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Abstract

The idea of difference sequence spaces was introduced by Kizmaz
[5], and this concept was generalized by Et and Colak [2]. In this pa-
per, we define the sequence spaces c0(Δ

n
u,Mk, p, s), c (Δn

u,Mk, p, s), and
l∞(Δn

u,Mk, p, s), where M = (Mk) is a sequence of Orlicz functions,
and examine some inclusion relations and properties of these spaces ,
which will give as a special case the spaces c0(Δ

n,M, p), c (Δn,M, p),
and l∞(Δn,M, p) of Gökhan, et al [3].
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1 Definitions and notations

Let w denote the set of all complex sequences x = (xk), and l∞, c, and c0

be the linear spaces of bounded, convergent, and null sequences with complex
terms, respectively, normed by ‖ x ‖= supk | xk |, where k ∈ N, the set of
positive integers.

A paranorm on a linear topological space X is a function g : X → R which
satisfies the following axioms :
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for any x, y, x0 ∈ X and λ, λ0 ∈ C, the set of complex numbers,
(i) g(θ) = 0, where θ = (0, 0, 0, · · ·), the zero sequence,
(ii) g(x) = g(−x),
(iii) g(x + y) ≤ g(x) + g(y) ( subadditivity ),
and
(iv) the scalar multiplication is continuous, that is,

λ → λ0, x → x0 imply λx → λ0x0 ;

in other words,

| λ − λ0 |→ 0, g(x− x0) → 0 imply g(λx − λ0x0) → 0.

A paranormed space is a linear space X with a paranorm g and is written
(X, g), ( see [8], p. 92 ).

Any function g which satisfies all the conditions (i)-(iv) together with the
condition

(v) g(x) = 0 if and only if x = θ, is called a total paranorm on X, and the
pair (X, g) is called a total paranormed space, ( see [8], p. 92 ).

For any sequence x = (xk), the difference sequence Δx is defined by Δx =
(Δxk)

∞
k=1 = (xk − xk+1)

∞
k=1 .

Kizmaz [5] defined the sequence spaces

l∞(Δ) = {x ∈ w : Δx ∈ l∞},

c (Δ) = {x ∈ w : Δx ∈ c},

and

c0(Δ) = {x ∈ w : Δx ∈ c0}.

Et and Colak [2] generalized the notion of difference sequence spaces and de-
fined the spaces

l∞(Δn) = {x ∈ w : Δnx ∈ l∞},

c (Δn) = {x ∈ w : Δnx ∈ c},

and

c0(Δ
n) = {x ∈ w : Δnx ∈ c0},
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where Δnxk = Δn−1xk−Δn−1xk+1 and Δ0xk = xk, for all k ∈ N.

Taking X = l∞(p), c (p), and c0(p), these sequence spaces has been gener-
alized by Et and Basarir [1].

The generalized difference has the following binomial representation :

Δnxk =
n∑

r=0

(−1)r

(
n

r

)
xk+r , for all k ∈ N.

The following inequality will be used throughout this paper : let p = (pk)
be a positive sequence of real numbers with 0 < pk ≤ supk pk = G, C =
max(1, 2G−1). Then for ak, bk ∈ C and for all k ∈ N, we have

| ak + bk |pk≤ C (| ak |pk + | bk |pk), (see [5]) ( see [7] ) (1)

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous,
nondecreasing, and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →
∞, as x → ∞.

An Orlicz function M is said to satisfy the Δ2−condition for all values of
l, if there exist a constant K > 0 such that

M(2l) ≤ KM(l)(l ≥ 0);

equivalently,

M(hl) ≤ KhM(l)

for every value of l and for l > 1.

Lindenstrauss and Tzafriri [6] used the idea of Orlicz function to define
what is called an Orlicz sequence space :

lM := {x ∈ w :

∞∑
k=1

M(
| xk |

ρ
) < ∞, for some ρ > 0}

which is a Banach space with the norm :

‖ x ‖M= inf{ρ > 0 :

∞∑
k=1

M(
| xk |

ρ
) ≤ 1}.

A sequence space E is said to be solid ( or normal ) if (αkxk) ∈ E , whenever
(xk) ∈ E and for every sequence (αk) of scalars such that | αk |≤ 1, for all
k ∈ N.
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A sequence space E is said to be monotone if E contains preimages of all
its step spaces.

