# On a Generalization of Bernstein - Chlodovsky Polynomials for Two Variables

### Aydın Izgi

Ankara University, Faculty of Science, Dept. of Mathematics, 06100 Tandogan, Ankara, Turkey izgi@science.ankara.edu.tr

## İbrahim Büyükyazıcı

Gazi University, Faculty of Education
Dep. of Mathematics Education, Kastamonu, Turkey
bibrahim@gazi.edu.tr

#### Abstract

In this note it is studied the following generalization of Bernstein-Chlodovsky polynomials

$$B_{n,m}(f;x,y) = \sum_{k=0}^{n} \sum_{j=0}^{m} f(\frac{k}{n}b_n, \frac{j}{m}b_m)\varphi_n^k(\frac{x}{b_n})\varphi_j^m(\frac{y}{b_m})$$

where  $0 \le x \le b_n$ ,  $0 \le y \le b_m$  and  $(b_n)$  is the sequence of real numbers and increasing which satisfies  $\lim_{n \to \infty} b_n = \infty$ ,  $\lim_{n \to \infty} \frac{b_n}{n} = 0$  and  $\varphi_n^k(t) = 0$ 

$$\binom{n}{k} t^k (1-t)^{n-k}$$
.

It may be also seen that  $B_{n,m}(f;x,y)$  is linear positive operator [1], [2]. A theorem for convergence of  $B_{n,m}(f;x,y)$  to f(x,y) as  $n,m\to\infty$ 

in the space of continuous function on semi axes satisfying  $|f(x, y)| \le C_f(1 + x^2 + y^2)$  is established. And it is discussed the rate of approximation. Also if f has continuous partial derivatives we give a theorem for approximating properties of this operator  $B_{n,m}(f;x,y)$  and we give some examples.

Mathematics Subject Classification: 41A27, 41A36

**Keywords:** Bernstein-Chlodovsky polynomials, Modulus of continuity, Rate of convergence, Multivariate Bernstein polynomials.

# 1 Introduction

The aim of this paper is to study the problem of the approximation of functions of two variables by means of Bernstein-Chlodovsky polynomials in a rectangular domain.

There are many investigations devoted to the problem of approximating continuous functions by classical Bernstein polynomials, as well as by two-dimensional Bernstein polynomials and their generalizations. We refer to papers [3], [6], [7].

On the other hand, Bernstein-Chlodovsky polynomials have not been studied so well and we don't know of papers, devoted to the two dimensional case. Some generalization of these polynomials in the one-dimensional case may be found in [4], [5].

In this paper, we will prove theorems on the approximation of continuous functions by the following Bernstein-Chlodovsky polynomials of two variables:

$$B_{n,m}(f;x,y) = \sum_{k=0}^{n} \sum_{j=0}^{m} f(\frac{k}{n}b_n, \frac{j}{m}b_m)\varphi_n^k(\frac{x}{b_n})\varphi_j^m(\frac{y}{b_m})$$
(1)

where  $0 \le x \le b_n$ ,  $0 \le y \le b_m$  and  $\varphi_n^k(t) = \binom{n}{k} t^k (1-t)^{n-k}$  and  $(b_n)$  is the sequence of real numbers and increasing which satisfies  $\lim_{n \to \infty} b_n = \infty$  and  $\lim_{n \to \infty} \frac{b_n}{n} = 0$ .

Also, it is investigated the theorem on convergence of polynomials in (1) and it is discussed in Theorem 2 the order of approximation of continuous functions by the sequence  $B_{n,m}$ . On the other hand if f has continuous partial derivatives, it is proved a new theorem for the approximating properties of Bernstein-Chlodovsky polynomials. It is given some numerical examples for the approximation.

# 2 Main Results: Convergence and Rate of Approximation

For any positive A > 0, B > 0 we denote the rectangular domain  $[0, A] \times [0, B]$  by  $D_{AB}$  and by  $D_{b_n b_m}$  the corresponding rectangular with  $A = b_n$  and  $B = b_m$ .

Now, in this section we will be giving the theorem for the convergence. The domain  $D_{b_n b_m}$  extends to the infinite quadrant  $x \geq 0$ ,  $y \geq 0$  as  $n, m \to \infty$  and therefore we can establish some theorems on the convergence and the rate of approximation of continuous functions by polynomials (1) on unbounded set.

**Theorem 2.1** For any fixed positive real numbers A > 0, B > 0, the relation,

$$\lim_{\substack{n \to \infty \\ m \to \infty}} \max_{(x,y) \in D_{AB}} |B_{n,m}(f; x, y) - f(x, y)| = 0$$

holds for all functions f which are continuous in  $x \ge 0$  and  $y \ge 0$  and satisfy the condition

$$|f(x, y)| \le C_f (1 + x^2 + y^2) \tag{2}$$

 $C_f$  is a constant depending on the function f only.

