)}{f(z_o)} - 1}{\frac{z_o f'(z_o)}{f(z_o)} + 1} \right\} \ge \frac{2\alpha(3\beta + \gamma - 1) + (3\beta - 1 - 2\gamma)\alpha^2 + \beta - 1}{2\alpha(3\beta - \gamma - 1) + (\beta - 1)\alpha^2 + (3\beta - 1 + 2\gamma)} = \delta$$

which contradicts the hypothesis that $f \in S^*(\delta)$. Hence we have

$$|w(z)| = \frac{1}{\alpha} \left| \frac{\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} - 1}{\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + 1} \right| < 1,$$

or $\mathcal{F} \in S^*(\alpha)$ which completes the proof of the theorem.

For $0 < \alpha \le 1$, we have $\alpha < \delta$ in Theorem 2.1 and obtain the following corollaries:

Corollary 2.2 If $f \in S^*(\delta)$ then $\mathcal{F} \in S^*(\delta)$.

Corollary 2.3 If $\delta = 1$ and $\beta = 1$, then α reduces to one for all $\beta \geq 0$ and $\gamma \geq 0$ which is a result of Bernardi [2].

Remark 2.4 If we take $\beta = 1$ in Theorem 2.1, we obtain the results (1.4) given by Parvatham [1].

Theorem 2.5 Let \mathcal{F} be given by (1.7) and $f \in R_{\beta}(\eta)$, where

$$\eta = \frac{2\alpha(1+\beta+\gamma) - (\beta+2\gamma+1)\alpha^2 - (\beta-1)}{2\alpha(1-(\beta+\gamma)) + (\beta-1)\alpha^2 + (\beta+2\gamma+1)}.$$

Then $\mathcal{F} \in R_{\beta}(\alpha)$ for all $\beta, \gamma \in \mathbb{C}$, with $\beta \neq 0, \beta > 0, \gamma \geq 0$ and $0 < \alpha \leq 1$.

Proof.

Let us define a function w(z) by

$$w(z) = \frac{1}{\alpha} \left\{ \frac{\frac{\mathcal{F}'(z)}{(\mathcal{F}(z))^{1-\beta}} - 1}{\frac{\mathcal{F}'(z)}{(\mathcal{F}(z))^{1-\beta}} + 1} \right\}, \quad \text{for } 0 < \alpha \le 1.$$
 (2.12)

and $w(z) \neq 1$ for $z \in \mathcal{D}$, such that w(z) is analytic in \mathcal{D} and w(0) = 0. It is suffices to show that |w(z)| < 1 in \mathcal{D} .

From (2.12) we have

$$\frac{\mathcal{F}'(z)}{(\mathcal{F}(z))^{1-\beta}} = \frac{1 + \alpha w(z)}{1 - \alpha w(z)};$$

and by taking the logarithmic derivative, we obtain

$$(\beta - 1)\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + \frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)} = \frac{2\alpha zw'(z)}{1 - \alpha^2 w^2(z)}.$$
 (2.13)

Differentiate (1.7), we obtain

$$\frac{f'(z)}{(f(z))^{1-\beta}} = \frac{\mathcal{F}'(z)}{(\mathcal{F}(z))^{1-\beta}} \left\{ \left(\beta \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + \gamma \right) + \left(1 + \frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)} - \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} \right) \right\} \frac{1}{\beta + \gamma}$$

$$= \frac{\mathcal{F}'(z)}{(\mathcal{F}(z))^{1-\beta}} \left\{ (\beta - 1) \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + \frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)} + (\gamma + 1) \right\} \frac{1}{\beta + \gamma}.$$

Thus

$$\frac{\frac{f'(z)}{(f(z))^{1-\beta}} - 1}{\frac{f'(z)}{(f(z))^{1-\beta}} + 1} = \frac{\frac{\mathcal{F}'(z)}{(\mathcal{F}(z))^{1-\beta}} \left\{ (\beta - 1) \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + \frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)} + (\gamma + 1) \right\} \frac{1}{\beta + \gamma} - 1}{\frac{\mathcal{F}'(z)}{(\mathcal{F}(z))^{1-\beta}} \left\{ (\beta - 1) \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + \frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)} + (\gamma + 1) \right\} \frac{1}{\beta + \gamma} + 1}$$

$$= \frac{\left(\frac{1 + \alpha w(z)}{1 - \alpha w(z)}\right) \left\{ \frac{2\alpha z w'(z)}{1 - \alpha^2 w^2(z)} + (\gamma + 1) \right\} \frac{1}{\beta + \gamma} - 1}{\left(\frac{1 + \alpha w(z)}{1 - \alpha w(z)}\right) \left\{ \frac{2\alpha z w'(z)}{1 - \alpha^2 w^2(z)} + (\gamma + 1) \right\} \frac{1}{\beta + \gamma} + 1}$$

$$= \frac{2\alpha z w'(z) + 2\alpha(\beta + \gamma)w(z) - (\beta + 2\gamma + 1)\alpha^2 w^2(z) - (\beta - 1)}{2\alpha z w'(z) - 2\alpha(\beta + \gamma)w(z) + (\beta - 1)\alpha^2 w^2(z) + (\beta + 2\gamma + 1)}.$$

