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Abstract

In this note it is studied the following generalization of Bernstein-
Chlodovsky polynomials

Bn,m(f ;x, y) =
n∑

k=0

m∑
j=0

f(
k

n
bn,

j

m
bm)ϕk

n(
x

bn
)ϕm

j (
y

bm
)

where 0 ≤ x ≤ bn, 0 ≤ y ≤ bm and (bn) is the sequence of real numbers

and increasing which satisfies lim
n→∞

bn =∞, lim
n→∞

bn
n

= 0 and , ϕk
n(t) =(

n
k

)
tk(1− t)n−k.

It may be also seen that Bn,m(f ;x, y) is linear positive operator [1],
[2]. A theorem for convergence of Bn,m(f ;x, y) to f(x, y) as n,m→∞

in the space of continuous function on semi axes satisfying |f(x, y)| ≤
Cf (1 + x2 + y2) is established. And it is discussed the rate of approxi-
mation. Also if f has continuous partial derivatives we give a theorem
for approximating properties of this operator Bn,m(f ;x, y) and we give
some examples.
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1 Introduction

The aim of this paper is to study the problem of the approximation of func-
tions of two variables by means of Bernstein-Chlodovsky polynomials in a
rectangular domain.

There are many investigations devoted to the problem of approximating
continuous functions by classical Bernstein polynomials, as well as by two-
dimensional Bernstein polynomials and their generalizations. We refer to pa-
pers [3], [6], [7].

On the other hand, Bernstein-Chlodovsky polynomials have not been stud-
ied so well and we don’t know of papers, devoted to the two dimensional case.
Some generalization of these polynomials in the one-dimensional case may be
found in [4], [5].

In this paper, we will prove theorems on the approximation of continuous
functions by the following Bernstein-Chlodovsky polynomials of two variables:

Bn,m(f ;x, y) =
n∑

k=0

m∑
j=0

f(
k

n
bn,

j

m
bm)ϕk

n(
x

bn
)ϕm

j (
y

bm
) (1)

where 0 ≤ x ≤ bn, 0 ≤ y ≤ bm and ϕk
n(t) =

(
n
k

)
tk(1 − t)n−k and (bn)

is the sequence of real numbers and increasing which satisfies lim
n→∞

bn = ∞

and lim
n→∞

bn
n

= 0.

Also, it is investigated the theorem on convergence of polynomials in (1)
and it is discussed in Theorem 2 the order of approximation of continuous
functions by the sequence Bn,m. On the other hand if f has continuous partial
derivatives, it is proved a new theorem for the approximating properties of
Bernstein-Chlodovsky polynomials. It is given some numerical examples for
the approximation.

2 Main Results: Convergence and Rate of Ap-

proximation

For any positive A > 0, B > 0 we denote the rectangular domain [0, A] ×
[0, B] by DAB and by Dbnbm the corresponding rectangular with A = bn and
B = bm.

Now, in this section we will be giving the theorem for the convergence. The
domain Dbnbm extends to the infinite quadrant x ≥ 0, y ≥ 0 as n,m→∞ and
therefore we can establish some theorems on the convergence and the rate of
approximation of continuous functions by polynomials (1) on unbounded set.
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Theorem 2.1 For any fixed positive real numbers A > 0, B > 0, the rela-
tion,

lim
n→∞
m→∞

max
(x,y)∈DAB

|Bn,m(f ; x, y)− f(x, y)| = 0

holds for all functions f which are continuous in x ≥ 0 and y ≥ 0 and satisfy
the condition

|f(x, y)| ≤ Cf (1 + x2 + y2) (2)

Cf is a constant depending on the function f only.

Proof: Firstly, we can easily prove the following Korovkin type equalities,

Bn,m(1;x, y) = 1 (3)

Bn,m(t1;x, y) = x (4)

Bn,m(t2;x, y) = y (5)

Bn,m(t21 + t22;x, y) = x2 + y2 +
x(bn − x)

n
+
y(bm − y)

m
(6)

If we use the above equalities we can see that,

‖Bn,m(1;x, y)− 1‖C(DAB) = 0, ‖Bn,m(t1;x, y)− x‖C(DAB) = 0

and ‖Bn,m(t2;x, y)− y‖C(DAB) = 0

∥∥Bn,m(t21 + t22;x, y)− (x2 + y2)
∥∥
C(DAB)

= max
(x, y)∈DAB

∣∣∣∣x(bn − x)

n
+
y(bm − y)

m

∣∣∣∣
≤ A

bn
n

+B
bm
m
→ 0

where n→∞, m→∞. We can apply Korovkin-type theorem for multivariate
functions [8], The conditions in [8] remains true under the condition (2).

