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Abstract

The purpose of this work is to introduce a hybrid iterative scheme
for finding a common element of the set of a generalized equilibrium
problem, the set of solutions to a variational inequality and the set of
fixed points of a strict pseudo-contraction mappings in a real Hilbert
space. The results obtained in this paper extend and improve the result
of Cho, Qin and Kang [Convergence theorems based on hybrid methods
for generalized equilibrium problems and fixed point problems, Nonlin-
ear Anal. doi:10.1016/j.na.2009.02.106], and many authors.
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1 Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex

subset of H. A mapping S of C into itself is nonexpansive if ||[Sz — Sy| <
|z — y||, Vx,y € C. The set of fixed points of S is denoted by F(S). Let F' be
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a bifunction of C' x C into R, where R is the real numbers. The equilibrium
problem for F': C' x C'— R is to find x € C such that

F(z,y) >0 forall yeC. (1)

The set of solutions of (1) is denoted by EP(F). Numerous problems in
physics, optimization, and economics reduce to find a solution of (1). In 1997,
Combettes and Hirstoaga [6] introduced an iterative scheme of finding the
best approximation to the initial data when EFP(F') is nonempty and proved
a strong convergence theorem.
Let A: C'— H be a mapping. The classical variational inequality, denoted
by VI(C,A), is to find z* € C such that (Az*,v —2*) > 0 for all v € C.
The variational inequality has been extensively studied in the literature. See,
e.g. [15] and the references therein. Let B : C'— H be a nonlinear mapping.
Then, we consider the following generalized equilibrium problem(GEP): Find
z € C such that
F(z,y)+ (Bz,y —z) > 0,Vy € C (2)

The set of such z € C' is denoted by EP, i.e.,

EP={2ze€C:F(z,y)+ (Bz,y—2) >0,Vy € C}.
In the case of B = 0, EP is denoted by EP(F). In the case of FF = 0, EP
is also denoted by VI(C,A). A mapping A of C into H is called a-inverse-
strongly monotone [2] if there exists a positive real number « such that

(Au — Av,u —v) > af|Au — Av|?

for all u,v € C. Recently, Takahashi and Toyoda [11] and Yao et al. [16]
introduced an iterative method for finding an element of VI(C, A) N F(S),
where A : ' — H is an a-inverse-strongly monotone mapping. Let A be a
strongly positive bounded linear operator on H: that is, there exists a constant
7 > 0 with property

(Az,z) >7||z||* for all z € H. (3)

A mapping S : C' — C'is called a k-strict pseudo-contraction mapping if there
exists a constant 0 < k£ < 1 such that

|52 — Syl <l — yl” + k(L — S)a — (I - S)yl. (4)

forall z,y € C. If Cis bounded closed convex and S is a nonexpansive mapping
of C'into itself, then F'(.S) is nonempty. It is well-known that S is nonexpansive
if and only if S is O-strictly pseudo-contractive. The mapping S is also said to
be pseudo-contractive if £ = 1 and S is said to be strongly pseudo-contractive
if there exists a positive constant A € (0,1) such that S — Al is pseudo-
contractive. Clearly, the class of k-strictly pseudo-contractive mappings falls
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into the one between classes of nonexpansive mappings and pseudo-contractive
mappings. We remark also that the class of strongly pseudo-contractive map-
pings is independent of the class of k-strictly pseudo-contractive mappings.

In 1967, Browder and Petryshyn [2] established the first convergence result
for k-strict pseudo-contraction in real Hilbert spaces. They proved weak and
strong convergence theorem by using iteration with a constant control sequence
{a,} = a for all n. Many authors have appeared in the literature on the exis-
tence of solution equilibrium, see also, for example [1, 5, 8, 12] and references
therein. To find an element of EFP(F) N F(S), Takahashi and Takahashi [12]
introduced the an iterative scheme for nonexpansive mappings by the hybrid
method in a Hilbert space.