A sequence space E is said to be sequence algebra if x · y ∈ E , whenever
x, y ∈ E ( see [4] ).

Lemma 1. A sequence space E is solid implies E is monotone.
Mursaleen, et al [9] defined and studied the sequence spaces c

0
(Δ, M, p), c

(Δ, M, p), and l∞(Δ, M, p) . Recently, Gökhan, et al [3] generalized the spaces
of Mursaleen, et al [9] to c0(Δ

n, M, p), c (Δn, M, p), and l∞(Δn, M, p) , where
n is apositive integer.

In this paper, we further generalize these spaces as follows :
Let M = (Mk) be a sequence of Orlicz functions and u = (uk) be any

sequence such that uk �= 0 for all k , then we define

c0(Δ
n
u, Mk, p, s) = {x ∈ w : lim

k→∞
k−s[Mk(

| Δn
uxk |
ρ

)]pk = 0, for some ρ > 0, s ≥ 0},

c (Δn
u, Mk, p, s) = {x ∈ w : lim

k→∞
k−s[Mk(

| Δn
uxk − l |

ρ
)]pk = 0,

for some ρ > 0, l ∈ C, s ≥ 0},
and

l∞(Δn
u, Mk, p, s) = {x ∈ w : sup

k
k−s[Mk(

| Δn
uxk |
ρ

)]pk < ∞, for some ρ > 0, s ≥ 0},

where Δn
uxk = (Δn−1

u xk − Δn−1
u xk+1) such that Δn

uxk =
n∑

r=0

(−1)r
(

n
r

)
uk+rxk+r,

Δn
uxk = (ukxk) , Δuxk = (ukxk − uk+1xk+1) .

If (Mk) = M for all k, s = 0, and u = e = (1, 1, 1, · · ·), then these spaces
reduce to those of Gökhan, et al [3].

In the case pk =constant for all k, we denote the above mentioned spaces
as c0(Δ

n
u, Mk, s), c (Δn

u, Mk, s), and l∞(Δn
u, Mk, s), respectively.

2 Main results

We prove the following theorems :

Theorem 2.1. Let (pk) be bounded, n be a positive integer, and (Mk)
be a sequence of Orlicz functions. Then l∞(Δn−1

u−1, Mk, p, s) ⊂ l∞(Δn
u, Mk, p, s)

and the inclusion is strict.
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Proof. Since Mk is nondecreasing and convex for each k, the result follows
by (1.1). To show that the inclusion is strict, let Mk(x) = x, and pk = 1 for all
k, then the sequence x = (km) belongs to l∞(Δn

u, Mk, p, s) but does not belong
to l∞(Δn−1

u−1, Mk, p, s).
Remark. It is easy to show that these sequence spaces are paranormed

spaces with

h(x) = inf
m
{ρpm/H : (sup

k
k−s[Mk(

| Δn
uxk |
ρ

)]pk)1/H ≤ 1, m = 1, 2, · · ·}, (1)

where H = max(1, supk pk).
Theorem 2.2. l∞(Δn

u, Mk, p, s) is a complete paranormed space with h
defined in (2.1).

Proof. Using the same technique used in [9, Theorem 2.1], it is easy to
prove the theorem.

Theorem 2.3. Let 0 < pk ≤ qk < ∞ , for each k.
Then c0(Δ

n
u, Mk, p, s) ⊂ c0(Δ

n
u, Mk, q, s).

Proof. The proof is easy, so we omit it.
Theorem 2.4.
(i) Let 0 < inf pk ≤ pk ≤ 1. Then c0(Δ

n
u, Mk, p, s) ⊂ c0(Δ

n
u, Mk, s).

(ii) Let 1 ≤ pk ≤ sup pk < ∞. Then c0(Δ
n
u, Mk, s) ⊂ c0(Δ

n
u, Mk, p, s).

Proof.
(i) Let x ∈ c

0
(Δn

u, Mk, p, s), that is,

lim
k→∞

k−s[Mk(
| Δn

uxk |
ρ

)]pk = 0.

