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Abstract

In this paper the Adomian decomposition method is used to find an
analytic approximate solution for nonlinear reaction diffusion system of
Lotka-Volterra type. The results obtained indicate that the method is
efficient and accurate.
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1 Introduction

Recently, some new methods such as extended tanh function method [5,12]
extended Jacobi elliptic function expansion method [7], and the simplest equa-
tion method [8] have been used in literature to find exact solutions for both
partial differential equations and system of partial differential equations. By
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using the Lie symmetry analysis [4], the exact solution of the nonlinear reaction
differential system of the form:

uy = (D(u)ug), + f(u,v), vy = (D(v)vg)e + g(u,v) (1)

is obtained for particular choices of the functions f(u,v) and g(u,v) . It is
known that this system generalizes a great number of the well-known non-
linear second order evolution systems describing various processes in Physics,
Chemistry, and Biology [10,9,11,6]. In this paper we concentrate our work to
the following particular case of system (1) which is of Lotka-Volterra type [10]
that takes the form:

ur = (uuy), + ulag + byu) + hy + v, 2)
vy = (V) + v(ag + bav) + he + cou,
ay, ag, by, ba, c1, co, hy, hy are arbitrary constants such that b;by # 0 and
c1co # 0, i.e. system (2) contains quadratic nonlinearity in reaction terms and
the two equations are coupled.

A periodic exact solution of system (2) was obtained in [4] and is given by:

w = polt) + (iot) + %) cos [/32 F |eaft — o] , -
v = o(t) + 42 £ 12l (1) + 22 sin [\ S F et — o]

where

(1) = 1 %—661, ay = 3¢y, ()
o B 3b |3Cl — CL1| tanh (M(to - t)) — a; — 301, aq 7& 301,

b1, ba, 1, ca, h1, ha, By and ty are arbitrary constants such that, b = b; = by > 0,
as = ay — 6cy, ¢a = —cy, hy = (2c1a1 — 6¢2) /b, and hy = hy + 4%(301 —a).

The Adomian decomposition method have been shown to solve easily and
more accurately a large class of system of partial differential equations with
approximates that converges rapidly to accurate solutions [1,2,3,13]. The im-
plementation of the method has shown reliable results in that few terms are
needed to obtain either exact solution or to find an approximate solution of a
reasonable degree of accuracy in real physical models. Moreover, no lineariza-
tion or perturbation is required in the method.

The paper is organized as follows: In Section 2, we present the analysis of
the Adomian decomposition method applied to nonlinear coupled system. In
Section 3, we apply the Adomian decomposition method to obtain analytic ap-
proximate solution for system (2) and the numerical experiment is introduced
to obtain the results for comparison purposes. Section 4 is devoted for the
conclusions.
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2 The analysis of the Adomian decomposition
method

In this Section, we introduce the main steps of the Adomian decomposition
method [3]. We define the linear operator
o t
Li=2 and L7 :/(.)dt, (5)
ot 0
where L;! is the inverse operator of Lj.
Using (5), system (2) can be written as:

Liu = (uux)x + u(al + blu) + h1 + v,
Ltv = (Uva:)a; + U(GQ + bQU) + h2 -+ coll.

Applying the inverse operator to both sides of the above system, we get

u(z,t) = f(x) + L' [aru + civ + hy + F(u)],
v(z,t) = g(x) + Li ' [av + cou + hy + G(v)]

where

F(u) = (uug), + biu?, G(v) = (vvy)p + bov?. (8)

are the nonlinear terms in (6), u(x,0) = f(z) and v(z,0) = g(z).
According to the decomposition method [3], we assume that a series solu-
tion of the unknown functions u(x,t) and v(x,t) are given by

= i)un(x,t), v(z,t) = i}vn(%t)- (9)

The nonlinear terms F'(u) and G(v) can be decomposed into the infinite series
of polynomials given as

D=3 A,  Glet)=3 B (10)

where the components wu,(z,t) and v,(x,t) will be determined recursively, and
the A,’s, B,,’s are the so called Adomian Polynomials of u,’s and v,,’s respec-
tively.

Specific algorithms were set in [3,13] for calculating Adomian’s polynomials
for nonlinear terms.

