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Abstract

In this paper, we obtain a generalization of a double inequality on
the log-convex functions, obtained by E. Neuman [8]. Also, we redis-
cover some inequalities of gamma and g—gamma functions. Finally, we
present some new inequalities of Riemann zeta function.
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1 Introduction

The collection of log convex functions features pretty interesting functions that
are widely used in applied mathematics and in statistics. [4], [9]. They are
often useful in finding bounds for special functions and their zeros. Many
inequalities for special functions are statements about the monotonicity of
certain quantities [3], [11], [12]. In this work, we will present a monotonicity
property and some inequalities of the logarithmically convex functions. As
special cases, we will get some inequalities involving the gamma function and
the g—gamma function.

Recall [2] that if f(z) is a twice differentiable function then f(x) is convex
iff f”(x) > 0 for all = of our interval and hence f’(z) is increasing function in
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our interval. Also, a function f(x) defined and positive on a certain interval
is called log-convex if the function log f(z) is convex. The condition that f(x)
be positive is obviously necessary, for otherwise the function log f(x) could not
be formed.

2 Main result.

Theorem 2.1 Let f(x) be a positive, differentiable and log-convez function
defined on [0,00). Let

et
g(x) = Flor £ )F o1k, b,s >0 (1)

Then
(1) g(x) decreases on its domain if ¢ < b, r < s and ac < kb. Hence

[f (ey + )]
[f (by + 5)]*

flex+ 0] _ )"
G+ ) = [f)F

< VOo<z<y. (2)

(2) g(x) increases on its domain if ¢ > b, r > s and ac > kb. Hence

) _ [flex+ 1)
FOF = [flor + )F

[f(ey +1)]°
[f (by + s)]*

< VOo<axz<uy. (3)

Proof. Logarithmic convexity of the function f implies that its logarithmic

derivative a(x) = % is increasing function. Then

alz) < aly) V 0<z<uy. (4)

Also,

%g(gp) = g(x)[ac a(cx + 1) — kb a(bx + s)]. (5)

In case of c < b, r < s and ac < kb , we get for x > 0 that
ac a(cz + 1) < kb a(br + s). (6)
Then ¢'(z) <0 and hence g(z) is decreasing on its domain. In particular
9(y) < g(x) <9(0) VYV O<z<y, (7)

which is the inequality (2). The second part has similar proof.
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3 Some particular cases.

3.1 Inequalities involving the gamma function
The Euler gamma function I'(x) is log-convex function for = > 0 and is defined
by [2] N
[(x) = / et e, x>0,
0

By using a geometrical method, C. Alsina and M. S. Tomés [1] studied an
inequality involving the gamma function and proved the following double in-
equality
1 r )"
L L+ 0<z<1 neN. (8)
n! = I'(1+ nz)
J. Sandor [10] extended this result to a more general case, and obtained the
following inequality

1 [T(x+1)]*
< <1: 0<x<1 >1 9
T(l+ta) = O(1+az) — =rss s ©)
by using the series representation of the digamma function ¥ (z) = I;((j)). L.

Bougoffa [3] used the same method of Sandor [10] to prove that the function

[C(ex + D"

m, $ZO,GZC>0, (10)

fi(z) =

is decreasing, so the following double inequality satisfies

[Cle+ D)
L+ 1)

r Dl

S CE

Also, A. S. Shabani [11], used the same method of Sandor [10] to prove that

the function T )
cr +r)®
=~ >0 12
f2(x) [F(b$+8)]k7 xr - U, ( )
where a, b, ¢, r, s, k are real numbers such that 0 < cx+r < bx+s, bk > ca > 0
and ¥ (cx + 1) > 0 (or ¢¥(bx + s) > 0) is decreasing and for 0 < z < 1 the

following double inequality holds

Ce+n)* _ [Mlex+r)]* _ [0

Db+ s)]F = [L(bx + s)]F — [[(s)]F (13)

Also, in case ca > bk > 0 and ¢(cx + 1) < 0 (or ¢(bx + s) < 0) the function
fa(z) is decreasing and the inequality (13) holds.
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Remark 1: Considering (2) with f(z) =T'(z),a=b=ne N, y=c=r =
s = k =1 we obtain inequality (8).

Remark 2: Considering (2) with f(z) =T'(z),b=a, y
we obtain inequality (9).

Remark 3: Considering (2) with f(z) = I'(z), y = r = s = 1 we obtain the
inequality (11) and the function f;(z) will be decreasing .

Remark 4: Considering (2) with f(z) = I'(x), y = 1 we obtain the inequality
(13) and the function fo(x) will be decreasing, where the conditions 0 < cz +
r < bxr+ s and bk > ca > 0 will satisfy Vo > 0 iff a,c,r, k,b,s > 0 also, the
condition ¥ (cx + 1) > 0 (or ¥ (bx + s) > 0) will satisfies automatically because
if f(x) =T(z) then 1(z) = a(x) which is increasing function.

l
o
l
<
Il
»
Il
B
I
—_

Lemma 3.1
1— Forall0<x<y,c<b, r<s,ac<kbanda,crk,bs>0, we have

[Dley +m)]* _ [Dlex +r)]* _ [L(r)]*
[C(by + 5)[F = [D(bx + s)]F — [T(s)]
2— ForallO<x>y,c>b,r>s,ac>kbanda,c,r kb s>0, we have
PE) _ [+ _ [ey+ )
[C(s)]F ~ Db+ 5))F = [T(by + s)]*

< (14)

(15)

3.2 Inequalities involving the ¢—gamma function

The g—gamma function I'j(z) is log-convex function for > 0 and is defined

by [5]

