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Abstract

In this note it is studied the following generalization of Bernstein-
Chlodovsky polynomials

Bunlfiag) =35 15, L meh )y ()

k=0 j=0

where 0 < z < b, 0 <y < b, and (b,) is the sequence of real numbers

and increasing which satisfies li_)m b, =00, lim — =0and, pk(t) =
n—oo

(1)

It may be also seen that By, ,,(f;z,y) is linear positive operator [1],
[2]. A theorem for convergence of By, (f;2,y) to f(x,y) as n,m — oo

in the space of continuous function on semi axes satisfying |f(z, y)| <
Cr(1+ 22 4 y?) is established. And it is discussed the rate of approxi-
mation. Also if f has continuous partial derivatives we give a theorem
for approximating properties of this operator B, (f;x,y) and we give
some examples.
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1 Introduction

The aim of this paper is to study the problem of the approximation of func-
tions of two variables by means of Bernstein-Chlodovsky polynomials in a
rectangular domain.

There are many investigations devoted to the problem of approximating
continuous functions by classical Bernstein polynomials, as well as by two-
dimensional Bernstein polynomials and their generalizations. We refer to pa-
pers [3], 6], [7].

On the other hand, Bernstein-Chlodovsky polynomials have not been stud-
ied so well and we don’t know of papers, devoted to the two dimensional case.
Some generalization of these polynomials in the one-dimensional case may be
found in [4], [5].

In this paper, we will prove theorems on the approximation of continuous
functions by the following Bernstein-Chlodovsky polynomials of two variables:

S TLI T Y
, n o m b, by
k=0 7=0
where 0 < 2 < b,, 0 <y < by, and ¢F(t) = ( Z )tk(l —t)" % and (b,)
is the sequence of real numbers and increasing which satisfies  lim b, = oo
n—oo
and  lim b—n = 0.
n—oo M

Also, it is investigated the theorem on convergence of polynomials in (1)
and it is discussed in Theorem 2 the order of approximation of continuous
functions by the sequence B,, ,,. On the other hand if f has continuous partial
derivatives, it is proved a new theorem for the approximating properties of
Bernstein-Chlodovsky polynomials. It is given some numerical examples for
the approximation.

2 Main Results: Convergence and Rate of Ap-
proximation

For any positive A > 0, B > 0 we denote the rectangular domain [0, A] x
[0, B] by Dag and by D, 3, the corresponding rectangular with A = b,, and
B =b,,.

Now, in this section we will be giving the theorem for the convergence. The
domain Dy, ;,, extends to the infinite quadrant x > 0, y > 0 as n, m — oo and
therefore we can establish some theorems on the convergence and the rate of
approximation of continuous functions by polynomials (1) on unbounded set.
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Theorem 2.1 For any fixed positive real numbers A > 0, B > 0, the rela-
tion,
lim max |Bn,m(f7 T, y) - f(xv y)’ =0

holds for all functions f which are continuous in x > 0 and y > 0 and satisfy
the condition

[z, y)l < Cr(1+2° +y7) (2)

C is a constant depending on the function f only.

Proof: Firstly, we can easily prove the following Korovkin type equalities,

Bn,m(tl; X, y) =T (4)
Bn,m(t%x’y) =Y (5)
z(b, — x by, —
Bumlt +5,y) = 2% + 3 + Lo =0 | ¥lom = 3) (6)
n m
If we use the above equalities we can see that,
1B (L;2,9) = Ulop,y = 0 1Bom(tise,y) —2llop,,) =0
and || By m(t2; 2, y) — y“C(DAB) =0
bn —x) | y(bm —y)
B (3 + t3; — (2? 2 = (b dL
H , ( 1 + 27I7y) (I +y >HC(DAB) (x,IyI)leal})(AB n + m
b b

< A2+B2 =0
n m

where n — 0o, m — oo. We can apply Korovkin-type theorem for multivariate

functions [8], The conditions in [§] remains true under the condition (2).

Given the region Dyp for some large n,m, D, ;  will contain Dyp and
the theorem gives a solution of the approximation problem for closed subset
of D,p . Hence The proof of Theorem 1 is completed.

It is seen that for large n and m, the rectangular domain D, ;  coincides
any region D 4p and therefore this theorem gives a solution of approximation
problems of a continuous function, satisfying (2) only in any closed subset of
Dbnbm'

Example 2.2 For (n ,m) = {(4,5),(8,10),(25,15),(30,25)}, the conver-
gence of By (fi2,y) to f(z,y) = JTye W@ ) Gn the space of continu-

ous function on semi azes satisfying |f(z, y)| < Cy(1 + 2* + y?) is shown by
following graphic.
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Figure 1. Graphics of approximation of f (z,y) for n = 4,8,25,30 and

m = 5,10, 15, 25.
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Now, in this part we will be giving the theorem for the rate of approxima-
tion. Also if f has continuous partial derivatives, we give another theorem for
the rate of approximation.

