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Abstract

We consider the asymptotic behavior of nematic states of liquid crys-
tals under applied magnetic fields. We treat the Landau-de Gennes func-
tional with the Dirichlet boundary condition for the director field. We
show that under some conditions, strong field does not bring the pure
nematic state that is a very different responce with superconductors.
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1 Introduction

In this paper, we consider the nematic state of liquid crystals under applied
magnetic fields. Let Fy(n,Vn) be the classical Oseen-Frank density of ne-
matic liquid crystals. Then for the applied field H, we must add a density
—x(H -m)? to Fx(n,Vn), and consider an energy functional:

/Q{fN(n, Vn) - x(H -n)?*}dx.

Here y is a positive parameter and n : Q@ — S? is a director field of the
nematic crystals. See de Gennes and Prost [6, p. 287]. Though there are
many article on liquid crystals without magnetic field (for example, Aramaki
2], [3], Bauman et al. [4], Hardt et al. [9], Pan [11], [14]), there are few
references which treat applied fields. See Lin and Pan [10] and Pan [12], [13],
Aramaki [1].
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According to the Landau-de Gennes theory, phase transitions of nematic
states to smectic states can be described by the minimizer (¢, n) of the Landau-
de Gennes functional:

2
K
elonl = [ {1Vl + 0= oy
+ Ki|divn]? + Ky|n - curln|® + Ks|n x curl n|?

+ (Ko + Kq)[tr(Vn)? — |divn|?] — x(H - n)Q}dx (1.1)

where k, K1, K5, K3 and  are positive constants, K, is a constant, and ¢ is a
real number. Here we denoted V9 = Vi) —ignip. Without loss of generality,
we may assume that ¢ > 0.

We consider the functional £ under the strong anchoring condition, mathe-
matically, the Dirichlet boundary condition n = ug on 02 for the director field
n where u is a given smooth boundary data. We note that under this anchor-
ing condition, we can drop the divergence term tr(Vn)? —|divn|? in (1.1) (cf.
[9]). We consider the functional £ on the space W2(Q, C) x Wh2(Q, S? ug)
where W12(Q, C) is the usual Sobelev space of complex-valued functions and

Wh2(Q, S uy) = {n € WH(Q,R?); |n(z)| = 1 a.e. in Q,n =wuy on IQ}.

Here and from now, for some Euclidean space E (= R,C or R3), W'%(Q, F)
denotes the usual Sobolev space with values in E.

Throughout this paper, we only consider the case where K1 = Ky = K3 =
K, Q is simply connected domain in R?® with smooth boundary I' = 99,
and assume that the applied magnetic field H and the boundary data u, are
constant vectors with angle #. Thus we assume that

(1.2) H =o0h, h-e=cosf

where h and uy = e are constant unit vectors and o > 0 denotes the intensity
of the applied magnetic field.

If we replace h by —h, we can assume that 0 < 6 < /2. When 6§ = 7/2,
[10] considered the magnetic field-induced instability in great detail. Therefore
we assume that
(1.3) 0<0< g
The states of liquid crystals are described by the minimizers (¢, n) of £. If
1 = 0, the minimizers correspond to the nematic states, and if ¥» # 0, the
minimizers correspond to the smectic states. Compared with the theory of
superconductivity, the nematic states look like normal states and the smectic
states look like superconducting states.
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For brevity, we write

(14) Elvm) = Glun] + Fin) ~ | X(H -n)ds
where
(1.5) Fn] = /Q{K{]divn\2 + |curl n|*}dx

is the simplified Oseen-Frank energy for nematics and

(16) Glonl = [ {1Vl + 51~ 0

is the Ginzburg-Landau energy for smectics. Moreover, we write
(1.7) Fonln] = Fln] - xo2 /Q (h-n)2dz.