Given the region DAB for some large n,m, Dbnbm will contain DAB and
the theorem gives a solution of the approximation problem for closed subset
of DAB . Hence The proof of Theorem 1 is completed.

It is seen that for large n and m, the rectangular domain Dbnbm coincides
any region DAB and therefore this theorem gives a solution of approximation
problems of a continuous function, satisfying (2) only in any closed subset of
Dbnbm .

Example 2.2 For (n ,m) = {(4, 5) , (8, 10) , (25, 15) , (30, 25)}, the conver-
gence of Bn,m(f ;x, y) to f(x, y) =

√
xye(−(1/2)(x

2+y2)) in the space of continu-

ous function on semi axes satisfying |f(x, y)| ≤ Cf (1 + x2 + y2) is shown by
following graphic.
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Figure 1. Graphics of approximation of f (x, y) for n = 4, 8, 25, 30 and
m = 5, 10, 15, 25.
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Now, in this part we will be giving the theorem for the rate of approxima-
tion. Also if f has continuous partial derivatives, we give another theorem for
the rate of approximation.

Now we give modulus of continuity of function f on x ≥ 0, y ≥ 0. Let
x = (x1, x2), t = (t1 t2), x

(1) = (x1, u), x(2) = (v, x2),
t(1) = (t1, u), t(2) = (v, t2) and ρ(x, t) =

√
(t1 − x1)2 + (t2 − x2)2

ωAB(δ) = sup {|f(t)− f(x)| : x, t ∈ DAB, ρ(x, t) ≤ δ}

ω
(1)
AB(δ) = sup

{∣∣f(t(1))− f(x(1))
∣∣ : x(1), t(1) ∈ DAB, ρ(x(1), t(1)) ≤ δ

}
ω
(2)
AB(δ) = sup

{∣∣f(t(2))− f(x(2))
∣∣ : x(2), t(2) ∈ DAB, ρ(x(2), t(2)) ≤ δ

}
ωAB(δ) is the complete modulus of continuity of f, ω

(1)
AB(δ) is the first

partial modulus of continuity of f and ω
(2)
AB(δ) is the second partial modulus

of continuity of f.

The following theorem, it is established for rate of approximation. Here
ωA′B′ denotes complete modulus of continuity of f where A

′
= 1 + A, B

′
=

1 +B.

Theorem 2.3 Let f be continuous in x ≥ 0 and y ≥ 0 and satisfy the
condition (2). Then for any fixed A > 0, B > 0,

|Bn,m(f ; x, y)− f(x, y)| ≤ C.ωA′B′ (

√
bn
n

+
bm
m

) (7)

holds. C is independent of n, m.

Proof. First we introduce four point sets. For (x, y) ∈ DAB

E1 = {(k, j) :
k

n
bn ≥ A

′
,
j

m
bm ≥ B

′}, E2 = {(k, j) :
k

n
bn ≤ A

′
,
j

m
bm ≥ B

′}

E3 = {(k, j) :
k

n
bn ≥ A

′
,
j

m
bm ≤ B

′}, E4 = {(k, j) :
k

n
bn ≤ A

′
,
j

m
bm ≤ B

′},

then from (3) we obtain

|Bn,m(f ; x, y)− f(x, y)| ≤
n∑

(k,j)∈

m∑
E1

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

+
n∑

(k,j)∈

m∑
E2

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

+
n∑

(k,j)∈

m∑
E3

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

+
n∑

(k,j)∈

m∑
E4

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)
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= I(1)n,m + I(2)n,m + I(3)n,m + I(4)n,m

where Φk,j
n,m(

x

bn
,
y

bm
) = ϕk

n(
x

bn
)ϕm

j (
y

bm
). Consider I

(1)
n,m, Since f ∈ CO(R2

0), using

(2) we have∣∣∣∣f(
k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣ ≤ Cf [2 + (
k

n
bn)2 + (

j

m
bm)2 + x2 + y2]

≤ Cf [2 + (
k

n
bn − x)2 + (

j

m
bm − y)2]

+2Cf [x

∣∣∣∣knbn − x
∣∣∣∣+ y

∣∣∣∣ jmbm − y
∣∣∣∣+ x2 + y2].

