Cohomological Properties of the Restriction of $S^m(\bigwedge^k(T\mathbf{P}^n))$ to Projective Curves

E. Ballico¹

Dept. of Mathematics University of Trento 38050 Povo (TN), Italy ballico@science.unitn.it

Abstract. Here we prove that $h^i(C, S^m(\bigwedge^k(T\mathbf{P}^n))(t)|C)(-A))$, i = 1 or i = 0 for several curves $C \subset \mathbf{P}^n$ and for general finite subsets of C with a prescribed cardinality

Mathematics Subject Classification: 14H60, 14H50, 14J60

Keywords: restricted tangent bundle, cohomology of restricted tangent bundle, symmetric product of tangent bundle

1. Introduction

Fix integers n, d, g such that $n \geq 3$, $g \geq 0$ and either $d \geq g+3$ or $d \geq 2n+1$ and $d-n < g \leq d-n+\lfloor (d-n)/(n+1)\rfloor$. In [2] (case n=3) and [3] (case n>3) the authors introduced and studied a very nice irreducible component Z(d,g;n) of the Hilbert scheme Hilb(\mathbf{P}^n) of all curves in \mathbf{P}^n with degree d and genus g. Z(d,g;n) is generically smooth, $\dim(Z(d,g;n))=(n+1)d+(n-3)(1-g)$, a general $C \in Z(d,g;n)$ is smooth, $h^1(C,N_C)=0$, $h^1(C,\mathcal{O}_C(2))=0$. Furthermore, if $d \geq g+n$, then $h^1(C,\mathcal{O}_C(1))=0$ and if $C \leq d+n$, then C is linearly normal. If $g \geq 1$, $d \geq 2n+1$ and $n+2)\lfloor (d-n-1)/n\rfloor$, then $T\mathbf{P}^n|C$ is semistable ([4], Prop. 1.3). If $g \geq 2$, $d \geq 3n+2$ and $(n+2)\lfloor (d-2n-1)/n\rfloor$, then $T\mathbf{P}^n|C$ is stable.

Theorem 1. Fix integers n, d, g, k, m such that $n \geq 3$, $1 \leq k \leq n-1$, $m \geq 1$, $t \geq 0$, $g \geq 0$, $d \geq 2n$ and either $d \geq g+n$ or $g-d-n-2 \leq \lfloor d/n \rfloor$. If either $d \equiv 0 \mod n$ or m=k=1 and g>0 or m=1, k=n-1 and g>0, then set $\epsilon_{d,g,n,k,m}:=0$. In all other cases set $\epsilon_{d,g,n,k,m}:=mk'$, where $k':=\min\{k,n-k\}$.

¹The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

590 E. Ballico

Set $\alpha := km(n+1)d + \binom{\binom{n}{k}+m-1}{m} \cdot (t+1-g)$. Fix a general $C \in Z(d,g,n)$ and general finite sets $A \subset C$, $B \subset C$ such that $\sharp(A) \leq \lfloor \alpha/\binom{\binom{n}{k}+m-1}{m} \rfloor - \epsilon_{d,g,n,k,m}$ and $\sharp(B) \geq \lceil \alpha/\binom{\binom{n}{k}+m-1}{m} \rceil + \epsilon_{d,g,n,k,m}$. Then $h^0(C, S^m(\bigwedge^k(T\mathbf{P}^n))(t)|C) = \alpha$, $h^1(C, S^m(\bigwedge^k(T\mathbf{P}^n))(t)|C) = 0$, $h^1(C, (S^m(\bigwedge^k(T\mathbf{P}^n))(t)|C(-A)) = 0$ and $h^0(C, (S^m(\bigwedge^k(T\mathbf{P}^n))(t)|C(-B)) = 0$.

We leave to the interested reader to follow the proof of Theorem 1 to extend its stament to the composition of other Schur functors of $T\mathbf{P}^n$, not just the symmetric and alternating powers.

We work over an algebraically closed field \mathbb{K} .

