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Abstract

Let {Xni| 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise negatively
associated random variables under some suitable conditions. Then it is
shown that for some 1

2 < t ≤ 1, n−1/t max1≤k≤n
∑k

i=1 Xni → 0 com-
pletely as n → ∞ if and only if E|X|2t < ∞ and E|Xni| = 0 and
1
rn

max1≤j≤kn |∑j
i=1 Xni| → 0 completely as n → ∞ implies E|X|k+1

r <
∞.
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1 Introduction

The concept of negatively associated random variables was introduced by Joag-
Dev and Proschan ([7]) although a very special case was first introduced by
Lehmann([9]). Many authors derived several important properties about neg-
atively associated (NA) sequences and also discussed some applications in the
area of statistics, probability, reliability and multivariate analysis. Compared
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to positively associated random variables, the study of NA random variables
has received less attention in the literature. Readers may refer to Karlin and
Rinott([8]), Ebrahimi and Ghosh([3]), Block et al.([2]), Newman([12]), Joag-
Dev([6]), Joag-Dev and Proschan([7]), Matula([11]) and Roussas([13]) among
others.

Recently, some authors focused on the problem of limiting behavior of par-
tial sums of NA sequences. Su et al.([14]) derived some moment inequalities of
partial sums and a weak convergence for a strongly stationary NA sequence.
Su and Qin([15]) studied some limiting results for NA sequences. More re-
cently, Liang and Su([10]), and Baek, Kim and Liang([1]) considered some
complete convergence for weighted sums of NA sequences.

Let {Xnk} be an array of random variables with EXnk = 0 for all n and k
and let 1 ≤ p < 2. Then

1

n1/p

n∑
k=1

Xnk → 0 completely as n → ∞ (1.1)

and where complete convergence is defined (Hsu and Robbins ([4])) by∑∞
n=1 P (| 1

n1/p

∑
Xnk| > ε) < ∞ for each ε > 0. (1.2)

Hu, Móricz and Taylor([5]) showed that for an array of i.i.d. random variables
{Xnk}, (1.1) holds if and only if E|X11|2p < ∞.

The main purpose of this paper is to extend a similar results above to row-
wise NA random variables, since independent and identically random variables
are a special case of NA random variables. That is, we investigate the nec-
essary and sufficient condition for 1

n1/t max1≤k≤n |∑k
i=1 Xni| −→ 0 completely

as n → ∞ where 1
2

< t ≤ 1 and let {kn} and {rn} be two increasing pos-
itive sequences satisfying some conditions, then, we show that 1

rn
max1≤j≤kn

|∑j
i=1 Xni| → 0 completely as n → ∞ implies E|X | k+1

r < ∞ in NA setting.

Finally, in order to prove the strong law of large numbers for array of NA
random variables, we give an important definition and some lemmas which
will be used in obtaining the strong law of large numbers in the next section.
Definition 1.1([7]). Random variables X1, · · · , Xn are said to be nega-
tively associated (NA) if for any two disjoint nonempty subsets A1 and A2

of {1, · · · , n} and f1 and f2 are any two coordinatewise nondecreasing func-
tions,

Cov
(
f1(Xi, i ∈ A1), f2(Xj, j ∈ A2)

)
≤ 0,

whenever the covariance is finite. An infinite family of random variables is NA
If every finite subfamily is NA.
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Lemma 1.2([10]). Let {Xi|i ≥ 1} be a sequence of NA random variables and
{ani|1 ≤ i ≤ n, n ≥ 1} be an array of real numbers. If P (max1≤j≤n |anjXj | >
ε) < δ for δ small enough and n large enough, then

n∑
j=1

P (|anjXj | > ε) = O(1)P ( max
1≤j≤n

|anjXj| > ε)

for sufficient large n.

Lemma 1.3([5]). For any r ≥ 1, E|X |r < ∞ if and only if

∞∑
n=1

nr−1P (|X | > n) < ∞.

More precisely,

r2−r
∞∑

n=1

nr−1P (|X | > n) ≤ E|X |r ≤ 1 + r2r
∞∑

n=1

nr−1P (|X | > n).