Recently, in 2008, Takahashi and Takahashi [10] introduced a hybrid iter-
ative method for finding a common element of EP and F(S). They defined
{z,,} in the following way:

u, € C, such that
F(tn,y) + (BTn,y = tn) + 7-(y = tn, up — ,) 20, VyeC, (5
Tpt1 = Bpxn + (1= 5,)S(au+ (1 — ayuy,)), Vn e N.
where B be an -inverse strongly monotone mapping of C' into H with positive
real number «, and proved strong convergence theorems in the framework of
a Hilbert space, under some suitable conditions on parameters {a,}, {3,} and
{\n}.
Very recently, Cho, et al. [4], Ceng et al. [5], Liu [7] and Peng et al.
[9] established an iterative scheme for finding a common element of the set of
solution of an equilibrium problem (1), generalized equilibrium problem (2) and
the set of fixed point of a k-strict pseudo-contraction mapping in the setting
of real Hilbert space. They also studied some weak and strong convergence
theorem for k-strict pseudo-contraction mappings of the sequence generated
by their algorithm.
In 2009, Cho, Qin and Kang [3] introduce the hybrid methods for finding
a common element of F(S)NVI(C,A) N EP. Let S be a k-strict pseudo-
contraction mapping and defined gz = kx(1 — k)Sz for all z € C. They
defined {z,} in the following way:

x, € C,

Cl - C,

F(un,y) + (By,y — uy) + i(y — Up, Uy — Tpy) >0, Yy € C
Yn = Po(un, — A\ Auy,)

Zn = Xy + (1 — @) Sk,

Crr1 ={2 € Oyt [lzn — 2|| < [l2n — 2]},

1, n>1

anrl = Pcn+1

A be an a-inverse-strongly monotone mapping of C' into H and let B be an
[B-inverse-strongly monotone mapping of C' into H, respectively. They proved
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strong convergence theorems in the framework of a Hilbert space, under some
suitable conditions on parameters {a,}, {r,} and {\,}.

In this paper, we extend and improve the result of Cho, Qin and Kang [3].
Then, we obtain the strong convergence theorem for the sequences generated
by these processes. Furthermore, using the theorem we also obtain strong
convergence theorems for finding elements of fixed points, equilibrium problems
and the set of solutions to a variational inequality, respectively.

2 Preliminary

Let H be a real Hilbert space with norm || - || and inner product (-,-) and
let C' be a closed convex subset of H. For every point x € H, there exists a
unique nearest point in C, denote by Pgox, such that

|z — Pox|| < ||z —yl||, forallyeC.

P¢ is called the metric projection of H onto C. It is well known that P is a
nonexpansive mapping of H onto C' and satisfied

(x —y, Pox — Poy) > ||Pox — Pey| (6)

for every z,y € H. Moreover, Pz is characterized by the following propertied:
Pex € C and
lz = ylI* > [lz — Pox||* + |ly — Pex||* (7)

for all x € H, y € C'. The following is the property in Hilbert spaces: for any
x,y € H, we have

0) Nl +yll* <zl + 2{y, x + y)

(i) o +yl® > =l + 2(y, )

(i) [lz £ ylI* = [z = 2{z, ) + ly]*

(iv) [tz + (1 = )yl = tllx)* + (1 = t)llyl]* = (L = ) ]|z — y?, ¥t € [0,1].

Remark 2.1 We note that if A is a a-inverse-strongly monotone, for all
u,v € C and A\, > 0,

I = AnA)u — (I = A A)]|* I(u = v) = An(Au — Av)|?
|u —v||* = 2\, (u — v, Au — Av)
+ A2 || Au — Av||?

< lu =) + XM — 2a) || Au — Av|®. (8)

So, if A, < 2a, then I — A\, A is a nonexpansive mapping from C to H.

Lemma 2.2 [17] Let T : K — H be a k-strictly pseudo-contraction. De-
fined D : K — H by St = Ax+ (1= X\)Tx for each x € K. Then, as X € [k, 1),
S is a nonexpansive mapping such that F(S) = F(T).
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For solving the equilibrium problem for a bifunction F': C' x C' — R, let
us assume that F' satisfies the following condition:

(Al) F(z,z) =0 for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each x,y € C, limy_o F(tz+ (1 —t)z,y) < F(z,y);

(A4) for each x € C,y — F(z,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [1].

