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Abstract

We study the existence of solutions for the second-order Neumann
boundary value problem — " 4+u = f(z,u) , v'(a)=4'(b)=0 ,
x € [a,b] under suitable assumptions on the function f. Our approach
is based on the Green’s function method and on well known fixed point
theorems.
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1 Introduction

In this paper, we deal with the following equation with boundary homogeneous
conditions

—u" +u=f(z,u) , u(a)=d0)=0 z¢€]la,b (1)

This is a second-order Neumann problem, many applications of which arise
in different contexts, e.g. in various typical mathematical physics approaches.
By using the Green’s function technique (see [2] ) we'll see that this problem,
as well as the analogous Dirichlet’s form, is equivalent to an integral equation
of Fredholm type. Therefore, such a Neumann problem (1) can be reduced to
a fixed point problem for a given functional. The aim of the present paper
is to establish the existence of the solution, under suitable assumptions on f,
by using the Schauder-Tychonoff theorem ( see for instance [4] ). Applica-
tions of the Schauder-Tychonoff theorem to differential equations have been
discussed by many authors ( see for instance Leray [6] and Bonsall [1] ). For
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the sake of completeness we include at first, under peculiar hypothesis on f,
the proof of the existence and uniqueness of the solution of (1) by using the
Banach-Caccioppoli’s fixed point theorem which, as known, applies to con-
traction (distance-diminishing) maps of a complete metric space into itself. In
such a case, we present also a construction of the solution of (1) by means of
successive approximations method.

2 The second-order Neumann Problem

As it’s well known by the literature, problems of the kind (1) can be solved by
preliminarly considering the following Neumann problem

—u"+u=v , da)=d(b)=0, xz€]lal (2)

by assuming, of course, v € L'([a, b]).

The solution of (2) can be written in the form

ulw) = / Gl tyo(t)dt (3)

where

e* 89 a ag
Glz,t) = g(x,t)—m{eb(a_x) - (8_1‘) - }+

=15, ()
+e—21’—e—2“ {e (8x o=b ¢ 0T/ 4—a

The function g(z,t) should be solution of the following differential equation
in the distributional sense

&g
whose solution, by means of the Fourier transform technique, is g(z,t) =
1e~l==tl. Consequently,

cosh(b — &) cosh(a — n)
sinh(b — a)

G(z,t) =
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with £ = maz(z,t), n = min(z,t) and (z,t) € D = [a, b] X [a, b]. We remark
that the G(z,t) represents the Green’s function for the problem (2) and sat-

isfies the conditions
0G oG
(%):t:a N (%>x:b B O (5)

The function G(z,t) is continuous and positive over all D. Moreover, one
has both %—f(w,t) # 0 and %—f(x,t) # 0,V (z,t) € intD and also G(z,t) <
coth(b—a) ,V (z,t) € D.

2.1 An existence and uniqueness theorem

Let f(z, u) be a measurable and bounded function defined in [a, b] x R. Thus,
by (3) the boundary value problem (1) is equivalent to the following integral
equation of Fredholm type

ul(z) = / Gl ) f (2, u(t))dt (6)

We suppose now that f(z,u) is also a Lipschitz function with respect to u,
uniformely with respect to x. Denoting by L a Lipschitz constant, we prove
that, provided

tanh(b — a)

L <
b—a

=A, (7>

the problem (1) has a unique solution. We remark that if define a functional
@ : C%a, b)) — C%[a, b)) as P(u(zx)) = [P G(z, t)f (t, u(t))dt the (6) be-
comes a fixed point problem. Hence, the assumption (7) implies that the
functional @ is a contraction map in C'?([a, b]) with L/A a Lipschitz constant
and, as it’s well known, the Banach-Caccioppoli’s fixed point theorem assures
that @ has a unique fixed point u € C?([a, b]) satisfying the integral equation
(6).