**Proof:** Firstly, we can easily prove the following Korovkin type equalities,

$$B_{n,m}(1; x, y) = 1 (3)$$

$$B_{n,m}(t_1; x, y) = x \tag{4}$$

$$B_{n,m}(t_2; x, y) = y \tag{5}$$

$$B_{n,m}(t_1^2 + t_2^2; x, y) = x^2 + y^2 + \frac{x(b_n - x)}{n} + \frac{y(b_m - y)}{m}$$
 (6)

If we use the above equalities we can see that,

$$||B_{n,m}(1;x,y) - 1||_{C(D_{AB})} = 0, ||B_{n,m}(t_1;x,y) - x||_{C(D_{AB})} = 0$$
 and  $||B_{n,m}(t_2;x,y) - y||_{C(D_{AB})} = 0$ 

$$\begin{aligned} \left\| B_{n,m}(t_1^2 + t_2^2; x, y) - (x^2 + y^2) \right\|_{C(D_{AB})} &= \max_{(x,y) \in D_{AB}} \left| \frac{x(b_n - x)}{n} + \frac{y(b_m - y)}{m} \right| \\ &\leq A \frac{b_n}{n} + B \frac{b_m}{m} \to 0 \end{aligned}$$

where  $n \to \infty$ ,  $m \to \infty$ . We can apply Korovkin-type theorem for multivariate functions [8], The conditions in [8] remains true under the condition (2).

Given the region  $D_{AB}$  for some large n, m,  $D_{b_n b_m}$  will contain  $D_{AB}$  and the theorem gives a solution of the approximation problem for closed subset of  $D_{AB}$ . Hence The proof of Theorem 1 is completed.

It is seen that for large n and m, the rectangular domain  $D_{b_n b_m}$  coincides any region  $D_{AB}$  and therefore this theorem gives a solution of approximation problems of a continuous function, satisfying (2) only in any closed subset of  $D_{b_n b_m}$ .

**Example 2.2** For  $(n, m) = \{(4, 5), (8, 10), (25, 15), (30, 25)\}$ , the convergence of  $B_{n,m}(f; x, y)$  to  $f(x, y) = \sqrt{xy}e^{(-(1/2)(x^2+y^2))}$  in the space of continu-

ous function on semi axes satisfying  $|f(x, y)| \leq C_f(1 + x^2 + y^2)$  is shown by following graphic.

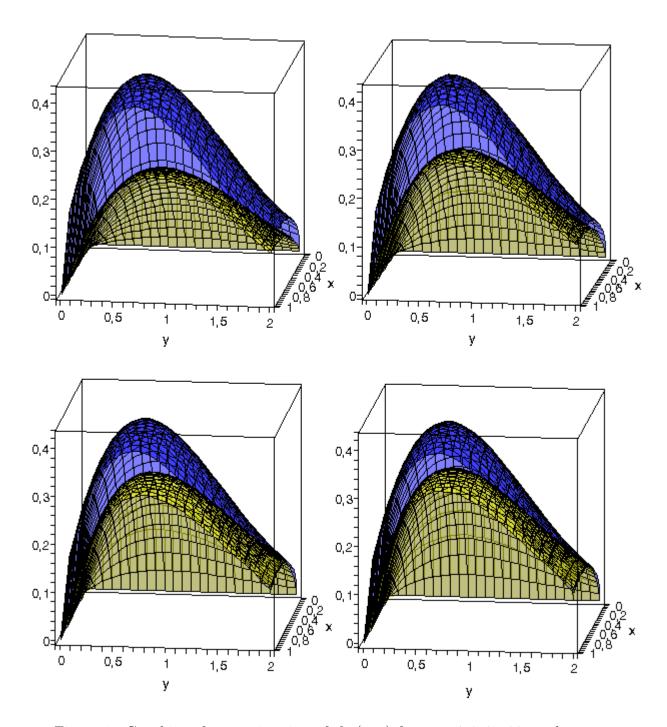


Figure 1. Graphics of approximation of  $f_{-}(x,y)$  for  $n=4,8,25,30_{-}$  and  $m=5,10,15,25_{-}$ .

Now, in this part we will be giving the theorem for the rate of approximation. Also if f has continuous partial derivatives, we give another theorem for the rate of approximation.