Lemma 1. Let Y a reduced equidimensional projective curve such that $Y = C \cup D$ with $C \neq \emptyset$ and $D \neq \emptyset$. Set $Z := C \cap D$ (scheme-theoretic intersection). Let F be a vector bundle on Y and $A \subset C \setminus Z_{red}$, $B \subset D \setminus Z_{red}$ closed subschemes such that $h^1(C, \mathcal{I}_{A,C} \otimes (F|C)) = h^1(D, \mathcal{I}_{B \cup Z,D} \otimes (F|D)) = 0$. Then $h^1(Y, \mathcal{I}_{A \cup B,Y} \otimes F) = 0$.

Proof. Since $A_{red} \cap Z_{red} = B_{red} \cap Z_{red} = \emptyset$ and F is locally free, we have a Mayer-Vietoris exact sequence on Y:

$$(1) 0 \to \mathcal{I}_{A \cup B, Y} \otimes F \to \mathcal{I}_{A, C} \otimes (F|C) \oplus \mathcal{I}_{B, D} \otimes (F|D) \to F|Z \to 0$$

Since $h^1(D, \mathcal{I}_{B\cup Z,D}\otimes (F|D))=0$, the restiction map $H^0(D, \mathcal{I}_{B,D}\otimes (F|D))\to H^0(Z, F|Z)$ is surjective. Apply the cohomology exact sequence associated to (1).

Remark 1. In the set-up of the statement of Lemma 1 we have $h^1(D, \mathcal{I}_{B \cup Z, D} \otimes (F|D)) = 0$ if $D \cong \mathbf{P}^1$ and F|D has splitting type $a_1 \geq \cdots \geq a_n$ with $a_n \geq \operatorname{length}(Z \cup B) - 1$.

Taking $A = B = \emptyset$ in the proof of Lemma 1 we get the following result.

Lemma 2. Let Y a reduced equidimensional projective curve such that $Y = C \cup D$ with $C \neq \emptyset$ and $D \neq \emptyset$. Set $Z := C \cap D$ (scheme-theoretic intersection). Let F be a vector bundle on Y such that the restriction map $H^0(D, F|D) \rightarrow H^0(Z, F|Z)$ is surjective. Then:

(2)
$$h^0(Y,F) = h^0(C,F|C) + h^0(D,F|D) - length(Z) \cdot rank(F)$$

(3)
$$h^{1}(Y,F) = h^{1}(C,F|C) + h^{1}(D,F|D)$$

Remark 2. Let $D \subset \mathbf{P}^n$ be a rational normal curve. Then $T\mathbf{P}^n|D$ is isomorphic to the direct sum of n line bundles of degree n+1 (see e.g. [4], Lemma 1.3).

Remark 3. Fix an integer $d \geq g+1$ and let $C \subset \mathbf{P}^n$ be a general $C \in Z(d,1;n)$. Then $T\mathbf{P}^n|C$ is semistable ([4], Prop. 1.4). We will also need that

by Atiyah's classification of vector bundles on elliptic curves ([1], Part III) even in positive charateristic the wedge product and the symmetric product of a semistable vector bundle on C is semistable.