Lemma 1.4([5]). If r ≥ 1 and t > 0, then

E|X |rI(|X | ≤ n1/t) ≤ r
∫ n1/t

0
tr−1P (|X | > t)dt

and

E|X |I(|X | > n1/t) = n1/tP (|X | > n1/t) +
∫ ∞

n1/t
P (|X | > t)dt.

2 Main results

Theorem 2.1. Let 1
2

< t ≤ 1 and let {Xni| 1 ≤ i ≤ n, n ≥ 1} be an array
of rowwise NA random variables such that EXni = 0 and P (|Xni| > x) =
O(1)P (|X | > x) for all x ≥ 0. If E|X |2t < ∞, then

1

n1/t
max
1≤k≤n

|
k∑

i=1

Xni| −→ 0 completely as n −→ ∞.

Proof. We define that for 1 ≤ i ≤ n, n ≥ 1 and 1
2

< t ≤ 1

Yni = XniI(|Xni| ≤ n1/t) + n1/tI(Xni > n1/t) − n1/tI(Xni < −n1/t).
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To prove Theorem 2.1, it suffices to show that

∞∑
n=1

P
(

max
1≤k≤n

|
k∑

i=1

Xni −
k∑

i=1

Yni| ≥ εn1/t
)

< ∞ for all ε > 0, (2.1)

1

n1/t
max
1≤k≤n

|
k∑

i=1

EYni| −→ 0, (2.2)

∞∑
n=1

P
(

max
1≤k≤n

|
k∑

i=1

Yni| ≥ εn1/t
)

< ∞, for all ε > 0. (2.3)

The proofs of (2.1) − (2.3) can be found in the following Lemmas 2.1 - 2.3.

Lemma 2.1. If E|X |2t < ∞, then (2.1) holds.
Proof.

∞∑
n=1

P
(

max
1≤k≤n

|
k∑

i=1

Xni −
k∑

i=1

Yni| ≥ εn1/t
)

≤
∞∑

n=1

P
( n⋃

i=1

Xni �= Yni

)

≤
∞∑

n=1

n∑
i=1

P (|Xni| > n1/t)

=
∞∑

n=1

O(1)nP (|X | > n1/t)

≤ O(1) E|X |2t < ∞,

when 1
2

< t ≤ 1 since E|X |2t < ∞.

Lemma 2.2. If E|X |2t < ∞ and EXni = 0, then

1

n1/t
max
1≤k≤n

|
k∑

i=1

EYni| −→ 0.

Proof. To prove 1
n1/t max1≤k≤n |∑k

i=1 EYni| −→ 0, it suffices to show that∑∞
n=1

1
n1/t max1≤k≤n |∑k

i=1 EYni| < ∞. Note that by EXni = 0, we have

∞∑
n=1

1

n1/t
max
1≤k≤n

|
k∑

i=1

EYni|

≤
∞∑

n=1

1

n1/t

n∑
i=1

E|Xni| I(|Xni| > n1/t) +
∞∑

n=1

1

n1/t

n∑
i=1

n1/tP (|Xni| > n1/t)

=: I1 + I2 (say).
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First, to estimate I1, by using Lemma 1.4,

I1 =
∞∑

n=1

1

n1/t

n∑
i=1

[
n1/tP (|Xni| > n1/t) +

∫ ∞

n1/t
P (|Xni| > x)dx

]

= O(1)
∞∑

n=1

nP (|X | > n1/t) + O(1)
∞∑

n=1

n

n1/t

∫ ∞

n1/t
P (|X | > x)dx =: I1

′ (say).

Letting x = n1/ts and applying Lemma 1.3, we have

I1
′ = O(1)

∞∑
n=1

nP (|X | > n1/t) + O(1)
∞∑

n=1

n
∫ ∞

1
P (|X | > n1/ts)ds

≤ O(1)E|X |2t + O(1)
∫ ∞

1

∞∑
n=1

nP (|s−1X|t > n)ds

≤ O(1)E|X |2t + O(1)E|X |2t
∫ ∞

1
s−2tds

= O(1)E|X |2t < ∞.

As to I2, we have

I2 =
∞∑

n=1

1

n1/t

n∑
i=1

n1/tP (|Xni| > n1/t)

=
∞∑

n=1

n∑
i=1

P (|Xni| > n1/t)

= O(1)
∞∑

n=1

nP (|X | > n1/t)

≤ O(1)E|X |2t < ∞.

