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Abstract

We consider the asymptotic behavior of nematic states of liquid crys-
tals under applied magnetic fields. We treat the Landau-de Gennes func-
tional with the Dirichlet boundary condition for the director field. We
show that under some conditions, strong field does not bring the pure
nematic state that is a very different responce with superconductors.
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1 Introduction

In this paper, we consider the nematic state of liquid crystals under applied
magnetic fields. Let FN(n,∇n) be the classical Oseen-Frank density of ne-
matic liquid crystals. Then for the applied field H , we must add a density
−χ(H · n)2 to FN(n,∇n), and consider an energy functional:∫

Ω

{FN(n,∇n) − χ(H · n)2}dx.

Here χ is a positive parameter and n : Ω → S2 is a director field of the
nematic crystals. See de Gennes and Prost [6, p. 287]. Though there are
many article on liquid crystals without magnetic field (for example, Aramaki
[2], [3], Bauman et al. [4], Hardt et al. [9], Pan [11], [14]), there are few
references which treat applied fields. See Lin and Pan [10] and Pan [12], [13],
Aramaki [1].
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According to the Landau-de Gennes theory, phase transitions of nematic
states to smectic states can be described by the minimizer (ψ,n) of the Landau-
de Gennes functional:

E [ψ,n] =

∫
Ω

{
|∇q�ψ|2 +

κ2

2
(1 − |ψ|2)2

+K1|div n|2 +K2|n · curl n|2 +K3|n × curl n|2

+ (K2 +K4)[tr(∇n)2 − |div n|2] − χ(H · n)2

}
dx (1.1)

where κ,K1, K2, K3 and χ are positive constants, K4 is a constant, and q is a
real number. Here we denoted ∇q�ψ = ∇ψ−iqnψ. Without loss of generality,
we may assume that q ≥ 0.

We consider the functional E under the strong anchoring condition, mathe-
matically, the Dirichlet boundary condition n = u0 on ∂Ω for the director field
n where u0 is a given smooth boundary data. We note that under this anchor-
ing condition, we can drop the divergence term tr(∇n)2 − |div n|2 in (1.1) (cf.
[9]). We consider the functional E on the space W 1,2(Ω,C) ×W 1,2(Ω,S2,u0)
where W 1,2(Ω,C) is the usual Sobelev space of complex-valued functions and

W 1,2(Ω,S2,u0) = {n ∈W 1,2(Ω,R3); |n(x)| = 1 a.e. in Ω,n = u0 on ∂Ω}.
Here and from now, for some Euclidean space E (= R,C or R3), W 1,2(Ω, E)
denotes the usual Sobolev space with values in E.

Throughout this paper, we only consider the case where K1 = K2 = K3 =
K, Ω is simply connected domain in R3 with smooth boundary Γ = ∂Ω,
and assume that the applied magnetic field H and the boundary data u0 are
constant vectors with angle θ. Thus we assume that

(1.2) H = σh, h · e = cos θ

where h and u0 = e are constant unit vectors and σ ≥ 0 denotes the intensity
of the applied magnetic field.

If we replace h by −h, we can assume that 0 < θ ≤ π/2. When θ = π/2,
[10] considered the magnetic field-induced instability in great detail. Therefore
we assume that

(1.3) 0 < θ <
π

2
.

The states of liquid crystals are described by the minimizers (ψ,n) of E . If
ψ = 0, the minimizers correspond to the nematic states, and if ψ �= 0, the
minimizers correspond to the smectic states. Compared with the theory of
superconductivity, the nematic states look like normal states and the smectic
states look like superconducting states.
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For brevity, we write

(1.4) E [ψ,n] = G[ψ,n] + F [n] −
∫

Ω

χ(H · n)2dx

where

(1.5) F [n] =

∫
Ω

{K{|div n|2 + |curl n|2}dx

is the simplified Oseen-Frank energy for nematics and

(1.6) G[ψ,n] =

∫
Ω

{
|∇q�ψ|2 +

κ2

2
(1 − |ψ|2)2

}
dx

is the Ginzburg-Landau energy for smectics. Moreover, we write

(1.7) Fσ�[n] = F [n] − χσ2

∫
Ω

(h · n)2dx.