_ (q7 Q)oo o 11—z
H@%—@%@wﬂ q9) ", 0<g<l,

where the g—shifted factorials (a;q)oe = [[520(1 — ag'). This function is a
g—analogue of the gamma function since we have lim,_,; I';(z) = I'(z).
T. Kim and C. Adiga [6] proved for 0 < ¢ < 1

1 _ [+

<z<l, a>1 1
T,(1+a) = T,(1+az) — V=eshazl (16)
Also, T. Mansour [7] proved for 0 < ¢ < 1
[FQ(T)] < [FQ(8I+T)] < [Fq(S—G—T)]aik, (17)

[Cq(s)]F — [Cy(ra +s)]F —

where ¢, (bx +s) >0, sa >rk, 0 <z <1,r>s>0and ¢, d are positive real
numbers.
Also, A. S. Shabani [12], proved that the function

[Cg(ca +1)]"

falx) = [Ty (bx + s)]*’

x>0, (18)
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where a, b, ¢, r, s, k are real numbers such that 0 < cx+r < bx+s, bk > ca > 0
and t,(cx + 1) > 0 (or ¢,(bx + s) > 0) is decreasing and for 0 < z < 1 the
following double inequality holds

[Cy(c+ 7))
[Cy(b+ s)I*

Ly(cx+1)]*

[T (r)]
T, (be + 9)]F = (19)

[Fq(s)]*

Also, in case ca > bk > 0 and ¢ (cz + 1) < 0 (or ¥, (bx + s) < 0) the function
f5(x) is decreasing and inequality (19) holds.

<

Remark 5: Considering (2) with f(z) =Ty(z), b=a,y=c=r=s=k=1
we obtain inequality (16).

Remark 6: Considering (3) with f(z) =y (x), b=r, ¢ =s, y = 1 we obtain
inequality (17).

Remark 7: Considering (2) with f(z) = I',(z), y = 1 we obtain inequality
(19) and the function f3(x) will be decreasing, where the conditions 0 < cz +
r < bxr+ s and bk > ca > 0 will satisfy V « > 0 iff a,c,r,k,b,s > 0 also,
the condition ¢ (cz +r) > 0 (or ¥ (bx + s) > 0) will be satisfied automatically
because if f(z) =I',(z) then ¢,(x) = a(x) which is an increasing function.

Lemma 3.2
1— Forall0 <z <y, c<b,r<s,ac<kbanda,cr k,b,s>0, wehave

[Cy(cy + )] [Lq(r)]"
[Ty (by + 5)]* [Cq(s)]*
2— ForallO<x>y,c>b,r>s,ac>kbanda,c,r kb s>0, wehave

Ly ()]
[Fy(s)]

[Ly(cx +1)]*
Ly (bx + s)]*

< < (20)

[Ly(cx +17)]*
Ly (bx + s)|*

[Cqlcy + )"
[Cq(by + s)]F

< < (21)

3.3 Inequalities involving the Riemann zeta function

The gamma function and the Riemann function are connected with relation

2 .
C(x+1)F(x+1):/0 |

where the Riemann zeta function is defined by

dx x> 0,

(=3~

n=1

s x> 1.
n

The function {(z+ 1)['(z + 1) is a positive, differentiable and log-convex func-
tion for all x > 0 [8]. Then, we get the following Lemma
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Lemma 3.3
1— Forall0<z<y,c<b,r<s,ac<kbanda,c,rk,bs>0, we have

C(cy +r+ 1) (cy +r+ 1)]°
C(by + s+ 1) (by + s+ 1)]*

C(cz+r+ 1)(cx+r+1)]°
[C(bx 4+ s+ 1)((bx + s+ 1)]F

C(r+ 1)C(r+ 1))

C(s+1)((s+ 1)]*
(22)
2— ForallO<x<y,c>b,r>s,ac>kbanda,c,r k,b,s >0, we have

IN

<

L(r+1)C(r+1)]*  [T(ex+r+1)C(cx+r+1)]*  [[(cy+r+ 1) (cy+r+1)°

W@+1x@+4ﬂk§uﬂm+s+1x@x+s+1wﬁgwwy+s+1xwyT%+nw'
23
3.3.1 Some special cases
By using (14), we obtain
C(ecx +r+ 1)C(cx +r+1)]* < L(r+1)¢(cx +r+1)° (24)
C(bx+ s+ 1)C(bx+ s+ 1)]F = [[(s + 1)C(bx + s+ 1)]*’
forallz >0,0<c<b,0<r<s,0<ac<kb.
Also, (22) and (24) give us that
C(ey +7r 4+ 1)(cy +r+ 1)]° < C(r+1){(cx+7r+1)]* (25)

C(by +s+1)C(by+ s+ 1)]F — [[(s+ 1)¢(bx + s + 1)]F’

forall <z <y,0<c<b0<r<s 0<ac<kb.
If we put y=c=1and r=s=01in (25), then we get

5 Kty
T+ DFF = [((bw + DJF

[CO+D)F, VOo<az<1;1<b 0<a<kb (26)

where ['(2) = 1 and ((2) = %2. Now, put a = k = 1 in (26), we obtain

C(z+1)C(b+1)I(b+1)

b 1) < <1;1<b. 2
Cbx+1) < 776 , Vo<z<I1;1< (27)
Also, put b =1 in (26), to get
7T2 a—k
[El <[Clz+ D)% Vo<or<l;0<a<h, (28)
Hence )
T
g(x+1)§€, Vo<z<l1 (29)

with equality if z = 1.
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