Now we give modulus of continuity of function f on  $x \ge 0, y \ge 0$ . Let  $x = (x_1, x_2), \ t = (t_1 \ t_2), \ x^{(1)} = (x_1, u), \ x^{(2)} = (v, x_2), \ t^{(1)} = (t_1, u), \ t^{(2)} = (v, t_2) \ \text{and} \ \rho(x, t) = \sqrt{(t_1 - x_1)^2 + (t_2 - x_2)^2}$ 

$$\omega_{AB}(\delta) = \sup\{|f(t) - f(x)| : x, t \in D_{AB}, \, \rho(x, t) \le \delta\}$$

$$\omega_{AB}^{(1)}(\delta) = \sup \left\{ \left| f(t^{(1)}) - f(x^{(1)}) \right| : x^{(1)}, t^{(1)} \in D_{AB}, \quad \rho(x^{(1)}, t^{(1)}) \le \delta \right\}$$

$$\omega_{AB}^{(2)}(\delta) = \sup \{ |f(t^{(2)}) - f(x^{(2)})| : x^{(2)}, t^{(2)} \in D_{AB}, \rho(x^{(2)}, t^{(2)}) \le \delta \}$$

 $\omega_{AB}(\delta)$  is the complete modulus of continuity of f,  $\omega_{AB}^{(1)}(\delta)$  is the first partial modulus of continuity of f and  $\omega_{AB}^{(2)}(\delta)$  is the second partial modulus of continuity of f.

The following theorem, it is established for rate of approximation. Here  $\omega_{A'B'}$  denotes complete modulus of continuity of f where A' = 1 + A, B' = 1 + B.

**Theorem 2.3** Let f be continuous in  $x \ge 0$  and  $y \ge 0$  and satisfy the condition (2). Then for any fixed A > 0, B > 0,

$$|B_{n,m}(f; x, y) - f(x, y)| \le C.\omega_{A'B'}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$$
 (7)

holds. C is independent of n, m.

**Proof.** First we introduce four point sets. For  $(x, y) \in D_{AB}$ 

$$E_{1} = \{(k, j) : \frac{k}{n}b_{n} \geq A', \frac{j}{m}b_{m} \geq B'\}, \quad E_{2} = \{(k, j) : \frac{k}{n}b_{n} \leq A', \frac{j}{m}b_{m} \geq B'\}$$

$$E_{3} = \{(k, j) : \frac{k}{n}b_{n} \geq A', \frac{j}{m}b_{m} \leq B'\}, \quad E_{4} = \{(k, j) : \frac{k}{n}b_{n} \leq A', \frac{j}{m}b_{m} \leq B'\},$$
then from (3) we obtain

$$|B_{n,m}(f; x, y) - f(x, y)| \leq \sum_{(k,j)\in E_1}^n \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(x,y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$+ \sum_{(k,j)\in E_2}^n \sum_{E_2}^m \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(x,y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$+ \sum_{(k,j)\in E_3}^n \sum_{E_4}^m \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(x,y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$+ \sum_{(k,j)\in E_4}^n \sum_{E_4}^m \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(x,y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$=I_{n,m}^{(1)}+I_{n,m}^{(2)}+I_{n,m}^{(3)}+I_{n,m}^{(4)}$$

where  $\Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m}) = \varphi_n^k(\frac{x}{b_n})\varphi_j^m(\frac{y}{b_m})$ . Consider  $I_{n,m}^{(1)}$ , Since  $f \in C_O(R_0^2)$ , using (2) we have

$$\left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(x, y) \right| \leq C_f \left[ 2 + (\frac{k}{n}b_n)^2 + (\frac{j}{m}b_m)^2 + x^2 + y^2 \right] 
\leq C_f \left[ 2 + (\frac{k}{n}b_n - x)^2 + (\frac{j}{m}b_m - y)^2 \right] 
+ 2C_f \left[ x \left| \frac{k}{n}b_n - x \right| + y \left| \frac{j}{m}b_m - y \right| + x^2 + y^2 \right].$$

Now it is clear that  $\left|\frac{k}{n}b_n - x\right| \ge 1$ ,  $\left|\frac{j}{m}b_m - y\right| \ge 1$  for  $(k, j) \in E_1$  and  $(x, y) \in D_{AB}$ . By this reason we have

$$\left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(x, y) \right| \le C_1 \left[ (\frac{k}{n}b_n - x)^2 + (\frac{j}{m}b_m - y)^2 \right]$$

where  $C_1 = 4C_f(2A + 2B + 1)^2$ .

According to equalities (3)-(6)

$$I_{n,m}^{(1)} \le \sum_{k=0}^{n} \sum_{j=0}^{m} \left| f(\frac{k}{n} b_n, \frac{j}{m} b_m) - f(x, y) \right| \Phi_{n,m}^{k, j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$\leq C_1 \left[ \frac{x(b_n - x)}{n} + \frac{y(b_m - y)}{m} \right] \leq C_2 \left( \frac{b_n}{n} + \frac{b_m}{m} \right)$$

where  $C_2 = C_1(A + B)$ .