Remark 4. Fix integers $n>k\geq 1,\ m\geq 1,$ a reduced and connected projective curve $Y,\ M\in \operatorname{Pic}(Y)$ and a rank n vector bundle F on Y. Set $x:=\deg(F)$ and $y:=\deg(M);$ here deg means the total degree. Notice that $\operatorname{rank}(\bigwedge^k(F))=\binom{n}{k}$ and $\operatorname{rank}(S^m(\bigwedge^k(F)))=\binom{\binom{n}{k}+m-1}{m}$. By Riemann-Roch we have $\chi(S^m(\bigwedge^k(F))\otimes M)=\deg(S^m(\bigwedge^k(F))\otimes M)+\binom{\binom{n}{k}+m-1}{m}(1-p_a(Y)).$ We have $\deg(S^m(\bigwedge^k(F))\otimes M)=\deg(S^m(\bigwedge^k(F)))+y\cdot\binom{\binom{n}{k}+m-1}{m}([5],\text{Lemma 2.1}).$ For any vector bundle A on Y let $\mu(A):=\deg(A)/\operatorname{rank}(A)$ denote the slope of A. We have $\mu(A\otimes B)=\mu(A)+\mu(B)$ for all vector bundles A,B. Since in characteristic zero $\bigwedge^k(A)$ (resp. $S^m(A)$) is a direct summand of $A^{\otimes k}$ (resp. $A^{\otimes m}$, in characteristic zero we get $\mu(S^m(\bigwedge^k(F)))=km\cdot\mu(F)=kmx/n$. Using the splitting principle we get that the same equality is true in positive characteristic. Thus $\deg(S^m(\bigwedge^k(F)))=km\binom{\binom{n}{k}+m-1}{m}/n$.

Proof of Theorem 1. First assume k = m = 1 and q = 0. Let e the only integer such that $n \leq e \leq 2n-1$ and $d \equiv n \mod n$. Set d = un + e with $u \geq 0$. Take a general $T \in Z(e,0;n)$. By [6] $T\mathbf{P}^n|T$ is rigid, i.e. its splitting type $a_1 \ge \cdots \ge a_n$ satisfies $a_n \ge a_1 - 1$. Notice that $a_n = a_1$ if e = 0 (Remark 2). In all other cases we have $\epsilon_{d,q,n,1,1} = 1$ and we are allowed at this step to loose one condition: we need it because $h^0(C, (T\mathbf{P}^n|T)(-B)) = 0$ if and only if $\sharp(B) \geq a_1$, while $h^1(C, (T\mathbf{P}^n|T)(-A)) = 0$ if and only if $\sharp(A) \leq a_{n-1} + 1$. Then we apply u times Lemma 2 taking as the second curve a rational normal curve intersecting the first curve at exactly one point. The same proof works even if k=n-1, m=1 and g=0. If either $k\neq\{1,n-1\}$ or $m\geq 2$, then we just use at the first step the value for $\epsilon d, g, n, k, m$ and then apply u times Lemma 2 to $S^m(\bigwedge^k(T\mathbf{P}^n))(t)$ with a rational normal curve as the second curve. Of course, we also use Remark 4. Now assume g > 0. Let f be the only integer such that $n+1 \le f \le 2n$ and $d \equiv f \pmod{n}$. Set d = f + vn. Now we start with a general $M_0 \in Z(f,1;n)$ to which we apply Remark 3. Then we add u times a rational normal curve D_i , $1 \le i \le v$, so that each curve $M_i := M_0 \cup D_1 \cup \cdots \cup D_i$, $1 \le i \le v$, is connected and nodal and $1 \le \sharp (M_{i-1} \cap D_i) \le n+1$. We met in this way exactly the prescribed general pairs (d, q).

References

- [1] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452; reprinted in: Michael Atiyah Collected Works, Vol. 1, 105–143, Oxford, 1988.
- [2] E. Ballico and Ph. Ellia, Beyond the maximal rank conjecture for curves in P³, in: Space Curves, Proc. Rocca di Papa 1985, Lect. Notes in Math. 1266, Springer, Berlin, 1987.

592 E. Ballico

[3] E. Ballico and Ph. Ellia, On the existence of curves with maximal rank in \mathbb{P}^3 , J. Reine Angew. Math. 397 (1989), 1–22.

- [4] E. Ballico and G. Hein, On the stability of the restriction of $T\mathbf{P}^n$ to projective curves, Arch. Math (Basel) 71 (1998), no. 1, 80–88.
- [5] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176.
- [6] L. Ramella, Sur les schémas de Hilbert des courbes rationnelles lisses de \mathbf{P}^n par le fibré tangent restreint, C. R. Acad. Sci. Paris, Sér. I Math. 311 (1990), 181–184.

Received: July 10, 2006