Lemma 2.3 [1] Let C be a nonempty closed convex subset of H and let F
be a bifunction of C x C into R satisfying (A1)-(A4). Let r >0 and x € H.
Then, there exists z € C' such that F(z,y)+~(y—z,z—x) >0 for ally e C.

Lemma 2.4 [1, 6, 10] Assume that F' : C x C — R satisfies (A1)-(A4),
and let r > 0 and x € H. Then,there exists unique z € C' such that F(z,y)+
%(y —z,z—1x) >0 for ally € C. Moreover, let T, be a mapping of H into C
defined by T,(x) = z for all x € H. Then, the following hold:

1.T, s single- valued,

2.T, is firmly nonexpansive, i.c., | T,z — Toy||* < (T,x — Ty, x — y), for
any z,y € H;

3.F(T,) = EP(F);

4.EP(F) is closed and convex;

5.\ Tsx — Tyx||* < S Tow — Tyw, Tyx — x), for all s,t >0 and z € H.

Lemma 2.5 (see [13, 14]) Let {a,} be a sequence of nonnegative real num-
bers, satisfying the property,

Ap+1 S (1 - 7n)an + bna n 2 07

where {v,} C (0,1), and {b,} is a sequence in R such that:
) T 7 = oo
i) lim sup,,_, o, :—Z <0 or 3524 |b,| < 0.

Then lim,,_,o a, = 0.

3 Main Results

In this section, we prove a strong convergence theorem of the hybrid
method for strictly pseudo-contractive mappings in a real Hilbert space.

Theorem 3.1 Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let F' : C x C — R be a bifunction satisfying (A1)-(A4). Let A
be an «a-inverse-strongly monotone mapping of C' into H and let B be an [3-
inverse-strongly monotone mapping of C into H, respectively. Let S : C — C
be a k-strictly pseudo-contractive for some 0 < k < 1. Defined a mapping
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S C — C by Spr = kx + (1 — k)Sz for all x € C. Assume that F :=
F(S)NVI(C,A)NEP # (. Let the sequences {x,} and {u,} be generated by

1= C:

1= Oa

F un,y)—l- <mey_un> + i<y_umun_-rn> Z 07 vy € C
Zp = QpXy + (]- - an)Skwny

Crp1 ={2 € Oy ||zn — 2| < |l — 2|},

r1, n>1

=

Q

xn+1 - an_H

where u,, = T,, (x, — ro,Bz,) and {r,} C (0,00). Assume that the control
sequences {ay}, {8} C [0,1],{\,} C (0,2c) and {r,} C (0,28) satisfy the
following conditions:

(1) k<o, B <a<l,

(1)) 0<b< N\, <c<2aand 0 < d<r, <e<20,for somea,b,c,decR.
Then {x,} converge strongly to z, where z = Ppxy.

Proof. Let p € F since 0 < r, < 203, we have

Hun_pH2 = |1}, (zn — rnBxy) —Trn(p—ran)HQ
< [[(zn —raBxy) — (p— Tan)H2
< ||(In—p) _Tn(an_Bp)HQ
< |l#n = plI* = 2ra{zy — p, Bx, — Bp) + 12| Bp — Ba,||?
< |l@n —pl* = 2rB||Bx,, — Bpl||* + 7| Bp — Bx,||*  (10)
<z, —pl*. (11)

First we show that F C (), for all n € N, we can prove by induction. It is
obvious that F' C C}. Let p € F', we known that I — )\, A is nonexpansive, for
all n € N and from p € VI(C, A) we get p = Po(p — A\, Ap). Tt follows that

1y = plI> = [[Po(un — AnAun) — Pe(p — A Ap)|I?
S ||(] - /\nA)un - (I - )‘nA)p||2
< lun —pl*. (12)
Consider,
lwn =2l = 18 (Skyn —p) + (1 = 52) (¥ — )|

< BallSkyn —pll + (1 = Ba)llyn — pll
< Bullyn — 2l + (1 = Ba)llyn — pll

= [lyn — 1l

= |lu, —pll

= lzn —pll. (13)



Strong convergence by hybrid iterative scheme 2959

Thus, we have

[z =2l = llowwn + (1 — an)Skw, — pl|
= lom(zn = p) + (1 = an)(Skwn — p)||
< apllen —pll+ (1 — o) Skwn — pl| (14)
< apllz, —pll + (1 = an)|lw, — pll
< apllen —pll+ (1 — an)llzn —p

[l = pll. (15)

So, we have p € C, 41 and hence F C C,, for alln € N.