Then the energy functional £ has a trivial critical point

Pv=0 m=n,

where n, is a global minimizer of F,; on WH%(Q,S? e), and we call (v, n) =
(0,m,) the pure nematic state. However, as we will see in Section 2, for any
e WH2(Q,C), (1, e) is not a critical point of & under the assumption (1.3).
Thus there is no pure smectic states in the sense of [10].

In the supeconductivity theory, it is well known that the superconductivity
is destroyed for the strong magnetic field. But we can show that in the theory
of liquid crystals, if ¢ is sufficiently large, the pure nematic states are not
global minimizer of £ when K = Ky = K3 = K.

Theorem 1.1. Fix q,k, K, h and e. When o is sufficiently large, the pure
nematic states (0,m,) are not global minimizers of £. We can also show that

h-n,(z) —1 inL*(Q) asoc— .
Remark 1.2. This theorem implies that when o s large enough, the states
are not pure nematic, and moreover that m, tends to the direction of h as
o — 00.

2 Preliminaries

In this section, we give preliminaries for the proof of Theorem 1.1.
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In general, we call (1, 10) € WH2(Q,C) x W2(Q, S% uy) a critical point
of £, if for any ¢ € WH2(Q,C) and v € W, *(Q,R3) N L>(Q, R?),

d
BN 5[%7"%] =0
dt -0
where
ngy + tv
= +top, ny=—-—.
Yy = o+t t = Tno T 0]

Here we note that we can write
n; = Ny + tn1 + O(tQ)

where n; = v — (v - ng)ny. By a simple computation shows that (¢, ng) €
Wh2(Q,C) x W12(Q,S? wy) is a critical point of £ if and only if

(2.1) Ao, 0: 6, ) — Xa2/(h o) (h - 1)z = 0

Q

where

A(woa T; @, U) = /Q{%[anowo : ano¢ - 52(1 - Wo\Q)iﬂoa]

—qny - S(VoVgneto) + K{(divng)(divn,) + curl ng - Curlnl}}da:.

Therefore, if (1, o) € WH(Q,C) x WH2(Q,S?, ug) is a critical point of
&, then 1y satisfies

(2 2) _v2n¢0 = K2(1 - |¢0|2)77Z)0 n Qa
' Vo -v =0 on Of)

where v denotes the outer unit normal vector field to 0f2.

Remark 2.1. We note that for any 1y € W1(Q,C), (1o, €) is not a crit-
1cal point of €.

In fact, let (¢)o, €) be a critical point of £. Since ¢y satisfies the equation
(2.2), then for any ¢ € W2(Q, C), if we multiply ¢ with the first line of (2.2)
and using the second line of (2.2), integrate over (2, we see that

Ao, € 6,v) = — / 4 S0V et

Q
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Thus (2.1) becomes
/Q{qg(%vqe%) ny +xo*(h-e)(h-ny)}dr =0

for any v € Wy (Q,R3) N L®(Q,R3). Since W,?(Q, R?) N L=(Q,R?) is dense
in W,*(2, R?), we have

{3 (W0 Vetho) — (S(WoVeetho) - e)e} + xo*{(h - e)h — (h-e)’e} = 0.

Since I is smooth, there exists 7y € I such that v(zy) = e* where e is a unit

vector which is orthogonal to e and h - et # 0. Using the second line of (2.2),
we have

xo?(h-e)h -v(zy) = xo?(h - e)’e - v(x)
+ Q(%(queiﬁo(.ﬁo)) . 6)6 . V(I'()) =0.

From this equality, we get yo?(h - e)h - et = 0. Since h - e = cos > 0, if
o > 0, we have h - et = 0. This leads to a contradiction. Thus there is no

pure smectic state in the sense of [10].
Define

(2.3) C(o) =C(0,K,h,e) = inf Fonlnl.

neWwh2(Q,S2e)
Then we have

Lemma 2.2. For any o, K >0, and h, e satisfying (1.3), C(o0) is achieved
in W12(Q,S2, e).