Now it is clear that
∣∣ k
n
bn − x

∣∣ ≥ 1 ,
∣∣ j
m
bm − y

∣∣ ≥ 1 for (k, j) ∈ E1 and (x, y) ∈
DAB. By this reason we have∣∣∣∣f(

k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣ ≤ C1[(
k

n
bn − x)2 + (

j

m
bm − y)2]

where C1 = 4Cf (2A+ 2B + 1)2.
According to equalities (3)-(6)

I(1)n,m ≤
n∑

k=0

m∑
j=0

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

≤ C1[
x(bn − x)

n
+
y(bm − y)

m
] ≤ C2(

bn
n

+
bm
m

)

where C2 = C1(A+B).

By the same way, since

∣∣∣∣ jmbm − y
∣∣∣∣ ≥ 1 for (k, j) ∈ E2 and (x, y) ∈ DAB,we

have

I(2)n,m ≤ C3(
bn
n

+
bm
m

)

and since

∣∣∣∣knbn − x
∣∣∣∣ ≥ 1 for (k, j) ∈ E3 and (x, y) ∈ DAB,we have

I(3)n,m ≤ C4(
bn
n

+
bm
m

).

Thus if we choose C5 = C2 + C3 + C4 we obtain that

I(1)n,m + I(2)n,m + I(3)n,m ≤ C5(
bn
n

+
bm
m

).
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Since
bn
n

+
bm
m
→ 0 (n → ∞, m → ∞), we can write that

bn
n

+
bm
m
≤√

bn
n

+
bm
m

for n and m sufficiently large. Using properties of complete mod-

ulus of continuity, we have C6

√
bn
n

+
bm
m
≤ ωA′B′ (

√
bn
n

+
bm
m

).

Thus we obtain

I(1)n,m + I(2)n,m + I(3)n,m ≤ C7ωA′B′ (

√
bn
n

+
bm
m

) (8)

where C7 =
C5

C6

.

Let (k, j) ∈ E4 and (x, y) ∈ DAB, then using the properties of modulus of
continuity we obtain∣∣∣∣f(

k

n
bn,

j

m
bm)− f(x, y)

∣∣∣∣ ≤ ωA′B′ (

√
(
k

n
bn − x)2 + (

j

m
bm − y)2)

≤ ωA′B′ (δn,m).[1 +
1

δn,m

√
(
k

n
bn − x)2 + (

j

m
bm − y)2]

where δn,m is a sequence which tends to zero as n→∞, m→∞.
According to equalities (3)-(6) and applying Cauchy-Schwartz inequality,

we obtain

I(4)n,m ≤ ωA′B′ (δn,m).[1 +
1

δn,m

√
x(bn − x)

n
+
y(bm − y)

m
]

≤ ωA′B′ (δn,m).[1 +
1

δn,m

√
A+B

√
bn
n

+
bm
m

].

If we put δn,m =

√
bn
n

+
bm
m
,we have

I(4)n,m ≤ [1 +
√
A+B].ωA′B′ (

√
bn
n

+
bm
m

). (9)

If we choose C = C7 + [1 +
√
A+B], by (8) and (9), the proof of

the Theorem 2 is complete.

Example 2.4 For bn =
√
n and 0 ≤ x, y ≤ 2, in the following table, it

can be seen that the approximation rate of function f(x, y) = e−x − xy + y2

for full continuity modulus of function f .
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(n,m) |Bn,m(f ;x, y)− f(x, y)| ≤ CωA′ ,B′ (f ;

√
bn
n

+
bm
m

)

(1015, 1015) 0.979407116
(1015, 1016) 0.794536389
(1016, 1016) 0.550761128
(1016, 1017) 0.446800667
(1017, 1017) 0.309715752
(1017, 1018) 0.251254486
(1018, 1018) 0.174165970
(1018, 1019) 0.141290782
(1019, 1019) 0.097940723
(1019, 1020) 0.074536465
(1020, 1020) 0.055076116
(1020, 1021) 0.044680069
(1021, 1021) 0.030971576
(1021, 1022) 0.025125449
(1022, 1022) 0.017416597
(1022, 1023) 0.014129078
(1023, 1023) 0.009794072
(1023, 1024) 0.007945364
(1024, 1024) 0.005507611
(1024, 1025) 0.004468006
(1025, 1025) 0.003097157

Table 1. Error of the order of the approximation of
f(x, y) = e−x − xy + y2 .