Next, we show that C,, is closed and convex for all n € N. It follows obvious
that C'y = C' is closed and convex. Suppose that C,, is closed and convex for
each m € N. Let ¢; € Cpy1 C C,, with ¢; — 2. Since (), is closed, z € Cy,
and ||z, — ¢;|| < |l¢; — || Then

lzm =2l = Nlzm = ¢ +¢; ==
< llzm =l +lleg — 2| (16)

Taking j — oo, we have ||z, — z|| < ||z — 2,,||. Hence z € Cypq. Let
z,y € Cpy1 C Cp with 2 = ax + (1 — o)y where a € [0,1]. Since C, is
convex, z € Cp, and ||z, — || < | — 2lls |2m — Yl < ||y — 2ml|, we have

l2m = (o + (1 = a)y)||*

la(zm — 2) + (1 = @) (2 — y)II”

allzm = 2" + (1 = a)lzm — ylI* — a(1 = )| (2 — 7) = (2 — )
allzm — 2l + (1 = a)lzm — ylI* — a(l = a)ly — 2|

aflzm — 2| + (1 - a)
[2m = (@ + (1 = a)y)

|l — 2%

12m — 2II*

IA N

I*

Then z € C),41, it follows that C),,1 is closed and convex. Hence C), is
closed and convex for all n € N. This implies that {z,} is well-defined. From
x, = Pg,x1, we have (x; — z,,z, —y) > 0, for all y € C,,. Since F' C C,,, we
obtain

(x1 — Tp,xp —u) >0 for all u € F and n € N. (18)

So, for u € F', we get
0<(z1—xp,xp —u) = (1 — T, Ty — T1 +T1 — )
= — (T, — T1,%, — x1) + (1 — Tp, x1 — W)
< —llzn — 21 l* + [lor — 2l [l — ull.
This implies that ||z — 2,]|* < ||z1 — 2|21 — u]|, hence

|z1 — 2n|| < |21 — ul| for all w € F and n € N. (19)

[zm = yl* = a(l = )|(zm — 2) = (T — )
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From z,, = Po,x; and z,.1 = Po, ., 21 € Cyyq C Cy, we have

n+1
(1 — XTp, Ty, — Tpy1) >0 for all n € N. (20)
So, for z,,1 € C,, we also have, for n € N
0 S <l’1 — Tpy Tn — xn+1> - <l’1 — Tpy Tpn — L1 + 2 — xn+1>
= —(Tn — 21,2y — 21) + (X1 — Ty, T1 — Tpy1)
< —llzn — 21”4 [lo1 = @allllz1r — asa)-
This implies that ||z — 2z,[|? < |21 — zu||[|21 — Tpyt]| and we get

|x1 — zn|| < ||x1 — Zpaa]|| for all n € N. (21)
From (19), we have {x,} is bounded and lim, . ||z, — 21| exists. Next, we

show that ||z, — x,11|| — 0. In fact, from (20), we note that

lzn = z0alI* = [l(z0 = 21) + (@1 = Z01)|1®

= |lzn — 1| + 2(zn — 21,21 — Tp1) + |21 — T ||
= lan —@il? + 2(zn — 21,21 — 20 + 20 — o) + |21 = Toga |2
= |lzn — 21]|* — 221 — Tp, 21 — ) — 2(T1 — T, Ty — Tg1)
= 2|

lzn = 21l* = 2f|2 — 21 ]* + [la1 — 2 ||®

—llzn = 21 + |21 = 2|1
Since lim,, . ||z, — zo|| exists, we obtain

lim ||z, — Zp41]| = 0. (22)

n—oo

On the other hand, z,; € C,,1 C C,, imply that
120 = Znia |l < |70 — Tpga|l — 0 as n — oo (23)

Further, we get |z, — 2a|| < |20 — Topal| + (|20 — 24]]-
From (22) and (23), we have

lim ||z, — z,|| = 0. (24)

n—oo

Next, we show that lim,, . ||z, — u,|| = 0. For p € ©. From (13), (10) and
by (ii), we have