Proof. For any n € WH2(Q2,S? e), it is easily seen that

Fonn] = Fln| — XO'Q/Q(h, -n)?dr > —xo’|Q).

On the other hand, we see that

C(0) < Fonle] = —xo?(cos 0)%]9.
Thus we have

—xo?|Q| < C(0) < —xo*(cos 0)|9.

Let {n;} C W'*(Q,S? e) be a minimizing sequence of C(c). Then

Fonln;] = Fnj] — xo? /Q(h -n;)?dz = C(0) + o(1)



1768 J. Aramaki

as J — oo. From this equality, we have
K/{\divnj\Q—i- lcurln,|*}dr < XO’Q/ \h - n;’dr + C(o) + 1
Q Q

< xo?Q|+C(o) + 1.

Therefore, {divn,} is bounded in L*(€2) and {curl n;} is bounded in L*(Q2, R?).
Since |n;| = 1 a.e. in 2 and n;|r = e, it follows from Dautray and Lions
5] that {m;} is bounded in W'?(Q,R?). Passing to a subsequence, we may
assume that n; — ng weakly in W'?(Q,R?), strongly in L*(Q,R?) and a.e.
in Q. Thus we have [ng| = 1 a.e. in Q and ng|r = e, so ng € WH?(Q,S% e).
We note that divn; — divng weakly in L*(Q) and curln; — curl mg weakly
in L?(Q,R?). We have

/Q(h -m;)dr — /Q(h ) dw
/Q(h - (n; — mg) + h - ng)’de — /Q(h -ng)’dx
[0 =)

< Cln; - nOH%Q(Q,R?’) —0

<

+

/QQ(h - (n; — no))(h - o) da

as J7 — oo. Hence we have

lim [ (h-n;)%dz = /(h 1) d.
0

Jj—0o0 9]

Therefore, we have

Fonlno) = Flng) — xo? /Q(h ) de

< liminf {J’:[nj] — xo? /(h : nj)2dx} =C(0).
j—00 Q
Thus n is a minimizer of F,y,. O

When n is a minimizer of F,p, we look for the Euler-Lagrange equation
for n. For any v € VVO1 ’Q(Q, R3), we compute the following equation

d
- {fah[’n—i—tv] —/)\(|n+tv\2—1)dx} =0
dt],— Q

where ) is the Lagrange multiplier which depends on z. Note that curl?n =
—An + Vdivn and —An - n = |Vn|? which is easily followed from n-n = 1.
By the standard arguments, we get the Euler-Lagrange equation for n:

(2.4) —KAn = K|Vn|*n+ xo*((h-n)h — (h-n)?n) in Q,
' n=e on I'.
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Since h - e = cosf > 0, we note that e is not a critical point of F,; for any
o> 0.
Define

(2.5) M(o) = M(o,K,h,e) ={n e W"*(Q,$* e); Fouln] = C(0)}.

We note that (0,n) is a critical point of £ if and only if n is a critical point of
Fon, and if n € M(0), then (0,n) is a critical point of &.

Let 1 = pu(gn) be the lowest eigenvalue of the following magnetic Neumann
problem

_v3n¢ = ,U/¢ n Qa
(26) { V¢ -v=0 onl

where v denotes the unit outer normal vector field on I'. That is to say,

’|an¢‘|%2(9)
2.7 M= o sseiione  0lea
(2.7) plam) 0£6eW1220) || @] 12(q)
Define
2.8 «(g,0) = inf ‘
(2.8) pela,0) = b plan)

Then we have

Lemma 2.3 ([10]). (i) If (¢, ) is a global minimizer of € which is not a
pure nematic state, then pu(gn) < k2.
(ii) If p.(q, o) < K?, then the pure nematic states are not global minimizers

of €.

Proof. (i) Let (¢, n) be a global minimizer of £. If ¢y = 0, then n € M(0).
Therefore, (¢,n) = (0,n) is a pure nematic state. Thus if (¢, n) is not a pure
nematic state, then ¢ # 0. Choose n, € M(c). Then

£l m] = Gl n] + Fonln] < GI0.my) + Fonlno] = 10| + Fonln)|.