By the same way, since  $\left|\frac{j}{m}b_m - y\right| \ge 1$  for  $(k, j) \in E_2$  and  $(x, y) \in D_{AB}$ , we have

$$I_{n,m}^{(2)} \le C_3(\frac{b_n}{n} + \frac{b_m}{m})$$

and since  $\left|\frac{k}{n}b_n - x\right| \ge 1$  for  $(k,j) \in E_3$  and  $(x,y) \in D_{AB}$ , we have

$$I_{n,m}^{(3)} \le C_4(\frac{b_n}{n} + \frac{b_m}{m}).$$

Thus if we choose  $C_5 = C_2 + C_3 + C_4$  we obtain that

$$I_{n,m}^{(1)} + I_{n,m}^{(2)} + I_{n,m}^{(3)} \le C_5(\frac{b_n}{n} + \frac{b_m}{m}).$$

Since  $\frac{b_n}{n} + \frac{b_m}{m} \to 0 \ (n \to \infty, m \to \infty)$ , we can write that  $\frac{b_n}{n} + \frac{b_m}{m} \le \sqrt{\frac{b_n}{n} + \frac{b_m}{m}}$  for n and m sufficiently large. Using properties of complete modulus of continuity, we have  $C_6\sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \le \omega_{A'B'}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$ .

Thus we obtain

$$I_{n,m}^{(1)} + I_{n,m}^{(2)} + I_{n,m}^{(3)} \le C_7 \omega_{A'B'} \left(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}\right)$$
 (8)

where  $C_7 = \frac{C_5}{C_6}$ .

Let  $(k, j) \in E_4$  and  $(x, y) \in D_{AB}$ , then using the properties of modulus of continuity we obtain

$$\left| f(\frac{k}{n}b_{n}, \frac{j}{m}b_{m}) - f(x, y) \right| \leq \omega_{A'B'} \left( \sqrt{(\frac{k}{n}b_{n} - x)^{2} + (\frac{j}{m}b_{m} - y)^{2}} \right)$$

$$\leq \omega_{A'B'} (\delta_{n,m}) \cdot \left[ 1 + \frac{1}{\delta_{n,m}} \sqrt{(\frac{k}{n}b_{n} - x)^{2} + (\frac{j}{m}b_{m} - y)^{2}} \right]$$

where  $\delta_{n,m}$  is a sequence which tends to zero as  $n \to \infty$ ,  $m \to \infty$ .

According to equalities (3)-(6) and applying Cauchy-Schwartz inequality, we obtain

$$I_{n,m}^{(4)} \leq \omega_{A'B'}(\delta_{n,m}).[1 + \frac{1}{\delta_{n,m}}\sqrt{\frac{x(b_n - x)}{n} + \frac{y(b_m - y)}{m}}]$$

$$\leq \omega_{A'B'}(\delta_{n,m}).[1 + \frac{1}{\delta_{n,m}}\sqrt{A + B}\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}].$$

If we put  $\delta_{n,m} = \sqrt{\frac{b_n}{n} + \frac{b_m}{m}}$ , we have

$$I_{n,m}^{(4)} \le [1 + \sqrt{A+B}] \cdot \omega_{A'B'} (\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}).$$
 (9)

If we choose  $C = C_7 + [1 + \sqrt{A+B}]$ , by (8) and (9), the proof of the Theorem 2 is complete.

**Example 2.4** For  $b_n = \sqrt{n}$  and  $0 \le x, y \le 2$ , in the following table, it can be seen that the approximation rate of function  $f(x,y) = e^{-x} - xy + y^2$  for full continuity modulus of function f.

