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Abstract

In this article, we have used homotopy perturbation method (HPM)
to solve the linear and nonlinear Fokker-Planck equations. To illustrate
the capability and reliability of the method, some examples are pro-
vided. The results obtained using HPM are compared to the results of
Adomian decomposition method (ADM) and then capability of these
methods are also discussed.
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1 Introduction

The idea of HPM was first introduced by He in 1998 [1].By the homotopy
technique in topology, a homotopy can be constructed with an embedding pa-
rameter p ∈ [0, 1], which is considered as a small one. In this method, the
solution is considered as the summation of a series which rapidly converge to
the solution. HPM is a combination of the perturbation and homotopy meth-
ods. This method (HPM) can take the advantages of the conventional pertur-
bation method while eliminating its restrictions. First author has employed
HPM to solve nonlinear Schrodinger equation, Ganji applied HPM to study
nonlinear heat transfer and porous media equations [3] and Rafei employed
this technique to solve RLW and generalized modified Boussinesq equations
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[4]. In general, this method has been successfully applied to solve many types
of linear and nonlinear equations in science and engineering by some authors
[5-13]. The aim of this article is to employ HPM to solve of Fokker-Planck
equation and comparing the results obtained with ADM [14].

2 Fokker-Planck equation

Fokker-Planck equation was first introduced by Fokker and Planck to de-
scribe the Brownian motion of particles [15]. This equation has been used in
different fields in natural sciences such as quantum optics, solid-state physics,
chemical physics, theoretical biology and circuit theory.
Fokker-Planck equation in general form can be expressed as follows [15]:

∂u

∂t
= [− ∂

∂x
A(x) +

∂2

∂x2
B(x)]u, (1)

with the following initial condition:

u(x, 0) = f(x), x ∈ R

where u(x, y) is an unknown function. A(x) and B(x) are called diffusion and
drift coefficients, such that B(x) > 0. Diffusion and drift coefficients in Eq.(1)
can be functions of x and t as well as:

∂u

∂t
= [− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)]u. (2)

Eq.(1) is also well known as a forward Kolmogorov equation. There also exists
another type of this equation which is called a backward one as [15]:

∂u

∂t
= −[A(x, t)

∂

∂x
+ B(x, t)

∂2

∂x2
]u. (3)

A generalization of Eq.(1) to N variables of, x1, x2, . . . , xN , yields to:

∂u

∂t
= [−

N∑

i=1

∂

∂xi
Ai(x) +

N∑

i,j=1

∂2

∂xi∂xj
Bi,j(x)]u, (4)

with the following initial condition:

u(x, 0) = f(x), x = (x1, x2, . . . , xN) ∈ RN .

The nonlinear Fokker-Planck equation is a more general form of linear one
which has also been applied in vast areas such as plasma physics, surface
physics, population dynamics, biophysics, engineering, neurosciences, polymer
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physics, laser physics, nonlinear hydrodynamics, pattern formation and mar-
keting [16]. The nonlinear form of Fokker-Planck equation can be expressed
in the following form:

∂u

∂t
= [− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)]u. (5)

A generalization of Eq.(5) with N variables of x1, x2, . . . , xN , leads to:

∂u

∂t
= [−

N∑

i=1

∂

∂xi
Ai(x, t, u) +

N∑

i,j=1

∂2

∂xi∂xj
Bi,j(x, t, u)]u, x = (x1, x2, . . . , xN ) ∈ RN .

(6)

3 Homotopy perturbation method (HPM)

To illustrate the basic ideas of this method, we consider the following func-
tional equation:

A(u) − f(r) = 0, r ∈ Ω, (7)

with the following boundary conditions:

B(u,
∂u

∂n
) = 0, r ∈ Γ, (8)

where A is a functional operator, B is a boundary operator, f(r) is a known
analytical function and Γ is the boundary of the domain Ω.
The operator A can be decomposed into a linear part and a nonlinear one,
designated as L and N respectively. Hence Eq.(7) can be written as the fol-
lowing form:

L(u) + N(u) − f(r) = 0.

Using homotopy technique, we construct a homotopy v(r, p) : Ω× [0, 1] −→ R
which satisfies:

H(v, p) = (1 − p)[L(v) − L(u0] + p[A(v) − f(r)] = 0, (9)

where p ∈ [0, 1] is an embedding parameter u0 and is an initial approximation
for the solution of Eq.(7) which satisfies the boundary conditions. Obviously,
from Eq.(9) we will have:

H(v, 0) = L(v) − L(u0) = 0,
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H(v, 1) = A(v) − f(r) = 0.