Lemma 2.3. If E|X |2t < ∞, then
∞∑

n=1

P
(

max
1≤k≤n

|
k∑

i=1

Yni| ≥ εn1/t
)

< ∞ for all

ε > 0.
Proof. From the definition of NA random variables, we know that {Yni| 1 ≤
i ≤ k, n ≥ 1} is still an array of rowwise NA random variables. Thus, we
obtain that

∞∑
n=1

P
(

max
1≤k≤n

|
k∑

i=1

Yni| ≥ εn1/t
)

≤ O(1)
∞∑

n=1

1

n
E

(
max
1≤k≤n

|
k∑

i=1

Yni|
)t

≤ O(1)
∞∑

n=1

1

n

n∑
i=1

E|Yni|t
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≤ O(1)
[ ∞∑

n=1

1

n

n∑
i=1

E|Xni|t I(|Xni| ≤ n1/t) +
∞∑

n=1

1

n

n∑
i=1

P (|Xni| > n1/t)
]

=: I3 + I4 (say).

First, we prove that I3 < ∞. Let Gni(x) = P (|Xni| ≤ x), then we have

I3 = O(1)
∞∑

n=1

1

n

n∑
i=1

E|Xni|tI(|Xni| ≤ n1/t)

≤ O(1)
∞∑

n=1

n∑
i=1

∫ n1/t

0
(

x

n1/t
)tdGni(x)

= O(1)
∞∑

n=1

n∑
i=1

∫ 1

0

∫ n1/t

(ns)1/t
dGni(x)ds

= O(1)
∞∑

n=1

n∑
i=1

∫ 1

0
P ((ns)1/t < |Xni| < n1/t)ds

≤ O(1)
∫ 1

0

∞∑
n=1

nP (|X | > (ns)1/t)ds

≤ O(1)E|X |2t < ∞.

Also, the proof of I4 is similar to that of Lemma 2.3.

Corollary 1 below is a corresponding result for a sequence of rowwise NA
random variables.
Corollary 1. Let 1

2
< t ≤ 1 and let {Xi| i ≥ 1} be a sequence of NA random

variables such that EXi = 0 for all i and P (|Xi| > x) = O(1)P (|X | > x) for
all x ≥ 0. If E|X |2t < ∞, then

1

n1/t
max
1≤k≤n

k∑
i=1

Xi −→ 0 completely as n −→ ∞.

Theorem 2.2. Let 1
2

< t ≤ 1 and let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of
rowwise NA random variables such thatP (|X | > x) = O(1) P (|Xni| > x) for
all x ≥ 0. Assume that 1

n1/t max1≤k≤n
∑k

i=0 Xni → 0 completely as n → ∞,
then E|X |2t < ∞ and EXni = 0.
Proof. From the assumptions, for any ε > 0,

∞∑
n=1

P ( max
1≤k≤n

|
k∑

i=1

Xni| ≥ εn1/t) < ∞, (2.4)

By Lemma 1.2, we obtain that

n∑
i=1

P (|Xni| ≥ εn1/t) = O(1)P ( max
1≤k≤n

|
k∑

i=1

Xni| ≥ εn1/t),
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which, together with (2.4) and assumptions, we have

∞∑
n=1

nP (|X | ≥ εn1/t) < ∞

which is equivalaent to E|X |2t < ∞, by Lemma 1.3.
Now, under E|X |2t < ∞, we obtain from Theorem 2.1 that

∞∑
n=1

P ( max
1≤k≤n

|
k∑

i=1

(Xni − EXni)| ≥ εn1/t) < ∞ for any ε > 0 (2.5)

(2.4) and (2.5) yield EXni = 0

Theorem 2.3. Let {Xni| 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise NA ran-
dom variables with C1P (|X | > x) ≤ C1 infn,i P (|Xni| > x) ≤ C2 supn,i P (|Xni|
> x) ≤ C2P (|X | > x) for all x ≥ 0. Assume that {kn} and {rn} are two
sequences satisfying rn ≥ b1n

r, kn ≤ b2n
k, for some b1, b2, r, k > 0. Let

1

rn

max
1≤j≤kn

|
j∑

i=1

Xni| −→ 0 completely as n −→ ∞.