Then the energy functional E has a trivial critical point

ψ = 0, n = nσ

where nσ is a global minimizer of Fσ� on W 1,2(Ω,S2, e), and we call (ψ,n) =
(0,nσ) the pure nematic state. However, as we will see in Section 2, for any
ψ ∈W 1,2(Ω,C), (ψ,e) is not a critical point of E under the assumption (1.3).
Thus there is no pure smectic states in the sense of [10].

In the supeconductivity theory, it is well known that the superconductivity
is destroyed for the strong magnetic field. But we can show that in the theory
of liquid crystals, if σ is sufficiently large, the pure nematic states are not
global minimizer of E when K1 = K2 = K3 = K.

Theorem 1.1. Fix q, κ,K,h and e. When σ is sufficiently large, the pure
nematic states (0,nσ) are not global minimizers of E . We can also show that

h · nσ(x) → 1 in L2(Ω) as σ → ∞.

Remark 1.2. This theorem implies that when σ is large enough, the states
are not pure nematic, and moreover that nσ tends to the direction of h as
σ → ∞.

2 Preliminaries

In this section, we give preliminaries for the proof of Theorem 1.1.
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In general, we call (ψ0,n0) ∈ W 1,2(Ω,C) ×W 1,2(Ω,S2,u0) a critical point
of E , if for any φ ∈W 1,2(Ω,C) and v ∈W 1,2

0 (Ω,R3) ∩ L∞(Ω,R3),

d

dt

∣∣∣∣
t=0

E [ψt,nt] = 0

where

ψt = ψ0 + tφ, nt =
n0 + tv

|n0 + tv| .

Here we note that we can write

nt = n0 + tn1 +O(t2)

where n1 = v − (v · n0)n0. By a simple computation shows that (ψ0,n0) ∈
W 1,2(Ω,C) ×W 1,2(Ω,S2,u0) is a critical point of E if and only if

(2.1) A(ψ0,n0;φ, v) − χσ2

∫
Ω

(h · n0)(h · n1)dx = 0

where

A(ψ0,n0;φ, v) =

∫
Ω

{

[∇q�0ψ0 · ∇q�0φ− κ2(1 − |ψ0|2)ψ0φ]

− qn1 · �(ψ0∇q�0ψ0) +K{(div n0)(div n1) + curln0 · curl n1}
}
dx.

Therefore, if (ψ0,n0) ∈ W 1,2(Ω,C) ×W 1,2(Ω,S2,u0) is a critical point of
E , then ψ0 satisfies

(2.2)

{ −∇2
q�ψ0 = κ2(1 − |ψ0|2)ψ0 in Ω,

∇q�ψ0 · ν = 0 on ∂Ω

where ν denotes the outer unit normal vector field to ∂Ω.

Remark 2.1. We note that for any ψ0 ∈ W 1,2(Ω,C), (ψ0, e) is not a crit-
ical point of E .

In fact, let (ψ0, e) be a critical point of E . Since ψ0 satisfies the equation
(2.2), then for any φ ∈W 1,2(Ω,C), if we multiply φ with the first line of (2.2)
and using the second line of (2.2), integrate over Ω, we see that

A(ψ0, e;φ, v) = −
∫

Ω

qn1 · �(ψ0∇q�ψ0)dx.
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Thus (2.1) becomes∫
Ω

{q�(ψ0∇q�ψ0) · n1 + χσ2(h · e)(h · n1)}dx = 0

for any v ∈W 1,2
0 (Ω,R3) ∩ L∞(Ω,R3). Since W 1,2

0 (Ω,R3) ∩ L∞(Ω,R3) is dense
in W 1,2

0 (Ω,R3), we have

q{�(ψ0∇q�ψ0) − (�(ψ0∇q�ψ0) · e)e} + χσ2{(h · e)h − (h · e)2e} = 0.