If the functions have continuous partial derivatives then we can give a new
rate of approximation of f . Following theorem is related to this situation.

In the following theorem $
(1)

A′B′ is the first partial modulus of
∂f

∂x
and $

(2)

A′B′ is

the second partial modulus of
∂f

∂y
, where A

′
= 1 + A, and B

′
= 1 +B.

Theorem 2.5 Let f be continuous in x ≥ 0 and y ≥ 0 . If f has continuous

partial derivatives
∂f

∂x
and

∂f

∂y
which satisfy

∣∣∣∣∂f(x, y)

∂x

∣∣∣∣ ≤Mf (1 + x+ y),

∣∣∣∣∂f(x, y)

∂y

∣∣∣∣ ≤ Nf (1 + x+ y) (10)
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where Mf and Nf is dependent on f, then

|Bn,m(f ; x, y)− f(x, y)| ≤M

[
ω
(2)

A′B′

(√
bn
n

+
bm
m

)

+

√
bn
n

+
bm
m
.$

(1)

A′B′

(√
bn
n

+
bm
m

)]
(11)

|Bn,m(f ; x, y)− f(x, y)| ≤ N

[
ω
(1)

A′B′ (

√
bn
n

+
bm
m

)

+

√
bn
n

+
bm
m
.$

(2)

A′B′ (

√
bn
n

+
bm
m

)

]
. (12)

Proof: Due to mean value theorem we have

f(
k

n
bn, y)−f(x, y) = (

k

n
bn−x)

∂f(x, y)

∂x
+(

k

n
bn−x)[

∂f(ζ, y)

∂x
− ∂f(x, y)

∂x
] (13)

for any fixed y ∈ [0, B], where ζ is some point between x and
k

n
bn.On the

other hand we have

f(
k

n
bn,

j

m
bm)− f(x, y) = f(

k

n
bn,

j

m
bm)− f(

k

n
bn, y)

+f(
k

n
bn, y)− f(x, y).

Thus, using equality (3) for this equality we obtain

|Bn,m(f ; x, y)− f(x, y)| ≤
n∑

k=0

m∑
j=0

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

+
n∑

k=0

m∑
j=0

∣∣∣∣f(
k

n
bn, y)− f(x, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

= qn,m(x, y) + rn,m(x, y).

Considering the sets Ei; i = 1, 2, 3, 4 as in Theorem 2, we can write that
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qn,m(x, y) =
n∑

(k,j)∈

m∑
E1

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

+
n∑

(k,j)∈

m∑
E2

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

+
n∑

(k,j)∈

m∑
E3

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

+
n∑

(k,j)∈

m∑
E4

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

= q(1)n,m + q(2)n,m + q(3)n,m + q(4)n,m

since f is continuous, using (2) we have

∣∣∣∣f(
k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣ ≤ Cf

[
2 + 2

(
k

n
bn

)2

+

(
j

m
bm

)2

+ y2

]

≤ Cf

[
2 + 2

(
k

n
bn − x

)2

+

(
j

m
bm − y

)2
]

+Cf

[
4x

∣∣∣∣knbn − x
∣∣∣∣+ 2y

∣∣∣∣ jmbm − y
∣∣∣∣+ 2(x2 + y2)

]
.

Consider q
(1)
n,m; Now it is clear that∣∣∣∣knbn − x

∣∣∣∣ ≥ 1 ,

∣∣∣∣ jmbm − y
∣∣∣∣ ≥ 1

for (k, j) ∈ E1 and (x, y) ∈ DAB.By this reason we have∣∣∣∣f(
k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣ ≤ C8

[(
k

n
bn − x

)2

+

(
j

m
bm − y

)2
]

where C8 = 2Cf (A+B + 2)2.According to equalities (3)-(6),

q(1)n,m ≤ C8.

n∑
k=0

m∑
j=0

[(
k

n
bn − x

)2

+

(
j

m
bm − y

)2
]
.Φk,j

n,m(
x

bn
,
y

bm
)

≤ C8.