By changing the values of pfrom zero to unity,v(r, p) change from u0(r) to u(r),
in topology this is called deformation, and L(v) − L(u0) and A(v) − f(r) are
called homotopic. Due to the fact that can be considered as a small parameter,
hence we consider the solution of Eq.(9) as a power series in p as the following:

v = v0 + pv1 + p2v2 + . . . (10)

setting p = 1 results in an approximation solution of Eq.(7)

u = lim
p→1

v = v0 + v1 + v2 + . . .

4 Examples

To illustrate capability, reliability and simplicity of the method, six examples
for different cases of the equation will be discussed here.

Example 1. Consider Fokker-Planck Eq.(1) in the case that:

u(x, 0) = x, x ∈ R, A(x) = −1, B(x) = 1. (11)

Using HPM, We construct the following homotopy:

H(v, p) = (1 − p)[
∂v

∂t
− ∂u0

∂t
] + p[

∂v

∂t
− ∂v

∂x
− ∂2v

∂x2
] = 0. (12)

Substituting Eq.(10) into Eq.(12) and equating the terms with identical powers
of p, we derive:

p0 :
∂v0

∂t
− u0

∂t
= 0, v0(x, 0) = x,

p1 :
∂v1

∂t
+

u0

∂t
− ∂v0

∂x
− ∂2v0

∂x2
= 0, v1(x, 0) = 0, (13)

p2 :
∂v2

∂t
− ∂v1

∂x
− ∂2v1

∂x2
= 0, v2(x, 0) = 0,

...

Consider u0(x, t) = x as an initial approximation which satisfies the initial
condition. From Eqs.(13), the following terms can be computed successively:

v0(x, t) = x,

v1(x, t) = t,
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vn(x, t) = 0, n = 2, 3, . . .

Therefore, the solution of Eq.(11) when p −→ 1 will be as follows:

u(x, t) = x + t.

which is an exact solution and is the same as that reported in [14].

Example 2. Consider Eq.(2) such that:

u(x, 0) = sinh(x), x ∈ R,

A(x, t) = et(coth(x)cosh(x) + sinh(x)) − coth(x), (14)

B(x, t) = etcosh(x).

Similarly, a homotopy can be constructed in the following form:

H(v, p) = (1 − p)[
∂v

∂t
− ∂u0

∂t
] + p[(

∂

∂t
+

∂

∂x
A(x, t) − ∂2

∂x2
B(x, t))v] = 0. (15)

Putting Eq.(10) into Eq.(15) and collecting terms with powers of p as 0, 1, 2, . . . ,
gives:

p0 :
∂v0

∂t
− u0

∂t
= 0, v0(x, 0) = sinh(x),

p1 :
∂v1

∂t
+

u0

∂t
+

∂v0A(x, t)

∂x
− ∂2v0B(x, t)

∂x2
= 0, v1(x, 0) = 0, (16)

p2 :
∂v2

∂t
+

∂v1A(x, t)

∂x
− ∂2v1B(x, t)

∂x2
= 0, v2(x, 0) = 0,

...

Let’s select u0(x, t) = sinh(x) as a first approximation for the solution which
satisfies the initial condition, from Eqs.(16) we derive:

v0(x, t) = sinh(x),

v1(x, t) = tsinh(x),

v2(x, t) =
t2

2!
sinh(x),

...
Therefore, the solution of Eq.(14) when p −→ 1 will be as follows:

u(x, t) = sinh(x) + tsinh(x) +
t2

2!
sinh(x) + . . . = etsinh(x),
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which is an exact solution and is the same as that obtained by ADM [14].

Example 3. Consider the backward Kolmogorov Eq.(3) such that:

u(x, 0) = x + 1, x ∈ R, A(x, t) = −(x + 1), B(x, t) = x2et. (17)

Using HPM, we construct a homotopy in the form:

H(v, p) = (1 − p)[
∂v

∂t
− ∂u0

∂t
] + p[(

∂

∂t
+ A(x, t)

∂

∂x
+ B(x, t)

∂2

∂x2
)v] = 0. (18)

Substituting Eq.(10) into Eq.(18) and rearranging based on powers of p-terms,
we obtain:

p0 :
∂v0

∂t
− ∂u0

∂t
= 0, v0(x, 0) = x + 1,

p1 :
∂v1

∂t
+

∂u0

∂t
+ A(x, t)

∂v0

∂x
+ B(x, t)

∂2v0

∂x2
= 0, v1(x, 0) = 0, (19)

p2 :
∂v2

∂t
+ A(x, t)

∂v1

∂x
+ B(x, t)

∂2v1

∂x2
= 0, v2(x, 0) = 0,

...