Since Γ is smooth, there exists x0 ∈ Γ such that ν(x0) = e⊥ where e⊥ is a unit
vector which is orthogonal to e and h · e⊥ �= 0. Using the second line of (2.2),
we have

χσ2(h · e)h · ν(x0) = χσ2(h · e)2e · ν(x0)

+ q(�(ψ(x0)∇q�ψ0(x0)) · e)e · ν(x0) = 0.

From this equality, we get χσ2(h · e)h · e⊥ = 0. Since h · e = cos θ > 0, if
σ > 0, we have h · e⊥ = 0. This leads to a contradiction. Thus there is no
pure smectic state in the sense of [10].

Define

(2.3) C(σ) = C(σ,K,h, e) = inf
�∈W 1,2(Ω,�2,�)

Fσ�[n].

Then we have

Lemma 2.2. For any σ,K > 0, and h, e satisfying (1.3), C(σ) is achieved
in W 1,2(Ω,S2, e).

Proof. For any n ∈W 1,2(Ω,S2, e), it is easily seen that

Fσ�[n] = F [n] − χσ2

∫
Ω

(h · n)2dx ≥ −χσ2|Ω|.

On the other hand, we see that

C(σ) ≤ Fσ�[e] = −χσ2(cos θ)2|Ω|.
Thus we have

−χσ2|Ω| ≤ C(σ) ≤ −χσ2(cos θ)2|Ω|.
Let {nj} ⊂W 1,2(Ω,S2, e) be a minimizing sequence of C(σ). Then

Fσ�[nj ] = F [nj] − χσ2

∫
Ω

(h · nj)
2dx = C(σ) + o(1)
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as j → ∞. From this equality, we have

K

∫
Ω

{|div nj |2 + |curl nj|2}dx ≤ χσ2

∫
Ω

|h · nj |2dx+ C(σ) + 1

≤ χσ2|Ω| + C(σ) + 1.

Therefore, {div nj} is bounded in L2(Ω) and {curl nj} is bounded in L2(Ω,R3).
Since |nj | = 1 a.e. in Ω and nj |Γ = e, it follows from Dautray and Lions
[5] that {nj} is bounded in W 1,2(Ω,R3). Passing to a subsequence, we may
assume that nj → n0 weakly in W 1,2(Ω,R3), strongly in L4(Ω,R3) and a.e.
in Ω. Thus we have |n0| = 1 a.e. in Ω and n0|Γ = e, so n0 ∈ W 1,2(Ω,S2, e).
We note that div nj → div n0 weakly in L2(Ω) and curl nj → curl n0 weakly
in L2(Ω,R3). We have∣∣∣∣∫

Ω

(h · nj)
2dx−

∫
Ω

(h · n0)
2dx

∣∣∣∣
=

∣∣∣∣∫
Ω

(h · (nj − n0) + h · n0)
2dx−

∫
Ω

(h · n0)
2dx

∣∣∣∣
≤

∣∣∣∣∫
Ω

(h · (nj − n0))
2dx

∣∣∣∣ +

∣∣∣∣∫
Ω

2(h · (nj − n0))(h · n0)dx

∣∣∣∣
≤ C‖nj − n0‖2

L2(Ω,�3) → 0

as j → ∞. Hence we have

lim
j→∞

∫
Ω

(h · nj)
2dx =

∫
Ω

(h · n0)
2dx.

Therefore, we have

Fσ�[n0] = F [n0] − χσ2

∫
Ω

(h · n0)
2dx

≤ lim inf
j→∞

[
F [nj ] − χσ2

∫
Ω

(h · nj)
2dx

]
= C(σ).

Thus n0 is a minimizer of Fσ�.