| (n,m)                | $ B_{n,m}(f;x,y) - f(x,y)  \le C\omega_{A',B'}(f;\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$ |
|----------------------|-----------------------------------------------------------------------------------------|
| $(10^{15}, 10^{15})$ | 0.979407116                                                                             |
| $(10^{15}, 10^{16})$ | 0.794536389                                                                             |
| $(10^{16}, 10^{16})$ | 0.550761128                                                                             |
| $(10^{16}, 10^{17})$ | 0.446800667                                                                             |
| $(10^{17}, 10^{17})$ | 0.309715752                                                                             |
| $(10^{17}, 10^{18})$ | 0.251254486                                                                             |
| $(10^{18}, 10^{18})$ | 0.174165970                                                                             |
| $(10^{18}, 10^{19})$ | 0.141290782                                                                             |
| $(10^{19}, 10^{19})$ | 0.097940723                                                                             |
| $(10^{19}, 10^{20})$ | 0.074536465                                                                             |
| $(10^{20}, 10^{20})$ | 0.055076116                                                                             |
| $(10^{20}, 10^{21})$ | 0.044680069                                                                             |
| $(10^{21}, 10^{21})$ | 0.030971576                                                                             |
| $(10^{21}, 10^{22})$ | 0.025125449                                                                             |
| $(10^{22}, 10^{22})$ | 0.017416597                                                                             |
| $(10^{22}, 10^{23})$ | 0.014129078                                                                             |
| $(10^{23}, 10^{23})$ | 0.009794072                                                                             |
| $(10^{23}, 10^{24})$ | 0.007945364                                                                             |
| $(10^{24}, 10^{24})$ | 0.005507611                                                                             |
| $(10^{24}, 10^{25})$ | 0.004468006                                                                             |
| $(10^{25}, 10^{25})$ | 0.003097157                                                                             |
|                      |                                                                                         |

Table 1. Error of the order of the approximation of  $f(x,y) = e^{-x} - xy + y^2 \quad .$ 

If the functions have continuous partial derivatives then we can give a new rate of approximation of f. Following theorem is related to this situation. In the following theorem  $\varpi_{A'B'}^{(1)}$  is the first partial modulus of  $\frac{\partial f}{\partial x}$  and  $\varpi_{A'B'}^{(2)}$  is the second partial modulus of  $\frac{\partial f}{\partial y}$ , where A'=1+A, and B'=1+B.

**Theorem 2.5** Let f be continuous in  $x \ge 0$  and  $y \ge 0$ . If f has continuous partial derivatives  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial y}$  which satisfy

$$\left| \frac{\partial f(x, y)}{\partial x} \right| \le M_f(1 + x + y), \quad \left| \frac{\partial f(x, y)}{\partial y} \right| \le N_f(1 + x + y)$$
 (10)

where  $M_f$  and  $N_f$  is dependent on f, then

$$|B_{n,m}(f; x, y) - f(x, y)| \le M \left[ \omega_{A'B'}^{(2)} \left( \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \right) + \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} . \varpi_{A'B'}^{(1)} \left( \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \right) \right]$$
(11)

$$|B_{n,m}(f; x, y) - f(x, y)| \le N \left[ \omega_{A'B'}^{(1)} \left( \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \right) + \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} . \varpi_{A'B'}^{(2)} \left( \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \right) \right].$$
(12)

**Proof:** Due to mean value theorem we have

$$f(\frac{k}{n}b_n, y) - f(x, y) = (\frac{k}{n}b_n - x)\frac{\partial f(x, y)}{\partial x} + (\frac{k}{n}b_n - x)\left[\frac{\partial f(\zeta, y)}{\partial x} - \frac{\partial f(x, y)}{\partial x}\right]$$
(13)

for any fixed  $y \in [0, B]$ , where  $\zeta$  is some point between x and  $\frac{k}{n}b_n$ . On the other hand we have

$$f(\frac{k}{n}b_{n}, \frac{j}{m}b_{m}) - f(x, y) = f(\frac{k}{n}b_{n}, \frac{j}{m}b_{m}) - f(\frac{k}{n}b_{n}, y) + f(\frac{k}{n}b_{n}, y) - f(x, y).$$

Thus, using equality (3) for this equality we obtain

$$|B_{n,m}(f; x, y) - f(x, y)| \le \sum_{k=0}^{n} \sum_{j=0}^{m} \left| f(\frac{k}{n} b_n, \frac{j}{m} b_m) - f(\frac{k}{n} b_n, y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$+ \sum_{k=0}^{n} \sum_{j=0}^{m} \left| f(\frac{k}{n} b_n, y) - f(x, y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$= q_{n,m}(x, y) + r_{n,m}(x, y).$$

Considering the sets  $E_i$ ; i = 1, 2, 3, 4 as in Theorem 2, we can write that

$$q_{n,m}(x, y) = \sum_{(k,j)\in E_1}^n \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(\frac{k}{n}b_n, y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$+ \sum_{(k,j)\in E_2}^n \sum_{E_2}^m \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(\frac{k}{n}b_n, y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$+ \sum_{(k,j)\in E_3}^n \sum_{E_3}^m \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(\frac{k}{n}b_n, y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$+ \sum_{(k,j)\in E_4}^n \sum_{E_4}^m \left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(\frac{k}{n}b_n, y) \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$= q_{n,m}^{(1)} + q_{n,m}^{(2)} + q_{n,m}^{(3)} + q_{n,m}^{(4)}$$

since f is continuous, using (2) we have

$$\left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(\frac{k}{n}b_n, y) \right| \le C_f \left[ 2 + 2\left(\frac{k}{n}b_n\right)^2 + \left(\frac{j}{m}b_m\right)^2 + y^2 \right]$$

$$\le C_f \left[ 2 + 2\left(\frac{k}{n}b_n - x\right)^2 + \left(\frac{j}{m}b_m - y\right)^2 \right]$$

$$+ C_f \left[ 4x \left| \frac{k}{n}b_n - x \right| + 2y \left| \frac{j}{m}b_m - y \right| + 2(x^2 + y^2) \right].$$

