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Abstract

The idea of difference sequence spaces was introduced by Kizmaz
[5], and this concept was generalized by Et and Colak [2]. In this pa-
per, we define the sequence spaces ¢, (Aj, Mg, p, s),c (A}, My, p, s), and
loo (A, My, p,s), where M = (Mj,) is a sequence of Orlicz functions,
and examine some inclusion relations and properties of these spaces |,
which will give as a special case the spaces ¢,(A", M,p),c (A", M, p),
and lo(A™, M,p) of Gokhan, et al [3].
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1 Definitions and notations

Let w denote the set of all complex sequences = (xy), and I, ¢, and ¢,
be the linear spaces of bounded, convergent, and null sequences with complex
terms, respectively, normed by || = ||= sup, | zx |, where k& € N, the set of
positive integers.

A paranorm on a linear topological space X is a function g : X — R which
satisfies the following axioms :
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for any x,y,ro € X and A\, \g € C, the set of complex numbers,
(i) g(0) = 0, where # = (0,0,0, - - -), the zero sequence,

(i) g(z) = g(—=),

(iii) g(z +y) < g(x) + g(y) ( subadditivity ),

and

(iv) the scalar multiplication is continuous, that is,

A — Ao, — o imply Az — A\oxg ;
in other words,
| A =X |— 0,9(x — x9) — 0 imply g(Az — Aogzo) — O.

A paranormed space is a linear space X with a paranorm ¢ and is written

(X, 9), (see [8], p. 92).

Any function g which satisfies all the conditions (i)-(iv) together with the
condition

(v) g(x) = 0 if and only if z = 0, is called a total paranorm on X, and the
pair (X, g) is called a total paranormed space, ( see [8], p. 92 ).

For any sequence z = (zy,), the difference sequence Az is defined by Az =
(Azg)il; = (Tr — Ths1)7 -
Kizmaz [5] defined the sequence spaces

lo(A)={z cw: Az € I},

c(A)={rew:Azr € c},
and
(A)={rew: Az €c}.

Et and Colak [2] generalized the notion of difference sequence spaces and de-
fined the spaces

lo(A") ={z cw: A"z € .},

c(A")y={rew: A"z € c},
and

(A" ={xew: A"z € ¢},
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where A"z, = A" 1o, — A"z, and A%z, = a4, for all k € N.

Taking X = l(p),c (p), and ¢,(p), these sequence spaces has been gener-
alized by Et and Basarir [1].
The generalized difference has the following binomial representation :

n

Az = Z(—l)r (n) Ty , for all k€ N.
r

r=0
The following inequality will be used throughout this paper : let p = (py
be a positive sequence of real numbers with 0 < p, < supypr = G, C =
max(1,2%71). Then for a;, b, € C and for all k € N, we have
| ar + b [P< C (| ag [P+ [ by [P*), (see [5]) ('see [7]) (1)

An Orlicz function is a function M : [0,00) — [0, 00) which is continuous,
nondecreasing, and convex with M (0) =0, M(z) > 0 for z > 0 and M(z) —
00, as T — 0.

An Orlicz function M is said to satisfy the Ay—condition for all values of
[, if there exist a constant K > 0 such that

M(2l) < KM(1)(l > 0);
equivalently,
M(hl) < KhM(1)

for every value of [ and for [ > 1.

Lindenstrauss and Tzafriri [6] used the idea of Orlicz function to define
what is called an Orlicz sequence space :

Iy = {l‘Ew:ZM(‘xpk ‘) < 00, for some p > 0}
k=1

which is a Banach space with the norm :

. it X
| 2 || = inf{p >o:ZM(‘ p’“ ‘) <1}
k=1

A sequence space E is said to be solid ( or normal ) if (axy) € £, whenever
(xx) € E and for every sequence (o) of scalars such that | oy |< 1, for all
ke N.



190 Ahmad H. A. Bataineh and Ramzi S. Alsaedi

A sequence space F is said to be monotone if F contains preimages of all
its step spaces.

A sequence space F is said to be sequence algebra if x -y € E , whenever
r,y € E (see[4]).

Lemma 1. A sequence space F is solid implies £ is monotone.

Mursaleen, et al [9] defined and studied the sequence spaces ¢, (A, M, p), ¢
(A, M,p), and l(A, M, p) . Recently, Gokhan, et al [3] generalized the spaces
of Mursaleen, et al [9] to ¢, (A", M, p),c (A", M, p), and lo(A"™, M, p) , where
n is apositive integer.

In this paper, we further generalize these spaces as follows :

Let M = (Mj) be a sequence of Orlicz functions and u = (uy) be any
sequence such that uy # 0 for all k , then we define

An
Co(Ba; My, pys) = {z € w: kh_{f)lo k’_S[Mk(%)]pk =0, for some p >0, s > 0},
Az — 1
¢ (AL My, p,s) ={x € w: lim k—S[Mk(M)]pk _0,

for some p >0, I € C, s > 0},
and
| Al |

)]P* < o0, for some p > 0,s > 0},
p

loo (A My, p, s) = {& € w : sup k™[ My(
k

where Az, = (A ), — A7 ayyq) such that Alay = 30 (=1)" (") wegr Thsr,
r=0
Al = (upry) , Ay = (UpTp — Up1Thy1) -
If (My)=M forallk,s=0,and u=e=(1,1,1,---), then these spaces
reduce to those of Gokhan, et al [3].
In the case p, =constant for all k£, we denote the above mentioned spaces

as ¢, (A", My, s),c (A, My, s), and [ (A, My, s), respectively.