When n is a minimizer of Fσ�, we look for the Euler-Lagrange equation
for n. For any v ∈W 1,2

0 (Ω,R3), we compute the following equation

d

dt

∣∣∣∣
t=0

{
Fσ�[n + tv] −

∫
Ω

λ(|n + tv|2 − 1)dx

}
= 0

where λ is the Lagrange multiplier which depends on x. Note that curl 2n =
−Δn +∇div n and −Δn ·n = |∇n|2 which is easily followed from n ·n = 1.
By the standard arguments, we get the Euler-Lagrange equation for n:

(2.4)

{ −KΔn = K|∇n|2n + χσ2
(
(h · n)h − (h · n)2n

)
in Ω,

n = e on Γ.
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Since h · e = cos θ > 0, we note that e is not a critical point of Fσ� for any
σ > 0.

Define

(2.5) M(σ) = M(σ,K,h, e) = {n ∈W 1,2(Ω,S2, e);Fσ�[n] = C(σ)}.

We note that (0,n) is a critical point of E if and only if n is a critical point of
Fσ�, and if n ∈ M(σ), then (0,n) is a critical point of E .

Let μ = μ(qn) be the lowest eigenvalue of the following magnetic Neumann
problem

(2.6)

{ −∇2
q�φ = μφ in Ω,

∇q�φ · ν = 0 on Γ

where ν denotes the unit outer normal vector field on Γ. That is to say,

(2.7) μ(qn) = inf
0 �=φ∈W 1,2(Ω,� )

‖∇q�φ‖2
L2(Ω)

‖φ‖L2(Ω)

.

Define

(2.8) μ∗(q, σ) = inf
�∈M(σ)

μ(qn).

Then we have

Lemma 2.3 ([10]). (i) If (ψ,n) is a global minimizer of E which is not a
pure nematic state, then μ(qn) < κ2.

(ii) If μ∗(q, σ) < κ2, then the pure nematic states are not global minimizers
of E .

Proof. (i) Let (ψ,n) be a global minimizer of E . If ψ = 0, then n ∈ M(σ).
Therefore, (ψ,n) = (0,n) is a pure nematic state. Thus if (ψ,n) is not a pure
nematic state, then ψ �= 0. Choose nσ ∈ M(σ). Then

E [ψ,n] = G[ψ,n] + Fσ�[n] ≤ G[0,nσ] + Fσ�[nσ] =
κ2

2
|Ω| + Fσ�[nσ].

From this inequality, we get∫
Ω

{|∇q�ψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4}dx = G[ψ,n] − κ2

2
|Ω| ≤ Fσ�[nσ] −F [n] ≤ 0.

Therefore, we have∫
Ω

{|∇q�ψ|2 − κ2|ψ|2}dx ≤ −κ
2

2

∫
Ω

|ψ|4dx < 0.
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Hence we get

μ(qn) ≤ ‖∇q�ψ‖2
L2(Ω,�3 )

‖ψ‖2
L2(Ω,� )

< κ2.

(ii) Let (0,nσ) be a pure nematic state of E . Then

E [0,nσ] =
κ2

2
|Ω| + Fσ�[nσ] =

κ2

2
|Ω| + C(σ).

If μ∗(q, σ) < κ2, choose n ∈ M(σ) such that μ(qn) < κ2. Let φ be an
eigenfunction of (2.6) associated with μ(qn). Then for any t ∈ R,

E [tφ,n] =

∫
Ω

{t2(|∇q�φ|2 − κ2|φ|2) +
κ2

2
t4|φ|4}dx+

κ2

2
|Ω| + Fσ�[n]

= (μ(qn) − κ2)t2
∫

Ω

|φ|2dx+
κ2

2
t4

∫
Ω

|φ|4dx+
κ2

2
|Ω| + Fσ�[n]

<
κ2

2
|Ω| + C(σ) = E [0,nσ]

for small t > 0. Thus (0,nσ) is not a global minimizer of E .

Lemma 2.4. Assume that Ω is simply connected and σ > 0. If n is a
minimizer of Fσ�, then F [n] > 0 and∫

Ω

{(h · n)2 − (cos θ)2}dx > 0.