(
x(bn − x)

n
+
y(bm − y)

m

)
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q(1)n,m ≤ C9.(
bn
n

+
bm
m

)

where C9 = C8.(A+B).

By the same way, since

∣∣∣∣ jmbm − y
∣∣∣∣ ≥ 1 for (k, j) ∈ E2 and (x, y) ∈ DAB,we

have

q(2)n,m ≤ C10(
bn
n

+
bm
m

)

and since

∣∣∣∣knbn − x
∣∣∣∣ ≥ 1 for (k, j) ∈ E3 and (x, y) ∈ DAB,we have

q(3)n,m ≤ C11(
bn
n

+
bm
m

).

Thus if we chose C12 = C9 + C10 + C11 we obtain that

q(1)n,m + q(2)n,m + q(3)n,m ≤ C12(
bn
n

+
bm
m

).

Since
bn
n

+
bm
m
→ 0 (n → ∞, m → ∞), we can write that;

bn
n

+
bm
m
≤√

bn
n

+
bm
m

for n and m sufficiently large. Using properties of modulus of con-

tinuity, we have

C13

√
bn
n

+
bm
m
≤ ω

(2)

A′B′ (

√
bn
n

+
bm
m

). Thus we obtain

q(1)n,m + q(2)n,m + q(3)n,m ≤ C14ω
(2)

A′B′ (

√
bn
n

+
bm
m

)

where C14 =
C12

C13

.

Let (k, j) ∈ E4 and (x, y) ∈ DAB, then using properties of modulus of
continuity we obtain∣∣∣∣f(

k

n
bn,

j

m
bm)− f(

k

n
bn, y)

∣∣∣∣ ≤ ω
(2)

A′B′ (

∣∣∣∣ jmbm − y
∣∣∣∣)

≤ ω
(2)

A′B′ (δn,m)[1 +

∣∣∣∣ jmbm − y
∣∣∣∣

δn,m
]

According to equalities (3)-(6) and applying Cauchy-Schwartz inequality,
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we obtain

q(4)n,m ≤ ω
(2)

A′B′ (δn,m)

1 +
1

δn,m

√√√√ m∑
j=0

(
j

m
bm − y)2ϕj

m(
y

bm
)


≤ ω

(2)

A′B′ (δn,m)

[
1 +

1

δn,m

√
y(bm − y)

m

]

≤ ω
(2)

A′B′ (δn,m)

[
1 +

1

δn,m

√
B

√
bn
n

+
bm
m

]
.

If we put δn,m =

√
bn
n

+
bm
m
,we have

q(4)n,m ≤ C15ω
(2)

A′B′ (

√
bn
n

+
bm
m

)

where C15 = (1 +
√
B). Thus,

qn,m(x, y) ≤ C16ω
(2)

A′B′ (

√
bn
n

+
bm
m

) (14)

where C16 = C14 + C15 , (x, y) ∈ DAB.
Now we introduce two point sets for (x, y) ∈ DAB.

K1 = {(k, j) :
k

n
bn ≥ A

′}, K2 = {(k, j) :
k

n
bn ≤ A

′}.

Using (13)

rn,m(x, y) =

∣∣∣∣∣
n∑

k=0

m∑
j=0

(f(
k

n
bn, y)− f(x, y))Φk,j

n,m(
x

bn
,
y

bm
)

∣∣∣∣∣
≤

∣∣∣∣∣∂f(x, y)

∂x

n∑
k=0

m∑
j=0

(
k

n
bn − x)Φk,j

n,m(
x

bn
,
y

bm
)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

k=0

m∑
j=0

(
k

n
bn − x)[

∂f(ζ, y)

∂x
− ∂f(x, y)

∂x
]Φk,j

n,m(
x

bn
,
y

bm
)

∣∣∣∣∣ .
The first term at the last expression is zero by (4). Thus

rn,m(x, y) ≤
n∑

k=0

m∑
j=0

∣∣∣∣knbn − x
∣∣∣∣ ∣∣∣∣∂f(ζ, y)

∂x
− ∂f(x, y)

∂x

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)

= (
n∑

(k, j)

m∑
∈K1

+
n∑

(k, j)

m∑
∈K2

)

∣∣∣∣knbn − x
∣∣∣∣ ∣∣∣∣∂f(ζ, y)

∂x
− ∂f(x, y)

∂x

∣∣∣∣Φk,j
n,m(

x

bn
,
y

bm
)
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= r(1)n,m + r(2)n,m.