Consider  $q_{n,m}^{(1)}$ ; Now it is clear that

$$\left| \frac{k}{n} b_n - x \right| \ge 1, \quad \left| \frac{j}{m} b_m - y \right| \ge 1$$

for  $(k, j) \in E_1$  and  $(x, y) \in D_{AB}$ . By this reason we have

$$\left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(\frac{k}{n}b_n, y) \right| \le C_8 \left[ \left( \frac{k}{n}b_n - x \right)^2 + \left( \frac{j}{m}b_m - y \right)^2 \right]$$

where  $C_8 = 2C_f(A + B + 2)^2$ . According to equalities (3)-(6),

$$q_{n,m}^{(1)} \leq C_8 \cdot \sum_{k=0}^n \sum_{j=0}^m \left[ \left( \frac{k}{n} b_n - x \right)^2 + \left( \frac{j}{m} b_m - y \right)^2 \right] \cdot \Phi_{n,m}^{k,j} \left( \frac{x}{b_n}, \frac{y}{b_m} \right)$$

$$\leq C_8 \cdot \left( \frac{x(b_n - x)}{n} + \frac{y(b_m - y)}{m} \right)$$

$$q_{n,m}^{(1)} \le C_9.(\frac{b_n}{n} + \frac{b_m}{m})$$

where  $C_9 = C_8 . (A + B)$ .

By the same way, since  $\left|\frac{j}{m}b_m - y\right| \ge 1$  for  $(k, j) \in E_2$  and  $(x, y) \in D_{AB}$ , we

$$q_{n,m}^{(2)} \le C_{10}(\frac{b_n}{n} + \frac{b_m}{m})$$

and since  $\left|\frac{k}{n}b_n - x\right| \ge 1$  for  $(k,j) \in E_3$  and  $(x,y) \in D_{AB}$ , we have

$$q_{n,m}^{(3)} \le C_{11}(\frac{b_n}{n} + \frac{b_m}{m}).$$

Thus if we chose  $C_{12} = C_9 + C_{10} + C_{11}$  we obtain that

$$q_{n,m}^{(1)} + q_{n,m}^{(2)} + q_{n,m}^{(3)} \le C_{12}(\frac{b_n}{n} + \frac{b_m}{m}).$$

Since  $\frac{b_n}{n} + \frac{b_m}{m} \to 0$   $(n \to \infty, m \to \infty)$ , we can write that;  $\frac{b_n}{n} + \frac{b_m}{m} \le \sqrt{\frac{b_n}{n} + \frac{b_m}{m}}$  for n and m sufficiently large. Using properties of modulus of continuity, we have

$$C_{13}\sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \le \omega_{A'B'}^{(2)}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$$
. Thus we obtain

$$q_{n,m}^{(1)} + q_{n,m}^{(2)} + q_{n,m}^{(3)} \le C_{14}\omega_{A'B'}^{(2)}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$$

where  $C_{14} = \frac{C_{12}}{C_{13}}$ .

Let  $(k,j) \in E_4$  and  $(x,y) \in D_{AB}$ , then using properties of modulus of continuity we obtain

$$\left| f(\frac{k}{n}b_n, \frac{j}{m}b_m) - f(\frac{k}{n}b_n, y) \right| \leq \omega_{A'B'}^{(2)} \left( \left| \frac{j}{m}b_m - y \right| \right)$$

$$\leq \omega_{A'B'}^{(2)} (\delta_{n,m}) \left[ 1 + \frac{\left| \frac{j}{m}b_m - y \right|}{\delta_{n,m}} \right]$$

According to equalities (3)-(6) and applying Cauchy-Schwartz inequality,

we obtain

$$q_{n,m}^{(4)} \leq \omega_{A'B'}^{(2)}(\delta_{n,m}) \left[ 1 + \frac{1}{\delta_{n,m}} \sqrt{\sum_{j=0}^{m} (\frac{j}{m} b_m - y)^2 \varphi_m^j (\frac{y}{b_m})} \right]$$

$$\leq \omega_{A'B'}^{(2)}(\delta_{n,m}) \left[ 1 + \frac{1}{\delta_{n,m}} \sqrt{\frac{y(b_m - y)}{m}} \right]$$

$$\leq \omega_{A'B'}^{(2)}(\delta_{n,m}) \left[ 1 + \frac{1}{\delta_{n,m}} \sqrt{B} \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \right].$$