From this inequality, we get

2

2
/Q IVt = 20 + S 0| Yz = G, m] = S| < Fonlno] = Fln] < 0.

Therefore, we have

I€2 4
/Q{lvqnwl2 — &|Y*rdx < ) /Q Y|*dz < 0.
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Hence we get

quan%Q(Q C3)

plgn) <

191720,

(ii) Let (0,m,) be a pure nematic state of £. Then

2

K /432
E[0.1,] = |00+ Fonln,] = -10] + C(0).

If p.(q,0) < K% choose n € M(o) such that u(¢qn) < k*. Let ¢ be an
eigenfunction of (2.6) associated with p(gmn). Then for any ¢t € R,

Eltp.n] = / (17 bl = K2J0P2) + 110/} + 210 + Folm)
= () =6 [ [ofdn+ S0t [ fol'dn+ S0l + Fonl
< %2]Q|+C(a):8[0,na]

for small ¢ > 0. Thus (0, n,) is not a global minimizer of £. O

Lemma 2.4. Assume that Q is simply connected and o > 0. If n is a
minimizer of Fyn, then F[n] >0 and

/{h n)? — (cos0)*}dz > 0.

Proof. We have

—XO'2/Q(h ‘n)’dr < Fln]— XU2/Q(h -n)?dx

- fah[n]
< Foule] = —xo*(cos )%

Here we claim that F[n| > 0. In fact, if Fln] = 0, we see that divn =
0,curln = 0, |n| =1 a.e. in Q. Since  is simply connected, n is a constant
vector (cf. [11]). Since n|r = e, we have n = e in Q. However, since e does
not satisfy (2.4), e is not a global minimizer of F,,. Thus for o > 0, we have

/{h n)? — (cos0)?}dx > 0.
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3 Proof of the Main Theorem

In this section we shall prove the main theorem 1.1. In order to do so, we need
a lemma.

Lemma 3.1. (i) For large o, C(c) < —x0?|Q|+Cyo where Cy > 0 depends
only on K, h,e and §2.
(ii) Let my be a global minimizer of Fop. Then |h-n,| — 1 in L*(Q) as
o — +00.
(iii) Moreover, we see that h-n, — 1 in L*(Q) as 0 — +oo0.

Proof. After rotating the coodinate system, we may assume that h = e3 and
e = (sin#, 0, cosf). Choose a test field n = (ny,ng,n3) = (cos ¢, 0, sin ¢) where
¢ is a smooth function on  and ¢ = (7/2) — 6 on I'. Since n|r = e, we note
that n € Wh2(Q,$? e).

Since

divn = —singdi¢ + cos¢ 030,
curlm = (cos ¢ Oa¢p, —sin ¢ 3¢p — cos ¢ 01 P, — sin ¢ 020,

we see that [divn|? + |curlnf> < C(|V¢|* 4+ 1). Thus if we write F,[n] =
fQ fon(¢)dx where

fon(9) = K(|divn|* + |curln|*) — xo*(h - n)*,
we have
|[fon ()] < CK(IVG|* + 1) + xo(cos ¢)*.
For any € > 0, define Q. = {z € Q;d(z,00) < e} and Q° = {z € Q;d(x.0Q) >
e}, and decompose F,[n| as follows: F,[n] = F,1[n| + Fy2[n| where

Foiln] = ; for(@)dr, F,on|= o fon(@)dz.

Choose ¢ such that
/2 in Q°,
dp=1 (n/2)—1¥6 on 02,
|V¢| S 02/8 in .

Then F,2[n] < CK and
Forln] < / (CK(V] + 1) + yo(cos ¢)2}dz
Qe

C3 9
< [CK(? +1) + xo°] ||
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Since 02 is smooth, there exists Cy > 0 depending only on 0f2 such that
€2.| < Coe for any small € > 0. For large o, choose € > 0 so that

G | CK

= CK+

Then we have F,1[n] < C30. Therefore, we have

C(0) < Fonln] < —x0°| + Cs0 + Ci.