Proof. We have

−χσ2

∫
Ω

(h · n)2dx ≤ F [n] − χσ2

∫
Ω

(h · n)2dx

= Fσ�[n]

≤ Fσ�[e] = −χσ2(cos θ)2|Ω|.

Here we claim that F [n] > 0. In fact, if F [n] = 0, we see that div n =
0, curl n = 0, |n| = 1 a.e. in Ω. Since Ω is simply connected, n is a constant
vector (cf. [11]). Since n|Γ = e, we have n = e in Ω. However, since e does
not satisfy (2.4), e is not a global minimizer of Fσ�. Thus for σ > 0, we have∫

Ω

{(h · n)2 − (cos θ)2}dx > 0.
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3 Proof of the Main Theorem

In this section we shall prove the main theorem 1.1. In order to do so, we need
a lemma.

Lemma 3.1. (i) For large σ, C(σ) ≤ −χσ2|Ω|+C1σ where C1 > 0 depends
only on K,h, e and Ω.

(ii) Let nσ be a global minimizer of Fσ�. Then |h · nσ| → 1 in L2(Ω) as
σ → +∞.

(iii) Moreover, we see that h · nσ → 1 in L2(Ω) as σ → +∞.

Proof. After rotating the coodinate system, we may assume that h = e3 and
e = (sin θ, 0, cos θ). Choose a test field n = (n1, n2, n3) = (cosφ, 0, sinφ) where
φ is a smooth function on Ω and φ = (π/2) − θ on Γ. Since n|Γ = e, we note
that n ∈W 1,2(Ω,S2, e).

Since

div n = − sinφ ∂1φ+ cosφ ∂3φ,

curl n = (cosφ ∂2φ,− sinφ ∂3φ− cosφ ∂1φ,− sinφ ∂2φ),

we see that |div n|2 + |curln|2 ≤ C(|∇φ|2 + 1). Thus if we write Fσ[n] =∫
Ω
fσ,�(φ)dx where

fσ,�(φ) = K(|div n|2 + |curl n|2) − χσ2(h · n)2,

we have

|fσ,�(φ)| ≤ CK(|∇φ|2 + 1) + χσ(cosφ)2.

For any ε > 0, define Ωε = {x ∈ Ω; d(x, ∂Ω) < ε} and Ωε = {x ∈ Ω; d(x.∂Ω) ≥
ε}, and decompose Fσ[n] as follows: Fσ[n] = Fσ,1[n] + Fσ,2[n] where

Fσ,1[n] =

∫
Ωε

fσ,�(φ)dx, Fσ,2[n] =

∫
Ωε

fσ,�(φ)dx.

Choose φ such that

φ =

⎧⎨⎩
π/2 in Ωε,
(π/2) − θ on ∂Ω,
|∇φ| ≤ C2/ε in Ω.

Then Fσ,2[n] ≤ CK and

Fσ,1[n] ≤
∫

Ωε

{CK(|∇φ|2 + 1) + χσ(cos φ)2}dx

≤ [
CK

(C2
2

ε2
+ 1

)
+ χσ2

]|Ωε|.
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Since ∂Ω is smooth, there exists C0 > 0 depending only on ∂Ω such that
|Ωε| ≤ C0ε for any small ε > 0. For large σ, choose ε > 0 so that

ε =
C2

σ

√
CK

CK + χ
.

Then we have Fσ,1[n] ≤ C3σ. Therefore, we have

C(σ) ≤ Fσ�[n] ≤ −χσ2|Ω| + C3σ + C4.

Thus (i) holds.
Proof of (ii). From (i), we see that

Fσ[nσ] = F [nσ] + χσ2

∫
Ω

(n2
1 + n2

2)dx ≤ C1σ.

This implies that ∫
Ω

(n2
1 + n2

2)dx ≤ C1

χσ
→ 0

as σ → +∞. Thus
∫

Ω
(1 − |n3|2)dx → 0 as σ → +∞. Since |n3| ≤ 1, for any

1 < p < +∞, ∫
Ω

(1 − |n3|)pdx ≤ 2p−1

∫
Ω

(1 − |n3|)dx → 0.