125 _pH2 = |lan(zn —p) + (1 — an)(Skwn —p)||2
anllzn = pl* + (1 = @) | Sewn = plI* = an(l = an)[lon — Spw,|®
Q| = plI* + ( Mwn = plI* = an(l = an)llzn — Spw,[[25)
||z — p||2 + (1 — an)lun — p||2

anllzn = plI* + (1 = )|z — pl* = 2r8(| Bz, — Bp||®
+72]| Bp — B, %] (26)
= |lzu = pl|* + d(e = 28)|| Bz, — Bp|*,

1—a,

VAN VANRVA
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and hence
d(26 — e)|| Bz, — Bp|* < |lan — plI* = Iz — plI?
= |lzn — 2ull(lzn — pIl + 120 — pI]).

From (24), we have lim,,_,« || Bx,,— Bp|| = 0. From remark 2.1 that for A\, < 203
then I — r, B is nonexpansive, for all n € N, T, is firmly nonexpansive and
by using Lemma 2.4, we have

Hun - p”2 = ||Trn(xn - TnBIn) - TT’n(p - T’an)||2

<(xn - Tann) - (p - Tan)’ Up — p>
1
5 l(@n = raBa) = (p — ra Bp) || + s — plf?

—l[(@n = rnB2y) = (p — 1 Bp) — (un —p)|I*)

IN

1

< Sl =pI” + lun = plI* = (20 = wn) = ru(Bra — Bp)|*)
1

= S(lzn =PI+ lwn = plI* = flwn = unll”

Thus, we obtain

Hun_pH2 < ||z, _pHQ — |7y _unHQ"i"an@n_um Bz, — Bp) _TZHan_BpHQ'
(27)
From (27), we have

lzn = pII* = llom(zn —p) + (1 = @) (Skw, — p)|I”
= apllzn — plI* + (1 — an)|Skwn — pII° — an(1 — a2 — Spuwn]®
< apllzn = plP + (1= ap)|lw, — pl? (28)
< agllen = pl* + (1 = an)|lun — pl®
< O‘nHIn_p”2 (1_O‘n)[||xn_p||2_ Hxn—unH2
+-2r{x, — Uy, Bz, — Bp) — r2||Bx, — Bp||?] (29)
< Nl =l = (1= an)llzn — unl® + 2rp )20 — wn||| Bz, — Bpll,

it follows that

(1= a)llzn — wa® (1= o) [l — uall*
1z = pII* = 120 = pII* + 2rull20 — wall| Bz — Bp|
[z = 2zl (l2n = pll = 120 — pI])

+2r, ||z, — ||| Bz, — Bp||.

IA A CIA

Using (24) and || Bz, — Bp|| — 0, we have
lim ||z, — u,|| = 0. (30)

n—oo
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Hwn - pH2 = Hﬁn(skyn - p) + (1 - Bn)(yn - p)”2
= BullSkyn — p”2 + (1= 8u) |y —p||2 — Bn(L = Bu)llyn — Skyn||2

IN

Y0

Bullyn — pH2 + (1 = Bu)lyn — pH2 — Bn(1 = B)llyn — Sk-ynH2
_p||2_ﬁn(l_ﬁn)”yn_skyn||2v (31>

From (28) and (31) we also have

12 — pII®

VAN VAN VARRVAN

it follows that

(1 - a)k(l - a)Hyn - Sk:ynH2

From (24), we have

an|zn — plI* + (1 — an) [|wy — pl?
|20 — pH2 + (1 - ay)
)

1y = pII* = Ba(1 = Bu)llyn — Skyall’]  (32)

|

[
||z, — p||2 + (1 — an)|lzn — p||2 — (1= an)Bu(1 = Bo)llyn — Sk:ynH2
2 = pII* = (1 = ) Ba(1 = Ba) llyn — Sk,

< (1= 0ay)Bu(1— ﬁn)Hyn - Sk:ynH2
< Nlzw = plI? = Iz — plI?
< Nlon = zall(lzn — pll + [[20 — pl)-

Next, we show that lim, . ||u, — yn|| = 0. Consider

lyn —pl> =

IN

IN

IN

| Pe(un — AnAuy,) — Po(p — )\nAp)HQ

[(un — AnAuy) — (p — /\nAp)||2

[(un — p) — An(Auy — Ap)”2

[wn = pII* = Aaun — p, Auy, = Ap) + A2 || Au, — Apl|?
2 = plI* = 2Xna]| A, — Ap||* + X || Au,, — Apl|?
20 = plI* + An (Ao — 20) || Ay, — Apl|?