If we put  $\delta_{n,m} = \sqrt{\frac{b_n}{n} + \frac{b_m}{m}}$ , we have

$$q_{n,m}^{(4)} \le C_{15}\omega_{A'B'}^{(2)}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$$

where  $C_{15} = (1 + \sqrt{B})$ . Thus,

$$q_{n,m}(x, y) \le C_{16}\omega_{A'B'}^{(2)}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$$
 (14)

where  $C_{16} = C_{14} + C_{15}$ ,  $(x, y) \in D_{AB}$ .

Now we introduce two point sets for  $(x, y) \in D_{AB}$ .

$$K_1 = \{(k, j) : \frac{k}{n} b_n \ge A'\}, \qquad K_2 = \{(k, j) : \frac{k}{n} b_n \le A'\}.$$

Using (13)

$$\begin{aligned} r_{n,m}(x,y) &= \left| \sum_{k=0}^{n} \sum_{j=0}^{m} (f(\frac{k}{n}b_{n},y) - f(x,y)) \Phi_{n,m}^{k,j}(\frac{x}{b_{n}}, \frac{y}{b_{m}}) \right| \\ &\leq \left| \frac{\partial f(x,y)}{\partial x} \sum_{k=0}^{n} \sum_{j=0}^{m} (\frac{k}{n}b_{n} - x) \Phi_{n,m}^{k,j}(\frac{x}{b_{n}}, \frac{y}{b_{m}}) \right| \\ &+ \left| \sum_{k=0}^{n} \sum_{j=0}^{m} (\frac{k}{n}b_{n} - x) \left[ \frac{\partial f(\zeta,y)}{\partial x} - \frac{\partial f(x,y)}{\partial x} \right] \Phi_{n,m}^{k,j}(\frac{x}{b_{n}}, \frac{y}{b_{m}}) \right|. \end{aligned}$$

The first term at the last expression is zero by (4). Thus

$$r_{n,m}(x,y) \leq \sum_{k=0}^{n} \sum_{j=0}^{m} \left| \frac{k}{n} b_n - x \right| \left| \frac{\partial f(\zeta,y)}{\partial x} - \frac{\partial f(x,y)}{\partial x} \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$= \left( \sum_{(k,j)}^{n} \sum_{j=K}^{m} + \sum_{(k,j)}^{n} \sum_{j=K}^{m} \right) \left| \frac{k}{n} b_n - x \right| \left| \frac{\partial f(\zeta,y)}{\partial x} - \frac{\partial f(x,y)}{\partial x} \right| \Phi_{n,m}^{k,j}(\frac{x}{b_n}, \frac{y}{b_m})$$

$$=r_{n,m}^{(1)}+r_{n,m}^{(2)}.$$
 From (10) and since  $|\zeta-x|\leq \left|\frac{k}{n}b_n-x\right|$ , we have,

$$\left| \frac{\partial f(\zeta, y)}{\partial x} - \frac{\partial f(x, y)}{\partial x} \right| \leq M_f [2 + \zeta + x + 2y]$$

$$\leq M_f [|\zeta - x| + 2(1 + x + y)]$$

$$\leq M_f \left[ \left| \frac{k}{n} b_n - x \right| + 2(1 + x + y) \right]$$

Furthermore, if we consider  $\left|\frac{k}{n}b_n - x\right| \ge 1$  for  $(k, j) \in K_1$  and  $(x, y) \in D_{AB}$ .

$$\left| \frac{\partial f(\zeta, y)}{\partial x} - \frac{\partial f(x, y)}{\partial x} \right| \le C_{17} \left| \frac{k}{n} b_n - x \right|$$

where  $C_{17} = M_f[3 + 2(A+B)].$ 

Using equalities (3)-(6) and the properties of modulus of continuity we obtain

$$r_{n,m}^{(1)} \leq C_{17} \sum_{k=0}^{n} \sum_{j=0}^{m} (\frac{k}{n} b_n - x)^2 \Phi_{n,m}^{k,j} (\frac{x}{b_n}, \frac{y}{b_m})$$

$$= C_{17} \frac{x(b_n - x)}{n} \leq C_{17} A (\frac{b_n}{n} + \frac{b_m}{m})$$

$$= C_{17} A \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \cdot \sqrt{\frac{b_n}{n} + \frac{b_m}{m}}$$

$$\leq C_{18} \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \varpi_{A'B'}^{(1)} (\sqrt{\frac{b_n}{n} + \frac{b_m}{m}})$$

where  $C_{18} = \frac{C_{17}A}{C_f}$ ,  $C_f$  dependent f and  $\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}$ .