Consider u0(x, t) = x+1 as an initial approximation which satisfies the initial
condition. Successive solving of Eqs.(19) leads to:

v0(x, t) = x + 1,

v1(x, t) = t(x + 1),

v2(x, t) =
t2

2
(x + 1),

...
Hence, the solution of Eq.(17) when p −→ 1 will be in the following form:

u(x, t) = (x + 1) + t(x + 1) +
t2

2!
(x + 1) + . . . = et(x + 1),

which is an exact solution and is the same as that reported in [14].

Example 4. Consider the generalized linear Eq.(4) such that:

u(x, 0) = x1, x = (x1, x2)
t ∈ R2,

A1(x1, x2) = x1,
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A2(x1, x2) = 5x2,

B1,1(x1, x2) = x2
1, (20)

B1,2(x1, x2) = 1,

B2,1(x1, x2) = 1,

B2,2(x1, x2) = x2
2,

Applying HPM, we construct a homotopy as follows:

H(v, p) = (1 − p)[
∂v

∂t
− ∂u0

∂t
] + p[(

∂

∂t

+

2∑

i=1

∂

∂xi
Ai(x1, x2) −

2∑

i,j=1

∂2

∂xi∂xj
Bi,j(x1, x2))v] = 0. (21)

Substituting Eq.(10) into Eq.(21) and collecting terms with powers of p as
0,1,2, . . . , we can obtain:

p0 :
∂v0

∂t
− ∂u0

∂t
= 0, v0(x, 0) = x1,

p1 :
∂v1

∂t
+

∂u0

∂t
+

2∑

i=1

∂v0Ai(x1, x2)
∂xi

−
2∑

i,j=1

∂2v0Bi,j(x1, x2)
∂xi∂xj

= 0, v1(x, 0) = 0, (22)

p2 :
∂v2

∂t
+

2∑

i=1

∂v1Ai(x1, x2)
∂xi

−
2∑

i,j=1

∂2v1Bi,j(x1, x2)
∂xi∂xj

= 0, v2(x, 0) = 0,

...

Let’s select u0(x1, x2, t) = x1 as a first approximation for the solution which
satisfies the initial condition. From Eqs.(22), the following terms can be com-
puted successively:

v0(x1, x2, t) = x1

v1(x1, x2, t) = tx1

v2(x1, x2, t) =
t2

2!
x1

...
Thus, the solution of Eq.(20) when p −→ 1 will be as:

u(x1, x2, t) = x1 + tx1 +
t2

2!
x1 + . . . = etx1,
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which is an exact solution and is the same as that obtained by ADM [14].

Example 5. Consider the nonlinear Eq.(5) in the case that:

u(x, 0) = x2, x ∈ R,

A(x, t, u) =
4

x
u − x

3
, (23)

B(x, t, u) = u,

Using HPM, we construct the following homotopy:

H(v, p) = (1 − p)[
∂v

∂t
− ∂u0

∂t
] + p[(

∂

∂t
+

∂

∂x
A(x, t, v) − ∂2

∂x2
B(x, t, v))v] = 0.

(24)

Substituting Eq.(10) into Eq.(24) and rearranging based on powers of p-terms,
we derive:

p0 :
∂v0

∂t
− u0

∂t
= 0, v0(x, 0) = x2,

p1 :
∂v1

∂t
+

u0

∂t
+

∂( 4
x
(v0)

2 − x
3
v0)

∂x
− ∂2(v0)

2

∂x2
= 0, v1(x, 0) = 0, (25)

p2 :
∂v2

∂t
+

∂( 8
x
v0v1 − x

3
v1)

∂x
− 2

∂2(v0v1)

∂x2
= 0, v2(x, 0) = 0,

...

We select u0(x, t) = x2 as an initial approximation that satisfies the initial
condition, from Eqs.(25) we will obtain:

v0(x, t) = x2

v1(x, t) = tx2

v2(x, t) =
t2

2!
x2

...
Thus, the solution of Eq.(23) when p −→ 1 will be as follows:

u(x, t) = x2 + tx2 +
t2

2!
x2 + . . . = etx2,

which is an exact solution and is the same as that reported in [14].
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5 Conclusions

In this article, homotopy perturbation method has been used to obtain the
exact solution of Fokker-Planck equation. It was shown that this method is
very efficient and powerful to get the exact solution. Moreover, a comparison
between HPM and ADM shows that although the results of the methods are
the same, HPM can overcome difficulties arising in the calculation of Ado-
mian’spolynomials. Therefore, HPM is much easier and more convenient to
apply than ADM. The computations associated with examples in this article
were performed using Maple 10.
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