2 = pII* + b(c — 2a)|| Au, — Ap]|*.

From (32) and (ii), we have

lzo —pI* < anllen —plI* + (1 = a)llyn — plI* = (1 = @) Ba(L = Ba) lyn — Seynll”

<
<

it follows that

(1 —a)b(2a — o)||Au,, — ApH2

anllzn = plI* + (1 = o) llzn — plI* + b(c — 2a) || Au,, — Apl|’]
= plI* + (1 = )bl — 20) || Auy, — Apll?,

(1 — a,)b(2a — ¢)|| Au,, — Ap)|?
= pII* = ll20 — Pl
[2n = zal[(ll2n = pIl + 120 = pI)-

IAIAIA
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From (24), that

Y [ Au, — Apl] = 0. (34)
From (6), we have
lyn = pII* = [1Pe(un = AnAun) = Po(p = A Ap)|*

IN

((un = AnAuy) = (p = AnAp), Yo — D)

(s = M) — (0= M)+ 1 —

~[[(tn = AnAun) = (p = AnAp) = (ya — p)II”}

< Ul = 0+ e = 2l ~ 1t~ ) — An(Au — Ap)|}

1
= S{llun = pl” + llyn = 21 = llun = yl* + 200 {un = Yo, Au — Ap)
—all Auy, — Apl[*},
so, we obtain
[y = II* < lltn = pI* = [[tn = yall? +2X0 (0 — Y, Ay — Ap) — A7|| Aw,, — Ap] .
(35)
From (12), (32), (35) and (i) we have

Hzn - p”2 = O‘nHIn - p||2 +(1— an)”ﬁ% - p||2 - (1- O‘n)ﬁn(l - ﬁn)Hyn - Sk:ynH2

< ol = pl* 4+ (1= an)[llun — plI* = llun — ynll®
+2)\n<un — Yn, Aun - Ap) - )‘iHAun - ApHQ]
< O‘nHIn - p||2 +(1— O‘n)Hxn - p||2 — (11— an)”“ﬂ - yn||2

+(1 = an) 2, ||uy — pl|||Au, — Apl|
< |z, - pH2 — (1 —ap)||un — ynH2 + 2\t — yull | Au, — Apl],

it follows that
(1 - O‘ﬂ)”“ﬂ - ynH2

<
< llan = pl* = llza = pI* + 2X0llun — || v — Ap]
< len = znll(len = pll + 120 = I1) + 220 llun — plll[Aun — Apl],

(1= a)llun — yull®

From (i), (24) and (34), we obtain
lim ||u, — ynl| = 0. (36)

n—oo

Next, we show that lim,, . ||Sku, — u,|| = 0, consider
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From (36) and (33) we obtain that
dim [ Skun — un | = 0. (37)

Since {uy,,} is bounded, there exists a subsequence {um]} of {u,,} such
that u,, — w. Without loss of generality, we can assume that u,, — w. Since

C is closed and convex, w € C. Next, we show that w € F. First, we show
that w € VI(C, A). Define,

_ J Av+ Nev, veC,

ro-{ e (39)

Then, T is maximal monotone. Let (v,u) € G(T). Since u — Av € Ngv
and y, € C, we have (v — y,,u — Av) > 0. On the other hand, from y, =
Po(u, — ApAuy,), we have (v — ypn, yn — (u, — N\yAuy,)) > 0, that is,

<U — Yn, yn; o + Aun> Z 0.