1
An(”Oaula"'aun) = [d/\n <Z Ak”k)] ) n > 07 (11)
A=0

By (vo,v1, -+ vn) = — ! [d)\" (Z)\k )1 , n>0. (12)
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= bud + uploe + (u?)a,

= bupus + U1Uoge + UoUize + 2UppUig,

1
= 5[()(21@ + dugug) + 2uolgpy + UiUILr +

2u0u2mx + 2(u1z)2 + 4u0mu2z]7

1
= 6[b(12U1UQ -+ 12u0u3) -+ 6'LL3UOII -+

By py + 6UIUL: + OUoU3Le + 12U U0y + 12U0, U3y, (13)

b’US + VoVozx + (U2)x7

bugv1 + V1V0ze + VoV1ge + 2002012,

1
[b<2U% + 4UOU2) + 21}2”0333: + V1V1zx +

2

200V90z + 2(V12)? + 4002 V24),

1
= 6[[)(12?}11)2 -+ 12?)0?)3) -+ 61}3?)011 -+

6V2V122 + 6V1V222 + 6UVsLe + 120109, + 1200405, ], (14)

and so on. The components u, and v, for n > 0 are given by the following
recursive relationships:

Ug
Vo
Uy

U1

un+1

Un+1

= I
L

Ly
L

t

(
v(z,

-1

1

) = g(l‘),
[a1u0 + ci1v0 + hy + Ao] ,
[CLQUO + Coug + hg -+ BO] ,
[alun + C1Un + hl + An] ) n Z 07
[aov, + couy, + ho + By], n > 0. (15)

Using the above recursive relationships, we construct the solutions u(z,t) and

v(z,t) as

u(a, 1) = I v, 1),

n—oo

v(z,t) = lim @, (z,t), (16)

n—oo
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where

—
|
—

n— n

Up(x,t) = Z ui(x, t), on(z,t) = A vi(x, t), n > 1. (17)

@

S
I

o

It is interesting to note that, we obtain the series solution by using the
initial conditions only.

3 The test problem for the Adomian decom-
position method

The main purpose of the work reported in this section is the testing of the
Adomian decomposition based on the method introduced in Section 2. The
initial conditions can be obtained from the exact solution (3) and (4). Applying
the recurrence relation (15), we get the following:

Case 1: For a; = 3¢y, po(t) = %(to%t —6¢1), ag = a; — 6¢1, hy = hy = 0,
Clzl,blzbgzb,CQZ—l,

1 2 1 2 2 b
ug = %(% —6) + (%(% —6) + 5) cos (\/;x—ﬂo) : (18)

1 2 1.2 2\ . b
vy = %(%—6)—1— <%(%_6)+6> sin (\/;x—ﬁ()), (19)

2 2 2 b
u = bt(% — 61 + (% + (E — 6)c;) cos® (\/;x - ﬂo> —

bizf%)(g(QtoCl + B(2 — 6tycy)) cos (\/gx — 50) (b(2 —

6t001) + (2t0€1 + b(2 — 6t001)) COS (\/gl‘ - ﬁo) )) +
%(% + (% —6)cy)? sin? (\/gf — 50) + tCl(% -

4 1,2 2 b
6c1 + % + 0_1((% + (g — 6)cy) ey sin (\/;f - ﬁo) ) —

t(g — 6cy + (z + (% —6)cq) cos (\/gx — ﬁ()) Jay +thy,  (20)

to to
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b= 5G0G + (G =6 al s (@x-%)—

b(2 - 6t001))|01| sin (\/gl‘ - ﬁo) (Cl(4t001 —

b<2 — 6t061)) + (QtoCl + b(2 — 6t061))

|c1] sin (\/gl’ - ﬂo) )+ 2(% — 6¢p — 4—21 —
é((% + (% —6)c1)|ci|sin (\/gx — ﬁo) ))ag + 2hs, (21)

In order to prove numerically whether the Adomian decomposition method
for system (2) leads to higher accuracy, we evaluate the approximate solution
using the 6-terms approximations

% = uo(x,t)+u1(:1:,t)+u2(x,t)+u3(x,t)+u4(:1:,t)+u5($,t), (22)
Y6 = vo(x,t)+vl(x,t)+1)2(x,t)+v3(x,t)+v4(x,t)+v5(x,t). (23>
Table 1 and Table 2 shows the exact solution, u(x,t), v(x,t), the approximate

solutions, g, s, the absolute error, |u — g/, |v — @g| where t = 0.6, ty = 4,
b:2,ﬁ0:3,a1:3,a2:—37h1:h220,01:1.

Table 1

T ug Ua lug — wal

—8 | —0.846246 | —0.846249 | 2.64963 x 107
—6 | —0.998499 | —0.998501 | 2.50145 x 107°
—4 | —0.877327 | —0.877326 | 1.56867 x 107
—2 | —0.825925 | —0.825927 | 1.96704 x 107°
0 | —0.989878 | —0.989881 | 3.09441 x 107°
2 | —0.904823 | —0.904822 | 1.37961 x 107°
4 | —0.811661 | —0.811662 | 1.21672 x 107°
6 | —0.974254 | —0.974258 | 3.52984 x 10~
8 | —0.932091 | —0.93209 | 9.91685 x 10~°
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Table 2

T; Vg vA lvg — val

—8 | 1.17871 | 1.17871 | 1.10767265 x 107°
—6 | 1.11513 | 1.11513 | 3.43627205 x 10~
—4 11.00315 | 1.00314 | 1.41058665 x 10~
—211.15993 | 1.15993 | 1.44739291 x 10~°
0 | 1.14142 | 1.14142 | 2.95697079 x 10~°
2 | 1.00004 | 1.00004 | 2.14922631 x 10~°
4 11.13622 | 1.13622 | 1.58285677 x 10~°
6

