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1. INTRODUCTION

Fix integers n, d, g such that n > 3, g > 0 and either d > g+3 ord > 2n+1
andd—n<g<d-n+|[(d—n)/(n+1)]. In [2] (case n = 3) and [3] (case
n > 3) the authors introduced and studied a very nice irreducible component
Z(d, g;n) of the Hilbert scheme Hilb(P") of all curves in P" with degree d and
genus g. Z(d,g;n) is generically smooth, dim(Z(d, g;n)) = (n + 1)d + (n —
3)(1—g), a general C € Z(d, g;n) is smooth, h' (C, N¢) = 0, h*(C, Ox(2)) = 0.
Furthermore, if d > g + n, then h'(C,Ox(1)) = 0 and if C' < d + n, then C is
linearly normal. If g > 1, d > 2n+1 and n+2)|(d—n—1)/n], then TP"|C' is
semistable ([4], Prop. 1.3). If g >2,d >3n+2 and (n +2)|[(d —2n — 1)/n],
then TP"|C' is stable.

Theorem 1. Fix integers n,d, g, k,m such thatn >3, 1<k<n—1,m>1,
t>0,9>0,d>2n and eitherd > g+n org—d—n—2 < |d/n]. If either
d=0 modnorm=k=1andg>0o0orm=1,k=n—1 andg > 0, then set
€d.gnkm ‘= 0. In all other cases set €4 g jm = mk', where k' := min{k, n—k}.
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Set o :=km(n+1)d+ ((Z)er*l) (t+1—g). Fiz a general C € Z(d, g,n) and

m

general finite sets A C C, B C C such that §(A) < La/((z>jnm_1)J — €dgmkm
and 4(B) = [a/ (™)) 4 4y om. Then h(C, S™(A*(TP™)(1)[C) = a,
hl(QSm(/\kIgTP”))(t)!C)) = 0, W(C,(S"(A"(TP")()IC(~A4)) = 0 and
ho(C, (S™(AT(TP™))(1)|C(=B)) = 0.

We leave to the interested reader to follow the proof of Theorem 1 to extend
its stament to the composition of other Schur functors of TP", not just the
symmetric and alternating powers.

We work over an algebraically closed field K.

Lemma 1. Let Y a reduced equidimensional projective curve such that'Y =
CUD with C # 0 and D # (). Set Z := C N D (scheme-theoretic intersec-
tion). Let F be a vector bundle on'Y and A C C\Zyeq, B C D\Zyeq closed
subschemes such that h'(C,Zoc® (F|C)) = h*(D,Zpuzp®(F|D)) =0. Then
WY, Zaopy © F) = 0.

Proof. Since Ayeq N Zyeq = Brea N Zyeqg = O and F is locally free, we have a
Mayer-Vietoris exact sequence on Y:

(1) 0—>IAuB,Y®F—>IA7c®(F|C)@IB7D®(F|D)—>F|Z—>O

Since h'(D,Zpuzp ® (F|D)) = 0, the restiction map H°(D,Zz p ® (F|D)) —
H(Z, F|Z) is surjective. Apply the cohomology exact sequence associated to
(1). O
Remark 1. In the set-up of the statement of Lemma 1 we have hl(D, Ipuzp®

(FID)) = 0 if D = P! and F|D has splitting type a; > --- > a, with
a, > length(Z U B) — 1.

Taking A = B = () in the proof of Lemma 1 we get the following result.

Lemma 2. Let Y a reduced equidimensional projective curve such that'Y =
CUD withC # 0 and D # 0. Set Z := CND (scheme-theoretic intersection,).
Let F be a vector bundle on'Y such that the restriction map H°(D, F|D) —
H°(Z,F|Z) is surjective. Then:

(2) RO(Y, F) = h°(C, F|C) + h°(D, F|D) — length(Z) - rank(F')

(3) h'(Y,F) = h'(C, F|C) + h'(D, F|D)

Remark 2. Let D C P" be a rational normal curve. Then TP"|D is isomor-
phic to the direct sum of n line bundles of degree n + 1 (see e.g. [4], Lemma

1.3).

Remark 3. Fix an integer d > g + 1 and let C' C P" be a general C €
Z(d,1;n). Then TP"|C' is semistable ([4], Prop. 1.4). We will also need that
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by Atiyah’s classification of vector bundles on elliptic curves ([1], Part III)
even in positive charateristic the wedge product and the symmetric product of
a semistable vector bundle on C' is semistable.

Remark 4. Fix integers n > k > 1, m > 1, a reduced and connected pro-
jective curve Y, M € Pic(Y) and a rank n vector bundle F' on Y. Set
x = deg(F) and y := deg(M); here deg means the total degree. Notice that
rank(A\*(F)) = (7) and rank(S™(A\"(F))) = ((2)+m_1). By Riemann-Roch
we have x(S™(A"(F)) @ M) = deg(S™(A"(F)) @ M) + ()71 (1= p,(Y)).
We have deg(S™(A*(F)) @ M) = deg(S™(A*(F)))+y- (7™ ([5], Lemma
2.1). For any vector bundle A on Y let pu(A) := deg( )/rank(A) denote the
slope of A. We have p(A ® B) = u(A) + p(B) for all vector bundles A, B.
Since in characteristic zero \"(A) (resp. S™(A)) is a direct summand of A®k
(resp. A®™, in characteristic zero we get u(S™(A*(F))) = km-u(F) = kmz/n.
Using the splitting principle we get that the same equality is true in positive
characteristic. Thus deg(S™(A*(F))) = km((z);m_l)/n.

Proof of Theorem 1. First assume k = m = 1 and g = 0. Let e the
only integer such that n <e <2n—1and d =n mod n. Set d = un + e with
u > 0. Take a general T € Z(e,0;n). By [6] TP"|T is rigid, i.e. its splitting
type a; > - -+ > a, satisfies a,, > a; — 1. Notice that a,, = a; if e = 0 (Remark
2). In all other cases we have €;,,11 = 1 and we are allowed at this step to
loose one condition: we need it because h°(C, (TP"|T)(—B)) = 0 if and only if
#(B) > ay, while h'(C, (TP"|T)(—A)) = 0 if and only if (A) < a,_1+1. Then
we apply u times Lemma 2 taking as the second curve a rational normal curve
intersecting the first curve at exactly one point. The same proof works even if
k=n—1,m=1and g =0. If either k # {1,n—1} or m > 2, then we just use
at the first step the value for ed, g, n, k, m and then apply u times Lemma 2 to
S™(A"(TP™))(t) with a rational normal curve as the second curve. Of course,
we also use Remark 4. Now assume g > 0. Let f be the only integer such that
n+1<f<2nandd=f (modn). Set d = f + vn. Now we start with a
general My € Z(f,1;n) to which we apply Remark 3. Then we add u times a
rational normal curve D;, 1 <1 < v, so that each curve M; := MyUDU--- D;,
1 < < v, is connected and nodal and 1 < §(M,;_1 N D;) <n+ 1. We met in
this way exactly the prescribed general pairs (d, g)- O
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