Therefore, we have

<U - yni: u> 2 <U - ynw AU>

I
<
<
S
N
<
N
<
&
<
&
>
3
£
&
\/

e — Un,
= <U - ynﬁ AU - Ayﬂq) + <U - ynw AyTLZ - Aunz> - <U - ynw %>

i

= <U = Ynis AYni — Aum) - <U — Yni> w>,

Since lim,, . ||y — un|| = 0 and A is Lipschitz continuous, we obtain
(v —w,u)y > 0. (39)

Since T' is maximal monotone, we have w € T'0 and hence w € VI(C, A).
Next, we show that w € EP. It follows by (9) and (A2) that

1

n

and hence

<Bl‘ni, Yy — um) + <y — Un,, Zi) Z F(ya um) (4())
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Put y, = ty+ (1 —t)w for all t € (0,1] and y € C. Since y € C and w € C, we
have y; € C. So, from (30), we have

<yt_uni7 B:Ut) - <yt_uni7 B:Ut) =02> _<yt_uni7 anz> - <y_unm Mzr;nzxnz> +
F(yt, um)
and hence

<yt — Uny;, Byt) > <yt — Uny;, Byt) - <yt = Uny;, me> - <y = Un,, %) +
F(ys, um)

= <yt - umaByt - Bunz> + <yt - uniaBum - me> - <y — Un,, uner_fnz> +
F(yt: um)
Since ||un, — || — 0, it follows that ||Bu,, — Bx,,|| — 0. Further, from
monotonicity of B, we get (y; — un,;, By: — Buy,) > 0. So, from (A4), we have

(ye —w, Byy) > F(ys, w), (41)

as i — oo. From (A1), (A4) and (41), we have
0= F(ys,y) <tF(ye,y) + (1 =) F(ys, w) < tF(ys, y) + (1 —)(ys —w, Bys)
<tF(yny) + (1= 0ty — w, Byy)
and hence 0 < F(y;,y) + (1 — t){y — w, By;). Letting t — 0, we have for each
yeC,0< F(w,y)+ (y — w, Bw). This implies that w € EP. Next, we show
that w € F(S). From Lemma 2.2, we have F(S;) = F(S), we may assume
that w # Spw, by Opial’s condition, we have

liminf ||u,, —w| < liminf||u,, — Spw|| = liminf || (w,, — Sktn,) + (Sktn, — Skw)]|
= liminf ||Sgu,, — Spw| < liminf ||u,, — w||.
This is a contradiction. So, we have w € F(Sy) = F(S). Therefore w € F.
Finally, we show that z,, — 2, where z = Ppx;. Since x,, = Pg,r; and

z € F C C,, we have ||z, —x1]| < |z — x1]]. It follows from 2’ = Ppz; and
the lower semicontinuity of the norm that

12" =1 || < [lz=1 ] < liminf [z, —21]] < limsup [lzn, —21|] < [['=21]. (42)

71— 00
Thus, we obtain that limy_, ||z, — 21]| = ||z — 21]| = ||z’ — 21||. Since {z,,}
is an arbitrary subsequence of {z,}, we can conclude that {z,} converges
strongly to z, where z = Prx;. o

Theorem 3.2 [3] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F : C' x C — R be a bifunction satisfying (A1)-(A4). Let A
be an a-inverse-strongly monotone mapping of C' into H and let B be an [3-
wmverse-strongly monotone mapping of C into H, respectively. Let S : C — C
be a k-strictly pseudo-contractive self mapping for some 0 < k < 1. Defined
a mapping Sy : C — C by Spx = kx + (1 — k)Sx for all x € C. Assume
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that F := F(S)NVI(C,A)NEP # (. Let the sequences {x,} and {u,} be
generated by C; = C C H, v1 = Poxg;

x, € C,

C, =0,

F(tn, y) + (BEn,y — ttn) + 7Y — tn, 4y — 20) >0, Yy € C

Yn = Po(u, — A Auy,) (43)

Zn = OpTn + (1 - an)skynu
Cnp1={2€Cp i |lzn — 2| < lon — 2|},
Tg, n >0

anrl - Pcn+1

where u,, = T,, (x, — ro,Bz,) and {r,} C (0,00). Assume that the control
sequences {a, } C [0,1],{\.} C (0,2«) and {r,} C (0,20) satisfy the following
conditions: (i) k < ap, <a <1, (it) 0<b< A\, <c<2aand0<d<r,<
e < 283, for some a,b,c,d,e € R.