Let  $(k, j) \in K_2$  and  $(x, y) \in D_{AB}$ . Thus  $\left| \frac{k}{n} b_n - x \right| \le 1$  and if we consider

$$|\zeta - x| \le \left| \frac{k}{n} b_n - x \right|$$
 we have

$$\left| \frac{\partial f(\zeta, y)}{\partial x} - \frac{\partial f(x, y)}{\partial x} \right| \leq \varpi_{A'B'}^{(1)}(|\zeta - x|)$$

$$\leq \varpi_{A'B'}^{(1)}(\left| \frac{k}{n}b_n - x \right|)$$

$$\leq \varpi_{A'B'}^{(1)}(\delta_{n,m})[1 + \frac{1}{\delta_{n,m}} \left| \frac{k}{n}b_n - x \right|].$$

By the using equalities (3)-(6) and inequality of Cauchy-Schwartz,

$$r_{n,m}^{(2)} \leq \varpi_{A'B'}^{(1)}(\delta_{n,m}) \sum_{k=0}^{n} \sum_{j=0}^{m} \left[ \left| \frac{k}{n} b_{n} - x \right| + \frac{1}{\delta_{n,m}} \left( \frac{k}{n} b_{n} - x \right)^{2} \right] \Phi_{n,m}^{k,j} \left( \frac{x}{b_{n}}, \frac{y}{b_{m}} \right)$$

$$\leq \varpi_{A'B'}^{(1)}(\delta_{n,m}) \left[ \sqrt{A} \sqrt{\frac{b_{n}}{n} + \frac{b_{m}}{m}} + A \left( \frac{b_{n}}{n} + \frac{b_{m}}{m} \right) \right]$$

$$\leq \sqrt{\frac{b_{n}}{n} + \frac{b_{m}}{m}} \cdot \varpi_{A'B'}^{(1)}(\delta_{n,m}) \left[ \sqrt{A} + \frac{1}{\delta_{n,m}} A \sqrt{\frac{b_{n}}{n} + \frac{b_{m}}{m}} \right].$$

If we put  $\delta_{n,m} = \sqrt{\frac{b_n}{n} + \frac{b_m}{m}}$  we obtain

$$r_{n,m}^{(2)} \leq [\sqrt{A} + A] \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} . \varpi_{A'B'}^{(1)} (\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}).$$

Set  $C_{19} = C_{18} + [\sqrt{A} + A]$ 

$$r_{n,m}(x, y) \le C_{19} \sqrt{\frac{b_n}{n} + \frac{b_m}{m}} \cdot \varpi_{A'B'}^{(1)} \left(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}\right).$$
 (15)

Finally, by (14) and (15)

$$|B_{n,m}(f; x, y) - f(x, y)|$$

$$\leq M[\omega_{A'B'}^{(2)}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}) + \sqrt{\frac{b_n}{n} + \frac{b_m}{m}}.\varpi_{A'B'}^{(1)}(\sqrt{\frac{b_n}{n} + \frac{b_m}{m}}]$$

where  $M = \max\{C_{16}, C_{19}\}.$ 

We can prove (12) by the same way proof of (11). Hence Theorem 3 is proved.

# References

- [1] A. D. Gadjiev, Linear positive operators in weighted space of functions of several variables, Izvestiya Acad. of Sciences of Azerbaijan, N4, (1980).
- [2] D. D. Stancu, Asupra unei generalizari a Polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai, Ser. Math. Phys. **14(2)** (1969),31-45.
- [3] E. A. Gadjieva and E. İbikli, Weighted Approximation By Bernstein-Chlodovsky Polynomials, Indian J Pure Ap Mat., **30(1)** (1999), 83-87.

- [4] E. A. Gadjieva and E. İbikli, On Generalization Of Bernstein-Chlodovsky Polynomials, Hacettepe Bulletin Of Natural Sciences and Engineering, Volume **24** (1995), pp.31-40.
- [5] F. L. Martinez, Some Properties Of Two-Dimensional Bernstein Polynomials. Journal of Approximation Theory, **59** (1989),300-306.
- [6] G. G. Lorentz, Bernstein Polynomials, Univ. Toronto Press, Toronto, Ontario, 1953.
- [7] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corp. Delhi, 1960.
- [8] V. I. Volkov, On the convergence of sequences of linear positive operators in the space of two variables, Dokl. Akad. Nauk., SSSR(N.S.), **115** (1957),17-19.

Received: October 7, 2005