From (10) and since |ζ − x| ≤
∣∣∣∣knbn − x

∣∣∣∣ , we have,

∣∣∣∣∂f(ζ, y)

∂x
− ∂f(x, y)

∂x

∣∣∣∣ ≤ Mf [2 + ζ + x+ 2y]

≤ Mf [|ζ − x|+ 2(1 + x+ y)]

≤ Mf [

∣∣∣∣knbn − x
∣∣∣∣+ 2(1 + x+ y)]

Furthermore, if we consider

∣∣∣∣knbn − x
∣∣∣∣ ≥ 1 for (k, j) ∈ K1 and (x, y) ∈

DAB. ∣∣∣∣∂f(ζ, y)

∂x
− ∂f(x, y)

∂x

∣∣∣∣ ≤ C17

∣∣∣∣knbn − x
∣∣∣∣

where C17 = Mf [3 + 2(A+B)].
Using equalities (3)-(6) and the properties of modulus of continuity we

obtain

r(1)n,m ≤ C17

n∑
k=0

m∑
j=0

(
k

n
bn − x)2Φk,j

n,m(
x

bn
,
y

bm
)

= C17
x(bn − x)

n
≤ C17A(

bn
n

+
bm
m

)

= C17A

√
bn
n

+
bm
m
.

√
bn
n

+
bm
m

≤ C18

√
bn
n

+
bm
m
$

(1)

A
′
B

′ (

√
bn
n

+
bm
m

)

where C18 =
C17A

Cf

, Cf dependent f and

√
bn
n

+
bm
m
.

Let (k, j) ∈ K2 and (x, y) ∈ DAB.Thus

∣∣∣∣knbn − x
∣∣∣∣ ≤ 1 and if we consider

|ζ − x| ≤
∣∣∣∣knbn − x

∣∣∣∣we have

∣∣∣∣∂f(ζ, y)

∂x
− ∂f(x, y)

∂x

∣∣∣∣ ≤ $
(1)

A′B′ (|ζ − x|)

≤ $
(1)

A′B′ (

∣∣∣∣knbn − x
∣∣∣∣)

≤ $
(1)

A′B′ (δn,m)[1 +
1

δn,m

∣∣∣∣knbn − x
∣∣∣∣].
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By the using equalities (3)-(6) and inequality of Cauchy-Schwartz,

r(2)n,m ≤ $
(1)

A′B′ (δn,m)
n∑

k=0

m∑
j=0

[

∣∣∣∣knbn − x
∣∣∣∣+

1

δn,m
(
k

n
bn − x)2]Φk,j

n,m(
x

bn
,
y

bm
)

≤ $
(1)

A′B′ (δn,m)[
√
A

√
bn
n

+
bm
m

+ A(
bn
n

+
bm
m

)]

≤
√
bn
n

+
bm
m
.$

(1)

A′B′ (δn,m)[
√
A+

1

δn,m
A

√
bn
n

+
bm
m

].

If we put δn,m =

√
bn
n

+
bm
m

we obtain

r(2)n,m ≤ [
√
A+ A]

√
bn
n

+
bm
m
.$

(1)

A′B′ (

√
bn
n

+
bm
m

).

Set C19 = C18 + [
√
A+ A]

rn,m(x, y) ≤ C19

√
bn
n

+
bm
m
.$

(1)

A′B′ (

√
bn
n

+
bm
m

). (15)

Finally, by (14) and (15)

|Bn,m(f ; x, y)− f(x, y)|

≤M [ω
(2)

A′B′ (

√
bn
n

+
bm
m

) +

√
bn
n

+
bm
m
.$

(1)

A′B′ (

√
bn
n

+
bm
m

]

where M = max{C16, C19}.
We can prove (12) by the same way proof of (11). Hence Theorem 3 is

proved.
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