Then {x,} converge strongly to z, where z = Ppxg.

Proof. If 5, =0 for all n € N, by Thm 3.1, we obtain the desired result. ¢

Corollary 3.3 [4, Theorem 3.1] Let C' be a nonempty closed convex subset
of a real Hilbert space H. Let F': C' x C'— R be a bifunction satisfying (A1)-
(A4). Let B be an (-inverse-strongly monotone mapping of C' into H. Let
T :C — C be a k-strictly pseudo-contractive self mapping for some 0 < k < 1
such that © == F(T)NVI(C,A)NEP # (. Let the sequences {x,} and {u,}
be generated by Cy = C' C H, v1 = Poxy;

u, € C,

F(tn,y) + (Btn,y — tn) + (Y = tn, up — ) >0, Yy € C

Zn = apxy + (1 — @) Suy, (44)
Cor1 ={2 € Cp: [|zn — 2]l < [lzn — 2|},

Tpy1 = Po, 0o, 120

where u, = T, (x, —r,Bxy,), S = kx + (1 — k)T for all x € C and {r,} C
(0,00). Assume that the control sequences {a,,} C [0,1] and {r,} C (0,203)
satisfy the following conditions:

(1) 0<k<a,<a<l,

(1i) 0 <d <r, <e<?2f, for somea,d,e € R.
Then {x,} converge strongly to z, where z = Pgxy.

Proof. Put A =0, 8, = 0 for all n € N, and from Lemma 2.2, we have
F(S) = F(T) and Theorem 3.1, we obtain the desired result. o
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4 Applications

In this section, we obtain some strong convergence theorems by applying F' = 0
and 3, =0 for all n € N in Theorem 3.1.

Theorem 4.1 Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let F' : C' x C — R be a bifunction satisfying (A1)-(A4). Let A
be an «a-inverse-strongly monotone mapping of C' into H and let B be an [3-
inverse-strongly monotone mapping of C' into H, respectively. Let S : C' — C
be a nonexpansive mapping such that F := F(S)NVI(C,A)NEP # 0. Let
the sequences {x,} and {u,} be generated by

1 = O,

¢, =0,

F(tn, y) + (Bn, y = tn) + 7=y — U, up — ) >0, Yy € C

Yn = Po(un — AnAuy,) (45)

Zp = QpTp + (1 - Oén)Syn,
Cot1 ={2 € Cp: [|zn — 2[| < [lzn — 2|},
1, n>1

anrl = Pcn+1

where u,, = T,, (x, — ro,Bx,) and {r,} C (0,00). Assume that the control
sequences {an, } C [0,1],{\.} C (0,2«) and {r,} C (0,20) satisfy the following
conditions:

(i) k<o, <a<l,

(1)) 0<b< N\, <c<2aand0<d<r, <e<2f, for somea,b,c,d,e € R.
Then {x,} converge strongly to z, where z = Ppxy.

Theorem 4.2 Let C' be a nonempty closed convexr subset of a real Hilbert
space H. Let A be an a-inverse-strongly monotone mapping of C' into H and
let B be an (-inverse-strongly monotone mapping of C' into H, respectively.
Let S : C — C be a k-strictly pseudo-contractive for some 0 < k < 1. Defined
a mapping S : C — C by Spx = kx + (1 — k)Sx for all x € C. Assume that
F:=FS)NVIC,A)NVI(C,B) # 0. Let the sequences {x,} and {u,} be
generated by C; = C C H, v1 = Poxg and u,, € C;

(BZp,y — Un) + =y — tup, u, — x,) >0, Vy € C

r

Zn = QpXy + (1 - CVTL)Skyna (46>
Cor1 ={2 € Cp: [|zn — 2]l < [lzn — 2|},
Tny1 = Po,, %o, 120

where {r,} C (0,00). Assume that the control sequences {a,} C [0,1],{\,} C
(0,2a) and {r,} C (0,20) satisfy the following conditions:
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(1) k<a,<a<l,
(1)) 0<b< N\, <c<2aand0<d<r,<e<2f, for somea,b,c,d,e€R.
Then {x,} converge strongly to z, where z = Ppxy.
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