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Abstract

We study the existence of solutions for the second-order Neumann
boundary value problem − u ′′ + u = f (x , u) , u ′(a) = u ′(b) = 0 ,
x ∈ [a, b] under suitable assumptions on the function f . Our approach
is based on the Green’s function method and on well known fixed point
theorems.
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1 Introduction

In this paper, we deal with the following equation with boundary homogeneous
conditions

−u′′ + u = f(x, u) , u′(a) = u′(b) = 0 x ∈ [a, b] (1)

This is a second-order Neumann problem, many applications of which arise
in different contexts, e.g. in various typical mathematical physics approaches.
By using the Green’s function technique (see [2] ) we’ll see that this problem,
as well as the analogous Dirichlet’s form, is equivalent to an integral equation
of Fredholm type. Therefore, such a Neumann problem (1) can be reduced to
a fixed point problem for a given functional. The aim of the present paper
is to establish the existence of the solution, under suitable assumptions on f ,
by using the Schauder-Tychonoff theorem ( see for instance [4] ). Applica-
tions of the Schauder-Tychonoff theorem to differential equations have been
discussed by many authors ( see for instance Leray [6] and Bonsall [1] ). For
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the sake of completeness we include at first, under peculiar hypothesis on f ,
the proof of the existence and uniqueness of the solution of (1) by using the
Banach-Caccioppoli’s fixed point theorem which, as known, applies to con-
traction (distance-diminishing) maps of a complete metric space into itself. In
such a case, we present also a construction of the solution of (1) by means of
successive approximations method.

2 The second-order Neumann Problem

As it’s well known by the literature, problems of the kind (1) can be solved by
preliminarly considering the following Neumann problem

−u′′ + u = v , u′(a) = u′(b) = 0 , x ∈ [a, b] (2)

by assuming, of course, v ∈ L1([a, b]).

The solution of (2) can be written in the form

u(x) =
∫ b

a
G(x, t)v(t)dt (3)

where

G(x, t) = g(x, t) − ex

e2b − e2a

{
eb
(
∂g

∂x

)
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− ea
(
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)
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}
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+
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e−b

(
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− e−a
(
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)
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The function g(x , t) should be solution of the following differential equation
in the distributional sense

−∂
2g

∂x2
(x, t) + g(x, t) = δ(x− t)

whose solution, by means of the Fourier transform technique, is g(x, t) =
1
2
e−|x−t|. Consequently,

G(x, t) =
cosh(b− ξ) cosh(a− η)

sinh(b− a)
(4)
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with ξ = max (x , t), η = min(x , t) and (x , t) ∈ D = [a, b] × [a, b]. We remark
that the G(x , t) represents the Green’s function for the problem (2) and sat-
isfies the conditions

(
∂G

∂x

)
x=a

=
(
∂G

∂x

)
x=b

= 0 (5)

The function G(x , t) is continuous and positive over all D . Moreover, one
has both ∂G

∂x
(x, t) �= 0 and ∂G

∂t
(x, t) �= 0 , ∀ (x , t) ∈ intD and also G(x, t) ≤

coth(b− a) , ∀ (x , t) ∈ D .

2.1 An existence and uniqueness theorem

Let f (x , u) be a measurable and bounded function defined in [a, b] × R. Thus,
by (3) the boundary value problem (1) is equivalent to the following integral
equation of Fredholm type

u(x) =
∫ b

a
G(x, t)f(t, u(t))dt (6)

We suppose now that f (x , u) is also a Lipschitz function with respect to u,
uniformely with respect to x . Denoting by L a Lipschitz constant, we prove
that, provided

L <
tanh(b− a)

b− a
= Λ , (7)

the problem (1) has a unique solution. We remark that if define a functional
Φ : C 0 ([a, b]) −→ C 0 ([a, b]) as Φ(u(x )) =

∫ b
a G(x , t)f (t , u(t))dt the (6) be-

comes a fixed point problem. Hence, the assumption (7) implies that the
functional Φ is a contraction map in C 0 ([a, b]) with L/Λ a Lipschitz constant
and, as it’s well known, the Banach-Caccioppoli’s fixed point theorem assures
that Φ has a unique fixed point u ∈ C 0 ([a, b]) satisfying the integral equation
(6).