Since h · nσ = n3, we see that |h · nσ| → 1 in L2(Ω) as σ → +∞.
Proof of (iii). We shall show that nσ = (nσ,1, nσ,2, nσ,3) has the following

propertiy: nσ,3 > 0 in Ω or nσ,3 ≡ 0 in Ω.
In fact, nσ satisfies the Euler-Lagrange equation (2.4). That is to say, if

we write nσ = n = (n1, n2, n3) for brevity,{ −Δn = |∇n|2n + b2σ2((h · n)h − (h · n)2n) in Ω,
n = e = (sin θ, 0, cos θ) on Γ

where b2 = χ/K. We claim that u = (n1, n2, |n3|) is also a minimizer of Fσ�.
In fact, for any n ∈W 1,2(Ω,S2), the following equality holds (cf. [4]):

|div n|2 + |curl n|2 = |∇n|2 − [tr(∇n)2 − |div n|2].

Moreover, it follows from [9] that

S(n|Γ) =

∫
Ω

[tr(∇n)2 − |div n|2]dx
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depends only on n|Γ = e. Therefore, we can write

Fσ�[n] =

∫
Ω

K|∇n|2dx+ S(e) − χσ2

∫
Ω

(h · n)2dx.

Since n ∈ W 1,2(Ω,S2), it follows that |∇|n3|| = |∇n3| a.e. in Ω. Since n3|Γ =
cos θ > 0 on Γ, |n3||Γ = cos θ. Thus S(u|Γ) = S(n|Γ). Thus we have Fσ�[n] =
Fσ�[u]. Hence u also satisfies the Euler-Lagrange equation. In particular,{ −Δu3 = |∇n|2u3 + b2σ2(u3 − u3

3) ≥ 0 in Ω,
u3 = cos θ on Γ.

That is to say, {
Δ(u3 − cos θ) ≤ 0 in Ω,
u3 − cos θ = 0 on Γ.

By the weak Harnack inequality for supersolution (cf. Gilbarg and Trudinger
[7, Theorem 8.18], for B4R(y) ⊂ Ω,

‖u3 − cos θ‖Lp(B2R(y)) ≤ C(R) inf
BR(y)

(u3 − cos θ)

for some p > 0. From this inequality and the fact that Ω is connected, if u3 �≡
cos θ in Ω, we have u3 − cos θ > 0 in Ω. Since from (ii), u3 = |n3| → 1 �= cos θ
in L2(Ω), we see that u3 �≡ cos θ for large σ. Therefore, u3 = |n3| > cos θ > 0
in Ω. Since n3|Γ = cos θ > 0, we have n3 > 0 in Ω. Therefore, n3 → 1 in L2(Ω)
as σ → ∞. That is to say, nσ → h in L2(Ω,R3) as σ → ∞.

Proof of the main Theorem 1.1
Let (0,nσ) be a pure nematic state, that is to say, nσ is a global minimizer

of Fσ�. By Lemma 3.1, we may assume that nσ → h = e3 strongly in
L2(Ω,R3). If we take φ(x) = eiqx3 , then ∇q�σφ = iq(e3 − nσ)eiqx3 . Therefore,
we have ∫

Ω

|∇q�σφ|2dx = q2

∫
Ω

|e3 − nσ|2dx→ 0

as σ → +∞. Hence

μ(qnσ) ≤
‖∇q�σφ‖2

L2(Ω,�3 )

‖φ‖2
L2(Ω,� )

=
q2‖e3 − nσ‖2

L2(Ω,�3)

|Ω| → 0

as σ → +∞. Thus for any κ > 0, there exists σ̂ > 0 such that μ(qnσ) < κ2

for σ > σ̂. Thus from Lemma 2.3 (ii), we see that pure nematic states are not
global minimizers of E .
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