Thus (i) holds.
Proof of (ii). From (i), we see that

Fone) = Fln,| + XUQ/(TL% +n3)dr < Cio.
0

This implies that

/(n%+n§)dm§ﬁ—>0
Q

X0

as 0 — +o00. Thus [,(1 —|ns|*)dz — 0 as 0 — 4o0. Since |ng| < 1, for any
1 <p<+o0,

/(1 — |ng|)Pdx < 2P71 /(1 — |ngl)dz — 0.
Q Q

Since h - n, = n3, we see that |h - n,| — 1 in L*(Q2) as 0 — +00.

Proof of (iii). We shall show that n, = (n,1,7s2,13) has the following
propertiy: n,3 > 0in Q2 or n,3 = 0 in Q.

In fact, n, satisfies the Euler-Lagrange equation (2.4). That is to say, if
we write n, = n = (ny, ng, ng) for brevity,

—An = |Vn|’n + ?c*((h-n)h — (h-n)?n) inQ,
n =e = (sinf, 0, cosd) on I’

where b> = x/K. We claim that w = (ny, ny, |n3|) is also a minimizer of F,p.
In fact, for any n € W1%(Q,S?), the following equality holds (cf. [4]):

|divn|? + |curln)? = |[Vn]? — [tr(Vn)? — |divn|?].

Moreover, it follows from [9] that

S(nlr) = /Q (V)2 — |div |} dz
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depends only on n|r = e. Therefore, we can write
Fonn] = / K|Vn|*dz + S(e) — xo? / (h-n)*dx.
Q Q

Since n € W12(Q,S?), it follows that |V|ns|| = |Vns| a.e. in Q. Since ns|r =
cosf > 0 on I, |ng||r = cosf. Thus S(u|r) = S(n|r). Thus we have F,,[n| =
Fonlu]. Hence u also satisfies the Euler-Lagrange equation. In particular,

_Aug = |v’n,|2/LL3 —+ b20'2(U3 — Ug) Z O n Q,
uz = cosf onI'.

That is to say,

A(ug —cosf) <0 in
uz —cosf =0 on I

By the weak Harnack inequality for supersolution (cf. Gilbarg and Trudinger
[7, Theorem 8.18], for Bsgr(y) C 2,

|ug — cos 0| Lr(Byn(y)) < C(R) inf (ug — cosf)
Br(y)
for some p > 0. From this inequality and the fact that €2 is connected, if us #
cosf in 2, we have ug — cos@ > 0 in Q. Since from (ii), ug = |n3| — 1 # cosf
in L?(Q), we see that us # cosf for large 0. Therefore, uz = |n3| > cosf > 0
in Q. Since nz|r = cos® > 0, we have ng > 0 in . Therefore, n3 — 1 in L*(Q)
as 0 — oo. That is to say, n, — h in L*(Q,R?) as 0 — oc. O

Proof of the main Theorem 1.1

Let (0,n,) be a pure nematic state, that is to say, n, is a global minimizer
of Fon. By Lemma 3.1, we may assume that n, — h = ez strongly in
L*(Q,R3). If we take ¢(z) = €"%"3 then V, ¢ = iq(e3 — n,)e"®s. Therefore,
we have

/ ‘ang¢’2d$ = q2/ ‘63 - na‘2dx —0
Q Q
as 0 — +o0o. Hence

IVan, 0l 720.00)

p(gn,) <
161172 (0.0)
¢’|les — nUH%Q(Q R3)
—= ’ — 0
Q|

as 0 — +oo. Thus for any xk > 0, there exists ¢ > 0 such that u(qn,) < x?
for 0 > &. Thus from Lemma 2.3 (ii), we see that pure nematic states are not
global minimizers of £.
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