Since 0 < inf pk ≤ pk ≤ 1,

lim
k→∞

k−s[Mk(
| Δn

uxk |
ρ

)] ≤ lim
k→∞

k−s[Mk(
| Δn

uxk |
ρ

)]pk = 0,

and hence x ∈ c
0
(Δn

u, Mk, s).
(ii) Let 1 ≤ pk, for each k, and sup pk < ∞. Let x ∈ c0(Δ

n
u, Mk, s), then

for each ε(0 < ε < 1), there exists a positive integer N such that

k−s[Mk(
| Δn

uxk |
ρ

)] ≤ ε, for all k ≥ N.

Since 1 ≤ pk ≤ sup pk < ∞, we have

lim
k→∞

k−s[Mk(
| Δn

uxk |
ρ

)]pk ≤ lim
k→∞

k−s[Mk(
| Δn

uxk |
ρ

)] ≤ ε < 1.
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therefore x ∈ c0(Δ
n
u, Mk, p, s).This completes the proof.

Theorem 2.5. Let (Mk) be a sequence of Orlicz functions such that Mk

satisfies the Δ2−condition for all k. Then c0(Δ
n
u, Mk, p, s) ⊂ c (Δn

u, Mk, p, s) ⊂
l∞(Δn

u, Mk, p, s). and the inclusions are strict.
Proof. Let x ∈ c (Δn

u, Mk, p, s). Then we have

k−s[Mk(
| Δn

uxk |
ρ

)]pk ≤ C k−s[Mk(
| Δn

uxk − l |
ρ

)]pk + C k−s[Mk(
| l |
ρ

)]pk

≤ C k−s[Mk(
| Δn

uxk − l |
ρ

)]pk + C k−s[Kδ−1(
| l |
ρ

)Mk(2)]H .

Thus, we get x ∈ l∞(Δn
u, Mk, p, s). Then inclusion c0(Δ

n
u, Mk, p, s) ⊂ c

(Δn
u, Mk, p, s) is obvious. To show that the inclusion is strict, consider the

following example.
Example 1 : Let Mk(x) = x and pk = 1 for all k. Then the sequence

x = ((−1)k) belongs to l∞(Δn
u, Mk, p, s), but does not belong to c (Δn

u, Mk, p, s).
Theorem 2.6. Let n ≥ 1, then c (Δn−1

u−1, Mk, p, s) ⊂ c0(Δ
n
u, Mk, p, s).

Theorem 2.7. The spaces c0(Mk, p, s) and l∞(Mk, p, s) are solid and there-
fore are monotone.

Proof. Let x ∈ c0(Mk, p, s) . Then there exists ρ > 0 such that

lim
k→∞

k−s[Mk(
| Δuxk |

ρ
)] = 0.

Let (αk) be a sequence of scalars such that | αk |≤ 1. Then we have

k−s[Mk(
| αkxk |

ρ
)]pk ≤ C k−s[Mk(

| xk |
ρ

)]pk

From this inequality, it follows that c0(Mk, p, s) is also solid. The mono-
tonicity of the spaces c0(Mk, p, s) and l∞(Mk, p, s) follows from Lemma 1.

The spaces c0(Δ
n
u, Mk, p, s), c (Δn

u, Mk, p, s), and l∞(Δn
u, Mk, p, s) are not

solid in general.
To show that the above spaces are not solid, consider the following example.
Example 2 : Let Mk(x) = x and pk = 1 for all k. Then the sequence

x = (km) belongs to l∞(Δn
u, Mk, p, s). Let (αk) = ((−1)k) , then (αkxk) does

not belong to l∞ (Δn
u, Mk, p, s).

Corollary. c0(Δ
n
u, Mk, p, s) and c (Δn

u, Mk, p, s) are nowhere dense subsets
of l∞(Δn

u, Mk, p, s).
Theorem 2.8. The spaces c0(Δ

n
u, Mk, p, s), c (Δn

u, Mk, p, s) and
l∞(Δn

u, Mk, p, s) are not sequence algebra, for n ≥ 2.

Proof. Let Mk(x) = x and pk = 1 for all k. Consider the sequences
x = (km) and y = (k) for all k, then x, y ∈ l∞(Δn

u, Mk, p, s) but x · y /∈
l∞(Δn

u, Mk, p, s).
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