If k + 1 < r, then E|X | k+1
r < ∞.

Proof. Note that
1

rn

max
1≤j≤n

|
j∑

i=1

Xni| −→ 0 completely as n −→ ∞.

i.e.

∞∑
n=1

P
(

max
1≤j≤kn

|
j∑

i=1

Xni| ≥ εrn

)
< ∞, for all ε > 0. (2.6)

Since max
1≤j≤kn

|Xnj| ≤ 2 max
1≤j≤kn

|
j∑

i=1

Xni|, (2.6) implies

∞∑
n=1

P
(

max
1≤j≤n

|Xnj| ≥ n
)

< ∞, (2.7)

and

P
(

max
1≤j≤kn

|Xnj| ≥ rn

)
−→ 0 as n −→ ∞. (2.8)

By (2.7) and (2.8), and using Lemma 1.2, we obtain that

kn∑
i=1

P (|Xni| > rn) = O(1)P
(

max
1≤j≤kn

|Xnj| ≥ rn

)
,
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which, together with (2.7), it follows that

∞∑
n=1

kn∑
i=1

P (|Xni| > rn) < ∞.

Thus, using the assumptions of Theorem 2.3, we have

∞∑
n=1

knP (|X | > b1n
r) < ∞,

which is equivalent to E|X | k+1
r < ∞.

Corollary 2. Let {Xni|1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise identi-
cally distributed NA random variables. Assume that {kn} and {rn} are two
sequences satisfying rn ∼ nr, kn ∼ nk, for some r, k > 0 where an ∼ bn means
that C1an ≤ bn ≤ C2an for large enough n. If
(1) k + 1 < r or
(2) r ≤ k + 1 < tr for some 0 < t < 1

2
and EXni = 0, then

1
rn

max1≤j≤kn |
∑j

i=1 Xni| −→ 0 completely as n −→ ∞ if and only if

E|X | k+1
r < ∞.
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[5] T.C. Hu, F. Móricz, R.L.Taylor, Strong laws of large numbers for arrays
of rowwise independent random variables, Statistics Technical Report 27.
University of Georgia,1986



The strong law of large numbers for arrays of NA random variables 91

[6] K. Joag-Dev, Conditional negative dependence in stochastic ordering
and interchangeable random variables, In: Block, H. W., Simpson, A.
R., Savits, T. H.(Eds.), Topics in Statistical Dependence, IMS Lecture
Notes,1990

[7] K.Joag-Dev, F. Proschan, Negative association of random variables, with
applications, The Annals of Statistics, 11(1983), 286-295.

[8] S.Karlin, Y. Rinott, Classes of orderings of measures and related corre-
lation inequalities, II. Multivariate reverse rule distributions, Journal of
Multivariate Analysis,10(1980b), 499-516.

[9] E.L. Lehmann, Some concepts of dependence, Ann. Math.Stat.,73(1966),
1137-1153.

[10] H. Y.Liang, C.Su, Complete convergence for weighted sums of NA se-
quence, Statistics and Probability Letters, 45(1999), 85-95.

[11] P.Matula, A note on the almost sure convergence of sums of negatively
dependent random variables, Statistics and Probability Letters, 15(1992),
209-213.

[12] C. M. Newman, Asymptotic independence and limit theorems of proba-
bility and negatively dependent random variables, In: Tong, Y.L. (Ed.),
Inequalities in Statistics and probability, IMS Lecture Notes-Monograph
Series, Vol. 5(1984). Institute of Mathematical Statistics, Hayward, CA,
127-140.

[13] G. G.Roussas, Asymptotic normality of random fields of positively or neg-
atively associated processes, Journal of Multivariate Analysis, 50(1994),
152-173.

[14] C. Su, L. C. Zhao and Y. B. Wang, Moment inequalities and weak con-
vergence for NA sequences, Science in China. Series A. Mathematics,
26(1996), 1091-1099 (in Chinese).

[15] C. Su, Y. S. Qin, Limit theorems for negatively associated sequences,
Chinese Science Bulletin, 42(1997), 243-246.

Received: August 30, 2005