In order to construct such a solution, let us consider the following recursive
sequence

un(x) =
∫ b

a
G(x, t)f(t, un−1(t))dt , ∀ n ∈ N (8)

where

uo(x) = 0

It results that, in our hypothesis, the un(t) are continuous functions for every
t ∈ [a, b] and from (5) it follows also that the boundary conditions of (1) are
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satisfied at each step n . Then, by setting H = maxt∈[a,b]|f (t , 0 )|, the (8)
implies

|uk(x) − uk−1(x)| ≤ H

L
[L/Λ]k , ∀ k ∈ N , ∀ x ∈ [a, b]

This implies the total and hence the uniform convergence of the {un(x)}n

sequence towards a continuous function u(t). Consequently, the sequence
{zn(x, t) = G(x, t)f(t, un−1(t))}n converges uniformely , ∀ (x , t) ∈ D , towards
the limit function z (x , t) = G(x , t)f (t , u(t)) being

|zn(x, t) − z(x, t)| ≤ coth(b− a)L|un(t) − u(t)| , ∀ n ∈ N , ∀ (x, t) ∈ D

Therefore, by the Uniform Convergence Theorem, it follows from (8) that the
limit function u(t) is just the solution of (6). Such a solution is obviously
unique. Indeed, arguing by contradiction, let w(t) be another solution of the
problem (1) . From (6) clearly follows the inequality

|u(x) − w(x)| ≤ L

Λ
maxx∈[a,b]|u(x) − w(x)| , ∀ x ∈ [a, b]

which by (7) obviously leads to an absurdity.

2.2 An existence theorem

Let us assume, now that
i) the function x �−→ f (x , u) is measurable ∀ u ∈ R

ii) the function u �−→ f (x , u) is continuous for almost every x ∈ [a, b]

iii)there exist two functions p(x ) and s(x ) ∈ L1 ([a, b]) such that, for almost
every x ∈ [a, b], for every u ∈ R and for every r > 0 one has

|f(x, u)| ≤ p(x)|u|r + s(x)

with the constraint

‖ p ‖L1 + ‖ s ‖L1 < tanh(b− a)
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and prove the existence of solutions of (1).
By defining the functional

Ψ(v(x)) ≡ Ψ(v)(x) = f

(
x,
∫ b

a
G(x, t)v(t)dt

)

the problem (1), taking into account also the (2) and (3), becomes the fixed
point problem v(x ) = ψ(v)(x ). Let us choose γ such that

‖ s ‖L1

tanh(b− a) − ‖ p ‖L1

< γ (9)

where γ is greater than 1 for 0 < r < 1 and smaller than 1 for r ≥ 1 . We
observe that if |u| < γ we have |f(x, u)| ≤ p(x)γ + s(x) , ∀ x ∈ [a, b]. Then,
by defining M (x ) = sup|u|<γ|f (x , u)| , one clearly has

‖M ‖L1 ≤ ‖ p ‖L1γ + ‖ s ‖L1 < γ tanh(b− a)

Let us consider now the set

K =
{
v(x) ∈ L1([a, b]): |v(x)| ≤ M(x) a.e. in [a, b]

}

K is, of course, nonempty, convex and by the Dunford-Pettis theorem ( see for
instance [3] Theorem 1, page 101 ), it is also weakly compact. Besides if v ∈
K , one has ‖ v ‖L1 < γ tanh(b− a). Let us prove that Ψ(K ) ⊆ K . Since,

∣∣∣∣∣
∫ b

a
G(x, t)v(t)dt

∣∣∣∣∣ ≤
∫ b

a
|G(x, t)||v(t)|dt ≤ coth(b− a)‖ v ‖L1 < γ

we have

|Ψ(v)(x)| =

∣∣∣∣∣f
(
x,
∫ b

a
G(x, t)v(t)dt

)∣∣∣∣∣ ≤ sup|u|<γ|f(x, u)| = M(x)

i.e. Ψ(v)(x ) ∈ K .
Let us prove now that the operator Ψ is weakly continuous. Owing to the

weak compactness of K, we need only to verify that gr(Ψ) is weakly closed in
K × K . According to [5], Theorem 7 page 313, it suffices to show that gr(Ψ)
is sequentially weakly closed.

Let v and {vn(x)}n be a function and a sequence in K such that vn(x ) ⇀ v(x )
in L1 ([a, b]) respectively. We note also that Ψ(vn)(x ) = f (x ,

∫ b
a G(x , t)vn(t)dt)

converges almost everywhere in [a, b] to f (x , limn→+∞
∫ b
a G(x , t)vn(t)dt) which

is equal to f (x ,
∫ b
a G(x , t)v(t)dt) ≡ Ψ(v)(x ) being ϕ(ω) =

∫ b
a G(x , t)ω(t)dt a

linear and continuous functional in K for a fixed x .
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Moreover Ψ(vn)(x ) is measurable ∀ n ∈ N and |Ψ (vn)(x )| ≤ M (x ) ∀ n ∈ N
almost everywhere in [a, b]. From the Lebesgue’s dominated convergence the-
orem, we obtain that limn→+∞ Ψ(vn)(x ) = Ψ(v)(x ) in L1 ([a, b]) and con-
sequently Ψ(vn)(x ) ⇀ Ψ(v)(x ). At this point, we are allowed to apply the
Schauder-Tychonoff fixed point theorem to Ψ . Therefore, it does exist u ∈ K
such that u = Ψ(u). This concludes the proof of the theorem.
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