8

1.16426 | 1.16426 | 2.33107685 x 1075
1.00474 | 1.00474 | 2.80561774 x 107°

Case 2: For a; # 3¢y, ¢o(t) = 5;(|3c1—ay| tanh ('36172_‘“‘(150 - t)) —a1—3¢1).
Taking ay = 3, hy = 1, ¢ = 1.2, b = 3, co = —1.2 and applying recurrence
relation (13) we get

_ 3

ap = —0.6975+ 0.1024 cos(3 — \/;x), (24)
_ , 3

7o = 0.9024 —0.1024 sin(3 — \/;x), (25)

u; = t(1.4500 — 0.0142) cos(3 — 1.227) +
0.0157 cos?(3 — 1.22z) — 0.1229 sin(3 — 1.22z) +
0.0157sin*(3 — 1.227)), (26)

v = t(1.4500 — 0.1229 cos(3 — 1.227) +
0.0157 cos?(3 — 1.22z) + 0.1423sin(3 — 1.222) +
0.0157 sin?(3 — 1.222)), (27)

iy = t(1+0.0107¢t + ¢(0.0001 4 0.0036 cos(3 — 1.22z))
cos?(3 — 1.22z) + 0.0107¢ sin(3 — 1.227) —
0.0020t sin*(3 — 1.22x) + t cos(3 — 1.227)
(—0.0727 — 0.0021 cos(3 — 1.22z) + (0.0189 +
2.612 x 107" sin(3 — 1.222)) sin(3 — 1.22z) +
tcos(3 — 1.222)(0.334 — 0.0189 sin(3 — 1.22x) +
0.0036 sin?(3 — 1.22z))), (28)

Uy = t(1.96 4 0.0107¢ + ¢ cos®(3 — 1.222)(0.0001 —
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0.0036 sin(3 — 1.22x) + t cos(3 — 1.22x)(0.0170 +

cos(3 — 1.227)(—0.002 — 2.612 x 10~ *® sin(3 — 1.227)) +
0.0189 sin(3 — 1.227) — 0.334¢ sin(3 — 1.227) +

£(0.0001 — 0.0036 sin(3 — 1.22z)) sin?(3 — 1.22x) +

tsin(3 — 1.222)(0.0727 + (0.0184 cos(3 — 1.22z) —

(0.0048 sin(3 — 1.227))), (29)

Once again, in order to prove numerically whether the Adomian decompo-
sition method for system (2) leads to higher accuracy, we evaluate the approx-
imate solution using the 6-terms approximations

Ve = to(w,t) + iy (z,t) + oz, t) + us(z,t) + sz, t) + us(x,t), (30)
D = Uo(z,t) +01(x,t) + Va2, t) + Us(z, t) + Vs, t) + Us(x,t).  (31)

Table 3 and Table 4 shows the exact solutions u and v. The approximate
solutions, 14, @4, the absolute error, |u — 14|, |v — @4| and the relative error
where t = 0.001, a; =3, hy =1,¢, =12, b=3, to =4, By = 3.

Table 3

T; Up Uag lug — wal
—8 | —0.59785 | —0.59236 | 5.482 x 10~
—6 | —0.75921 | —0.75373 | 5.481 x 10~*
—4 | —0.70227 | —0.69679 | 5.481 x 10~
—2 | —0.62858 | —0.62310 | 5.482 x 10?3
0 | —0.79899 | —0.79351 | 5.480 x 10~
2 | —0.61029 | —0.60480 | 5.482 x 1073
4 | —0.73045 | —0.72497 | 5.481 x 1073
6

8

—0.73412 | —0.72864 | 5.481 x 1073
—0.60830 | —0.60282 | 5.482 x 1073
Table 4

T Vg v lvg — val

—8 | 0.878821 | 0.888141 | 9.321 x 1073
—6 | 0.984272 | 0.993595 | 9.323 x 103
—4 1 0.800109 | 0.809429 | 9.320 x 103
—210.978233 | 0.987556 | 9.323 x 1073
0 | 0.888119 | 0.897441 | 9.321 x 1073
2 | 0.848754 | 0.858075 | 9.320 x 1073
4 10.999483 | 1.008811 | 9.323 x 1073
6

8

0.806754 | 0.816074 | 9.320 x 1073
0.952792 | 0.962114 | 9.322 x 1073
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4 Conclusions

We have presented a scheme used to obtain analytic approximate solution of
the nonlinear reaction diffusion system of Lotka-Volterra type by using the
Adomian decomposition method. The absolute error, exact and numerical
results are presented and compared each other in tables for some values of =
and fixed t. As expected from the tables the analytic approximate solution
clearly indicates that how the Adomian decomposition method obtains efficient
results much closer to the accurate solutions.
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