Now we give modulus of continuity of function f on = > 0,y > 0. Let
= (21, 13), t = (t; t3), 2W = (21, u), 2 = (v, 29),
tW) = (t1, u), t® = (v, ta) and p(z, t) = \/(t1 — 21)2 + (t2 — x2)?

wap(d) =sup{|f(t) — f(z)| : z,t € Dap, p(z, t) <3}
wS)B(d) = sup {|f(t(l)) - f(x(l))} : .T(l)7t(1) € DABa p(m(l)ﬂ t(l)) < 5}

S0) = sup {|F0) = F@®)] : @t € Dap.  pla®.0®) <)

wap(0) is the complete modulus of continuity of f, ng)g(é) is the first
partial modulus of continuity of f and wfé(d) is the second partial modulus

of continuity of f.

The following theorem, it is established for rate of approximation. Here
w 4 g denotes complete modulus of continuity of f where A=14+A B =
1+ B.

Theorem 2.3 Let f be continuous in x > 0 and y > 0 and satisfy the
condition (2). Then for any fized A >0, B > 0,

bn by
|Bn,m(f; z, y>_f($a y)| SC'WA’B'< E_}—E) (7)

holds. C' is independent of n, m.

Proof. First we introduce four point sets. For (z, y) € Dag
. k ’ ] ’ . k ’ ] ’
By={(k, ) : S, > A b, >BY, Ey={(k j): b, <A, Lb,>B
=) 2 A L, 2 By B = (k) Sh <4 Db, > BY

By= (k) b2 AL Lo, < B) m= (0 ) o< Lo, <y,

then from (3) we obtain

n m

k J ki T Y
B : — < —b,, — — J(= L
Bum(fiwoy) = fl )l < 3 3 NG 2obm) = Say)| @10 )
(kg)e Er
~ k J ki (¥ Y
b Ly — okd (2L
2 2 |G ) = flay) | B )
(k,j)e E2
~ k J ki ¥ Y
b Loy — okd (2L
(k,j)E Es3
~ k J ki ¥ Y
b Ly — okd (L 2L
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=10 + I+ 1 4+ 1%
1)

where & (b£ bi) = go’;(b—)gpgn(bi) Consider I, Since f € Co(R3), using

(2) we have

k ' k '
F b 2b) = f y>\ < Chl24 (0 + (ba)” a7 447

n
< (42 kb 2 jb 2
> f[ "_(En_*r) +(Em_y)]

k
2C¢|z | =b, —
+2C[x - x

+yme—4+nP+fL
m

Now it is clear that |%b, — x| > 1, |Lb,, —y| > 1for (k,j) € E; and (z,y) €
D p. By this reason we have

k

b L)~ fla)| < Gl = 2+ (L~ )"

where C} = 4C¢(2A+ 2B + 1)
According to equalities (3)-(6)

JMSZZ

k=0 j5=0

where CQ = Cl(A + B)
By the same way, since ibm — y' > 1 for (k,j) € E3 and (x,y) € Dap, we
m

have b h
I8), < Cy(=+ )
’ nom
: k .
and since |—b, — x| > 1 for (k,j) € F3 and (x,y) € Dap, we have
n
b b
I3, < Cu(= + ).
’ nom

Thus if we choose C5 = Cy + C5 + Cy we obtain that

bn b
L+ 15+ I, < C5(2 4+ ).
n m
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b b b b
Since — + — — 0 (n — oo, m — 00), we can write that — + — <
n m n m

bn | b : : .
— 4+ — for n and m sufficiently large. Using properties of complete mod-
n o m

b, bm b, b
ulus of continuity, we have Cg1/ — + — < wyrp({/ — + —).
nom n o m

Thus we obtain

Lo+ L+ I < Crogp ([ 25+ 75) (8)
s
Ce

Let (k,j) € Ey and (z,y) € Dap, then using the properties of modulus of
continuity we obtain

where C; =

k ' k ’
P L)~ fla)| < (b =2+ (L,

1 k j
< 15 (0nm )1 \/—bn— 24+ (=b,, —y)?
< Oun) (14 5 b =)+ (b~
where 9,, ,,, is a sequence which tends to zero as n — 0o, m — oo.