In order to construct such a solution, let us consider the following recursive
sequence

Un() = /abG(x,t)f(t,unl(t))dt ., YneN ®)
where
uo(z) =0

It results that, in our hypothesis, the w,(¢) are continuous functions for every
t € [a, b] and from (5) it follows also that the boundary conditions of (1) are
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satisfied at each step n . Then, by setting H = mazcjay|f(t, 0)], the (8)
implies

lup(r) —up_1(z)| < —[L/A]F |, Yk € N ,Vaz e lab

~| =

This implies the total and hence the uniform convergence of the {u,(x)},
sequence towards a continuous function wu(t). Consequently, the sequence
{zn(x,t) = G(x,t) f(t, up_1(t)) },, converges uniformely , V (z,t) € D, towards
the limit function z(z,t) = G(z,t)f (¢, u(t)) being

|zn(z,t) — z(z,t)| < coth(b— a)L|u,(t) —u(t)] ,Vn € N, V (x,t) € D

Therefore, by the Uniform Convergence Theorem, it follows from (8) that the
limit function w(t) is just the solution of (6). Such a solution is obviously
unique. Indeed, arguing by contradiction, let w(t) be another solution of the
problem (1) . From (6) clearly follows the inequality

lu(z) —w(x)| < %maxxe[a,b]\u(x) —w(z)| , VY x € [a,b

which by (7) obviously leads to an absurdity.

2.2 An existence theorem

Let us assume, now that
i) the function z — f(z, u) is measurable V u € R

ii) the function u — f(z, u) is continuous for almost every z € [a, b]

iii)there exist two functions p(z) and s(x) € L ([a, b]) such that, for almost
every z € [a, b, for every v € R and for every r > () one has

|f (2, u)| < p(@)]ul” + s(z)
with the constraint

Ip e+ 's e < tanh(b —a)
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and prove the existence of solutions of (1).
By defining the functional

V(o(z) = W()(z) = f(x, /abG(x,t)v(t)dt>

the problem (1), taking into account also the (2) and (3), becomes the fixed
point problem v(z) = 1 (v)(z). Let us choose ~y such that

s,
< 9
tanh(o—a) — 1o, ©)

where v is greater than 1 for 0 < r < 1 and smaller than 1 for » > 1. We
observe that if |u| < v we have |f(z,u)| < p(z)y + s(z) , V z € [a,b]. Then,
by defining M (z) = supjuyj<~|f(x,u)| , one clearly has

I M [ <N pllpy+ s [l < tanh(b—a)
Let us consider now the set
K = {v(m) € L*([a,b]): [v(z)| < M(x) a.e. in [a, b]}

K is, of course, nonempty, convex and by the Dunford-Pettis theorem ( see for
instance [3] Theorem 1, page 101 ), it is also weakly compact. Besides if v €
K, one has || v ||;; < ytanh(b— a). Let us prove that ¥(K) C K. Since,

/:G(:z:,t)v(t)dt < /ab G, )| |v(t)|dt < coth(b— a)|| v |2 <

we have

< SUP|u|<7|f(x’u)| = M(.T)

(o)) = 7z [ Glnto)

ie. ¥(v)(z) € K.

Let us prove now that the operator ¥ is weakly continuous. Owing to the
weak compactness of K, we need only to verify that gr(¥) is weakly closed in
K x K. According to [5], Theorem 7 page 313, it suffices to show that gr(¥)
is sequentially weakly closed.

Let v and {v,(x)}, be a function and a sequence in K such that v,(z) — v(z)
in L' ([a, b]) respectively. We note also that ¥(v,)(z) = f(z, [? G(z,t)v,(t)dt)
converges almost everywhere in [a, b] to f(z, lim,_ 4o [0 G(z, t)v,(t)dt) which
is equal to f(z, [ G(z,t)v(t)dt) = ¥(v)(x) being p(w) = [° G(z, t)w(t)dt a

linear and continuous functional in K for a fixed z.
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Moreover ¥(u,)(z) is measurable V n € N and |¥(v,)(z)| < M(z)Vn € N
almost everywhere in [a, b]. From the Lebesgue’s dominated convergence the-
orem, we obtain that lim, . . ¥(v,)(z)= ¥(v)(z) in L!([a,b]) and con-
sequently ¥(v,)(xz) = ¥(v)(z). At this point, we are allowed to apply the
Schauder-Tychonoff fixed point theorem to ¥. Therefore, it does exist u € K
such that v = ¥(u). This concludes the proof of the theorem.
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