According to Lemma 1.3, assume that there exist a point $z_o \in \mathcal{D}$ such that $\max_{|z| \leq |z_o|} |w(z)| = |w(z_o)| = 1$, and

$$z_o w'(z_o) = k z_o, \qquad k \ge 1.$$

Then we obtain

$$\left\{ \frac{\frac{f'(z_o)}{(f(z_o))^{1-\beta}} - 1}{\frac{f'(z_o)}{(f(z_o))^{1-\beta}} + 1} \right\} = \frac{2\alpha z w'(z_o) + 2\alpha(\beta + \gamma)w(z_o) - (\beta + 2\gamma + 1)\alpha^2 w^2(z_o) - (\beta - 1)}{2\alpha z w'(z_o) - 2\alpha(\beta + \gamma)w(z_o) + (\beta - 1)\alpha^2 w^2(z_o) + (\beta + 2\gamma + 1)}$$

and

$$\left| \frac{\frac{f'(z_o)}{(f(z_o))^{1-\beta}} - 1}{\frac{f'(z_o)}{(f(z_o))^{1-\beta}} + 1} \right| = \frac{\left| 2\alpha(k+\beta+\gamma)e^{i\theta} - (\beta+2\gamma+1)\alpha^2e^{i2\theta} - (\beta-1) \right|}{\left| 2\alpha(k-(\beta+\gamma))e^{i\theta} + (\beta-1)\alpha^2e^{i2\theta} + (\beta+2\gamma+1) \right|} \\
= \tau(\theta), \tag{2.14}$$

where $\tau(\theta)$

$$=\frac{\left\{\left[2\alpha(k+\beta+\gamma)\cos\theta-(\beta+2\gamma+1)\alpha^2\cos2\theta-(\beta-1)\right]^2+\left[2\alpha(k+\beta+\gamma)\sin\theta-(\beta+2\gamma+1)\alpha^2\sin2\theta\right]^2\right\}^{1/2}}{\left\{\left[2\alpha(k-(\beta+\gamma))\cos\theta+(\beta-1)\alpha^2\cos2\theta+(\beta+2\gamma+1)\right]^2+\left[2\alpha(k-(\beta+\gamma))\sin\theta+(\beta-1)\alpha^2\sin2\theta\right]^2\right\}^{1/2}}.$$

Let $\Psi(t)$

$$=\frac{4\alpha^{2}(k+\beta+\gamma)^{2}+\alpha^{4}(\beta+2\gamma+1)^{2}+(\beta-1)^{2}-4\alpha(k+\beta+\gamma)\left[\alpha^{2}(\beta+2\gamma+1)-(\beta-1)\right]t-2\alpha^{2}(\beta+2\gamma+1)(\beta-1)(2t^{2}-1)}{4\alpha^{2}(k-(\beta+\gamma))^{2}+\alpha^{4}(\beta-1)^{2}+(\beta+2\gamma+1)^{2}+4\alpha(k-(\beta+\gamma))\left[\alpha^{2}(\beta-1)+(\beta+2\gamma+1)\right]t+2\alpha^{2}(\beta+2\gamma+1)(\beta-1)(2t^{2}-1)};$$

we can show that $\Psi(t)$ is a decreasing function of $t = \cos \theta$ in [-1, 1] for $\gamma \geq 0$, $\beta \geq 0$.

Hence from (2.14) we obtain

$$\left\{ \frac{\frac{f'(z_o)}{(f(z_o))^{1-\beta}} - 1}{\frac{f'(z_o)}{(f(z_o))^{1-\beta}} + 1} \right\} \ge \frac{2\alpha(1+\beta+\gamma) - (\beta+2\gamma+1)\alpha^2 - (\beta-1)}{2\alpha(1-(\beta+\gamma)) + (\beta-1)\alpha^2 + (\beta+2\gamma+1)} = \eta$$

which contradicts the hypothesis that $f \in R_{\beta}(\eta)$. Hence we have

$$|w(z)| = \frac{1}{\alpha} \left| \frac{\frac{f'(z)}{(f(z))^{1-\beta}} - 1}{\frac{f'(z)}{(f(z))^{1-\beta}} + 1} \right| < 1,$$

or $\mathcal{F} \in R_{\beta}(\alpha)$ which completes the proof of the theorem.

For $0 < \alpha \le 1$, we have $\alpha < \eta$ in Theorem 2.5 and obtain the following corollaries:

Corollary 2.6 If $f \in R_{\beta}(\eta)$ then $\mathcal{F} \in R_{\beta}(\eta)$.

Corollary 2.7 If $\eta = 1$ and $\beta = 1$, then α reduces to one for all $\beta \geq 0$ and $\gamma \geq 0$ which is a result of Bernardi [2].

Remark 2.8 If we take $\beta = 1$ in Theorem 2.5, we obtain the results (1.6) given by Parvatham [1].

Acknowledgement The work presented here was supported by SAGA: STGL-012-2006. Academy of Sciences, Malaysia.

References

- [1] R. Parvatham, On Bernardi's integral operators of certain classes of functions, *Kyungpook Math. J.* 42 (2002), 437-441.
- [2] S. D. Bernardi, Convex and Starlike univalent functions, *Trans. Amer. Math. Soc.* 135 (1969), 429-446.
- [3] S. S. Miller and P. T. Mocanu, Second order Differential inequalities in the complex plane, *J. Math. Anal. Appl.* 65 (1978), 289-305.
- [4] T. Bulboacă, On a class of superordination-preserving integral operators, *Indag. Mathem.* 13(3) (2002), 301-311.
- [5] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. J. 28 (1973), 297-326.

Received: April 19, 2008