According to equalities (3)-(6) and applying Cauchy-Schwartz inequality,
we obtain

1o, —2) | y(bm —y)
(4) < ! ! \/
I > Wyp (6717771)[1 + 571, n + m ]
1 b, bm
VAT By 2+ 2.
n m

m
5n,m

[b, b
If we put 0,,, = {/ — + —, we have
n - m

I <1+ VA+Blwypl

< wyp (Onm)-[1+

b,  bm

— 4+ —). 9
L )
If we choose C' = C7 + [1 + A+ B, by (8) and (9), the proof of

the Theorem 2 is complete.

Example 2.4 For b, = \/n and 0 < z,y < 2, in the following table, it
can be seen that the approximation rate of function f(x,y) = e — xy + y?
for full continuity modulus of function f .
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(n,m) |Bum(fi2,y) — f(z,9)] SCWA’,B’(]C; \/%+bﬁm)
(10%,10") 0.979407116
(10",10%) 0.794536389
(10'°,10') 0.550761128
(10%°,10') 0.446800667
(10'7,10') 0.309715752
(10'7,10™) 0.251254486
(10%%,10") 0.174165970
(10'%,10") 0.141290782
(10™,10") 0.097940723
(10", 10%) 0.074536465
(10%,10%) 0.055076116
(10*°,10°") 0.044680069
(10*',10°") 0.030971576
(10°',10%) 0.025125449
(10%%,10%) 0.017416597
(10%2,10%) 0.014129078
(10%,10%) 0.009794072
(10%,10%) 0.007945364
(10%%,10%) 0.005507611
(10%%,10%) 0.004468006
(10*°,10%) 0.003097157

Table 1. Error of the order of the approximation of
fla,y) =e™ —ay+y?

If the functions have continuous partial derivatives then we can give a new
rate of approximation of f . Following theorem is related to this situation.
1) 2)

In the following theorem @ /., is the first partial modulus of == and @ /., is
Oz A'B
0 , /
the second partial modulus of (9_f ,where A =14+ A,and B =1+ B.
Y

Theorem 2.5 Let f be continuous inx > 0 andy > 0. If f has continuous

partial derivatives 8_f and g—f which satisfy
Z Y

of (z, y)

‘M
dy

< M, (1
o ’—Mf( +x+y), '

‘nguﬂ:w) (10)
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where My and Ny is dependent on f, then

+ %+€ﬂw93< %+€%> (11)
Bunlf: 7. ) ~ o, )] < N lwii) (24 2
+ %‘f—% ® b—"+%’”) (12)
Proof: Due to mean value theorem we have
F b )= 1) = Comay LD By ) 206 0) BT ) 1

k
for any fixed y € [0, B], where ( is some point between z and —b,.On the
n

other hand we have

k ' k ' k
f(ﬁbny %bm) - f(fl',y) = f(gbm %bm) - f(ﬁbmy)

FFCbuy) — f(r9).

Thus, using equality (3) for this equality we obtain

| Bum(f5 2, y) — xyKZZ

k=0 5=0

= Qum(T, Y) + rom(T, Y).

Considering the sets F;; 1 =1, 2, 3, 4 as in Theorem 2, we can write that



1010 Ibrahim Biiyiikyazici and Aydin Izgi

k. k Ty
Qn,m(l‘7 y) - Z Z f(ﬁbn7 Ebm) - f(ﬁbn7y) (I)f{,]m(b_a b_)
(kj)e Er v
S E b L) - b @b (2 Y
- n . m n " by,
(k.j)e Ez
S S E b L) - b @b (2 Y
‘ nnymm nna n,m bnybm
(k.j)e Es
S S E b L) - b @k (2 Y
' nnamm nna n,m bn,bm
(k.j)e Ea

= ¢, +q%, +qP), +q%),

since f is continuous, using (2) we have
B\ 2 , 2
2 42 (—bn) + (ibm) +
n m
2 2 , 2
242 (—bn—x) n (ibm—y> ]
n m

+ 2y 'ibm - y‘ 2o + yQ)} .
m

k ' k
‘f(EbTh %bm) - f(ﬁbnay)' S Cf

< Cy

k
b, —x
n

+Cf [41‘

Consider q,(:)n; Now it is clear that

-b, —
n

‘ k

ZL'im—421
m
for (k,j) € Ey and (z,y) € Dap. By this reason we have
k.o j k k ol ?
10 Lo - )| < [(—bn ~2) + (Lo -y) ]
n"m n n m
where Cg = 2C;(A + B + 2)2. According to equalities (3)-(6),

n m k 2 ] 2 r y
M < o by — Ty —y) | ki (2
Gm = C18 Zz_: [(nbn l’) + (mbm y) ] n,m(bn7 b )