2  Main results

We prove the following theorems :

Theorem 2.1. Let (px) be bounded, n be a positive integer, and (M)
be a sequence of Orlicz functions. Then loo(A”"1, My, p, s) C loo (A", My, p, 5)
and the inclusion is strict.
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Proof. Since M, is nondecreasing and convex for each k, the result follows
by (1.1). To show that the inclusion is strict, let My(z) = x, and p;, = 1 for all
k, then the sequence = = (k™) belongs to [ (A, My, p, s) but does not belong
t0 loo (A""1, My, p, 5).

Remark. It is easy to show that these sequence spaces are paranormed
spaces with

h(z) = inf{p""/" : (sup k_S[Mk(7| Auz |
m k

)]pk)l/H <l,m=1,2--}, (1)
where H = max(1, supy, px)-

Theorem 2.2. [ (A, My, p,s) is a complete paranormed space with h
defined in (2.1).

Proof. Using the same technique used in [9, Theorem 2.1], it is easy to
prove the theorem.

Theorem 2.3. Let 0 < pp < g < 00, for each k.
Then ¢, (A}, My, p,s) C ¢, (AL, My, q,s).
Proof. The proof is easy, so we omit it.
Theorem 2.4.
(i) Let 0 < inf pr < pp < 1. Then ¢, (A?, My, p, s) C ¢, (AL, My, s).
(ii) Let 1 < px < suppy < 0o. Then ¢, (AL, My, s) C ¢, (AL, My, p, s).
Proof.
(i) Let z € ¢, (A", My, p, s), that is,
lim [ (L2 |

k—oo

=0,

Since 0 < infpp < pp <1,

AP A7
lim k(0 (L2 D < i oy (L2u0 |

k—o0 P T k—oo

)7k =0,

and hence z € ¢ (A}, M, s).
(ii) Let 1 < py, for each k, and suppy < co. Let = € ¢,(Al, Mg, s), then
for each €(0 < € < 1), there exists a positive integer N such that
| Auk |
p

k5[ My ( )] <e, forall k> N.

Since 1 < pp < sup pp < 00, we have

n

A
lim k(ML Do < i k<[

k—o0 P k—o0

An
M)] <e<l.
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therefore = € ¢, (AL, My, p, s).This completes the proof.

Theorem 2.5. Let (M) be a sequence of Orlicz functions such that M
satisfies the Ay—condition for all k. Then ¢, (A”, My, p,s) C ¢ (A?, My, p, s) C
loo (A, M, p, s). and the inclusions are strict.

Proof. Let x € ¢ (A, M, p,s). Then we have
| Al |

| ALy — 1| ]

Pk
p )]
]
p
Thus, we get © € (A, My, p,s). Then inclusion ¢, (A, Mg, p,s) C ¢
(A, My, p,s) is obvious. To show that the inclusion is strict, consider the
following example.
Example 1 : Let My(z) = z and pp = 1 for all k. Then the sequence
z = ((—1)%) belongs to lo (A", My, p, s), but does not belong to ¢ (A", My, p, s).
Theorem 2.6. Let n > 1, then ¢ (A""1, My, p,s) C c,(A", My, p, s).
Theorem 2.7. The spaces ¢, (My, p, s) and [ (Mg, p, s) are solid and there-
fore are monotone.
Proof. Let x € ¢,(Mj,p,s) . Then there exists p > 0 such that

Bt [y,

Let (ag) be a sequence of scalars such that | o |< 1. Then we have

kM ( e < C R [Mi( )IPE 4 C R [Mi(

| Ahay, — 1|

< C R [M( WP+ C R IK T () Mi(2)).

lim &~ [Mj(

k—oo

| apy |

- | 2 |

Pr < s P
p )P < C R [Mi( p )]

From this inequality, it follows that ¢, (My,p, s) is also solid. The mono-
tonicity of the spaces ¢, (My,p, s) and I (Mg, p, s) follows from Lemma 1.

The spaces ¢, (AL, My, p,s), ¢ (A, My, p,s), and (A, M, p, s) are not
solid in general.

To show that the above spaces are not solid, consider the following example.

Example 2 : Let My(z) = = and pp = 1 for all k. Then the sequence
x = (k™) belongs to Lo (A", My, p, s). Let (ax) = ((—1)%) , then (agx;) does
not belong to lo, (A, My, p, s).

Corollary. ¢ (A, My,p,s) and ¢ (A, My, p, s) are nowhere dense subsets
of lo (A, My, p, s).

Theorem 2.8. The spaces ¢,(A?, My, p, s), ¢ (A", My, p,s) and
loo (AL, My, p, s) are not sequence algebra, for n > 2.

k™ [ My (

Proof. Let My(x) = x and p, = 1 for all k. Consider the sequences
x = (k™) and y = (k) for all k, then z,y € [ (A, My,p,s) but x -y ¢
ZOO(AZ7Mk7p7 S)‘
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