IN
2
7 N\
8
—
S

S

|
&
=
S

3

|

<

~
N————
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where Cg = OS(A + B)

By the same way, since

ibm — y' > 1 for (k,j) € E2 and (x,y) € Dap, we
m

have

k
and since |—b, — x| > 1 for (k,j) € F3 and (x,y) € Dap, we have
n

b, b,
q£LS1)er < Cip(—+—).
n o m

Thus if we chose C15 = Cy + Ci9 + C17 we obtain that

by | bm
G Qi+ Gy < Cra( + ).
n o m
. b, = bny ) b, bm
Since — 4+ — — 0 (n — o0, m — o0), we can write that; — + — <
n m n m

[bn by, ) ) .
— 4+ — for nand m sufficiently large. Using properties of modulus of con-
n o m
tinuity, we have

[bn, b b, b
Cisy | — 4+ 2 < wff,)B/( — + ™). Thus we obtain
nom nom

W 44?2+ @), <O (2 + 2
Qpm T pm T 4nm = Llg A'B ( n m)
Gy
Cis

Let (k,j) € E4and (x,y) € Dap, then using properties of modulus of
continuity we obtain

where Cj4 =

< C()(2/)

AB'<

FEb L) = 1)

J
Lp, —

< w®  (Gpm)l+

According to equalities (3)-(6) and applying Cauchy-Schwartz inequality,
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we obtain
LI J y
din < Wi Gum) |14 5 JZ( = y>2¢#<—>‘
n,m =0 m
R b —
(2) y(bm — y)
S OJA’B’(CSn,m) 1+ 5, ]
bm
S wf')B’(én m) E] .
b, bp
If we put 0,,, = {/ — + —, we have
n o m
b b
9 < Ot =+ =
nm = 15wAB( n+m)
where Cy5 = (1 ++/B). Thus,
b, bn
qn m(x y) < Cl6wA)B ( g + E) (14)
where 016 =Cy+ 015, (l’, y) € Dyp.
Now we introduce two point sets for (x, y) € Dap.
. k / . lf /
Klz{“{?,j)tﬁanA}, K2:{(k;,j):ﬁbn§A}.
Using (13)
k=0 j=0 nooom
< My g 2
k=0 7=0
K Of(¢y)  Of(x, )i, & Y
b, — Prd (= L
#Ro3 G~ - S G )

The first term at the last expression is zero by (4). Thus

e )2 323 o o] X5 2 - S5 i
k=0 j=0 . b
of(¢.y) 9
=03+ 3 [ |2 - AL a1

(k,j) €K1 (k,j) €Kz
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= 1, 182,

k

From (10) and since |( — z| < |=b,, — x|, we have,
n
9f(¢y)  Of(z, y)
pe e < M2+ (+x + 2y
< My[|¢ —z[+2(1 + z + )]
k
< Mf[‘ﬁbn—x +2(1+2+y))
Furthermore, if we consider gbn —z| > 1for (k,7) € Ky and (z,y) €
Das 9 o
f(Gy) Of(z, y) <con ¥ o
ox ox n

where Ci7 = My[3 +2(A+ B)].
Using equalities (3)-(6) and the properties of modulus of continuity we
obtain

0

INA
Q
=~
SIES
S
e
K
I
3%
o~|@

IA
0
(o]

A /
where Cg = Cé—?, Cy dependent f and b—n + b—m
f n m

k
Let (k, j) € Ky and (2, y) € Dag. Thus |—b, — x| < 1 and if we consider

n

I —z| < we have

—b, —
n

‘af(é, y)  Of(x, y)‘

oz ox
w |k
S wA/B/( Ebn_'x)
1 |k
< @y Cum)l 5 | bu ]
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By the using equalities (3)-(6) and inequality of Cauchy-Schwartz,

1k x oy
(2 <« E E _ b S q)kj = 4
k=0 5=0 ’
(1) bn | bm b | bm
< 1 o \Un,m - - — -
< @y ) VA 22 422 4 A 4 2

b,  bn

b bm () 1

< —+—ww/ (O [VA Ay — + —].
<\ ) VA Ay 2

by | bm :

If we put 6,,,, = {/ — + — we obtain

n o m
b, bn b b

Al /2 o Zm () Ino Tmy
< WA+ A2 4 o) g2 2

Set Cig = C15 + [\/Z -+ A]

[bn b (1) b, bm
71n,m(x7 y) S 019 g + E'wA/B/( E + E) (15)

Finally, by (14) and (15)

|Bn,m(f; x, y) - f(ZL‘, y)|

where M = max{C1g, Cio}.
We can prove (12) by the same way proof of (11). Hence Theorem 3 is
proved.
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