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Abstract

An enlargement of the concept of the distance between three points
was given in [3], where B. C. Dhage studied generalized metric spaces.
In the present paper we study some properties of a class of general-
ized probabilistic metric space and give some examples of such spaces.
Some relationships between deterministic and probabilistic versions are
stated.
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1 Introduction

The theory of metric spaces is of a fundamental importance in mathematics,
computer science, statistics etc. Many problems can be solved by finding of
appropriate metrics to make the measurements. Many generalizations of metric
spaces were given and many papers and books have been published in this area
[8-9], [11]. The positive number expressing the distance between two points is
replaced by a probabilistic distribution function (in the sense of probabilistic
theory [11]), or by a fuzzy set (in the sense of fuzzy metric spaces theory [2]).
The distance between two points was also extended to three or more points
[3-6]. These subjects was developed in various directions by a close connection
with another areas of the mathematics. Different applications in engineering
science and economics were also given. In the present paper we study some
properties of a class of generalized probabilistic metric spaces and we give
some examples of such spaces. Some relationships between deterministic and
probabilistic versions are stated.
Let R denotes the set of real numbers, R+ = {x ∈ R : x ≥ 0} and I = [0, 1]
the closed unit interval. The following system of axioms was proposed in [3]
by B. C. Dhage for a distance between three points.
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Definition 1.1 Let X be a non empty set. A generalized metric space is a
pair (X, d), where d is a mapping from X × X × X into R+, which satisfies
the following conditions :

(1) d(x, y, z) = 0 if, and only if, x = y = z;
(2) d(x, y, z) = 0 if at least two of x, y, z are equal;
(3) d(x, y, z) = d(x, z, y) = d(y, z, x), for every x, y, z in X;
(4) d(x, y, z) ≥ d(x, y, u) + d(x, u, z) + d(u, y, z),

for every x, y, z, u in X.

This system of axioms gives appropriate properties for a distance between three
points which, in a geometrically case, measures the perimeter of the triangle
having as vertices these three points.

2 Preliminary Notes

In [10] K. Menger proposed a probabilistic concept of distance by replacing
the number d(p, q), the distance between points p, q by a distribution function
Fp,q. This idea led to a large development of probabilistic analysis [7], [11].
A mapping F : R → I is called a distribution function if it is non decreasing,
left-continuous with inf F = 0 and supF = 1. D+ denotes the set of all dis-
tribution functions for that F (0) = 0, which are named distance distribution
functions. Let F, G be in D+ , then we write F ≤ G if F (t) ≤ G(t), for all
t ∈ R . If a ∈ R+ then Ha will be the element of D+, for which Ha(t) = 0
if t ≤ a and Ha(t) = 1ift > a . It is obvious that H0 ≥ F , for all F ∈ D+.
The set D+ will be endowed with the natural topology defined by the modi-
fied Lévy metric dL [11], named the topology of weak convergence. For every
F, G ∈ D+ we have the following properties :

(5) F (t) > 1 − t if, and only if, dL(F, H0) < t.
(6) If F ≥ G then dL(G, H0) ≤ dL(F, H0).
(7) The metric space (D+, dL) is compact, and hence complete.

A t-norm T1 is a two place function T1 : I × I → I, which is associative,
commutative, non decreasing in each place and such that T1(a, 1) = a, for all
a ∈ [0, 1]. A triangle function τ1 is a binary operation on D+ which is commu-
tative, associative and for which H0 is the identity, that is, τ1(F, H0)) = F , for
every F ∈ D+ [11]. Let T1 be a t-norm and let τ1 be a triangle function. In the
following sections we will consider the following functions T : [0, 1]3 → [0, 1]
given by T (a, b, c) = T1(T1(a, b), c) and τ : [D+]3 → D+ given by τ(F, G, H) =
τ1(τ1(F, G), H). We name T a th-norm and τ a th-function. They have appro-
priate properties for writing a triangle inequality in generalized probabilistic
metric spaces.
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3 Main Results

Definition 3.1 A generalized probabilistic metric space is an ordered triple
(X,F , τ), where X is a non empty set, F is a function defined on X ×X ×X
with values into D+, τ is a th-function and the following conditions are satisfied

(8) Fx,y,z = H0 if, and only if, x = y = z,
(9) Fx,y,z = Hx,z,y = Hy,z,x, for every x, y, z in X.
(10) Fx,y,z ≥ τ(Fx,y,u, Fx,u,z, Fu,y,z), for every x, y, z, u in X.

If the probabilistic triangle inequality (10), named also a tetrahedral inequality,
is given by a th-norm T :

(11) Fx,y,z(t) ≥ T (Fx,y,u((t1), Fx,u,z(t2), Fu,y,z(t3)), for every t1, t2, t3 ∈
R+ such that t1 + t2 + t3 = t, then (X,F , T ) is called a generalized Menger
metric space.

Remark 3.2 It is easy to check that, every generalized metric space (X, d)
can be made, in a natural way, a generalized Menger metric space by setting
Fx,y,z(t) = H0(t − d(x, y, z))(t), for every x, y, z ∈ X, t ∈ R+ and T = Min.

Proposition 3.3 If T is a left continuous th-norm and τT is the th-function
defined by τT (F, G, H)(t) = sup

t1+t2+t3<t
T (F (t1), G(t2), H(t3)), t > 0 then,

(X,F , τT ) is a generalized probabilistic metric space if and only (X,F , T ) is a
generalized Menger metric space.

Example 3.4 Let (X, d) be a generalized metric space and G a distance
distribution function distinct from H0. If we set F(x, y, z)(t) = G(t/d(x, y, z)),
for all x, y, z in X, t ∈ R and T = Min then, the triple (X, d, F ) induces a
generalized probabilistic metric space (X,F , T ). We have made the convention
that G(t/0) = G(∞) = 1 for t > 0 and G(0/0) = G(0) = 0. (X,F , T ) is
called the simple generalized probabilistic metric space generated by (X, d) and
G. If a > 0 and G = Ha then Fx,y,z(t) = Had(x,y,z)(t). So, (X, d, Ha) deter-
mines a generalized metric space (X, da) (da(x, y, z) = ad(x, y, z)) homothetic
to (X, d). Thus, generalized metric spaces are special cases of generalized prob-
abilistic metric spaces, and each probabilistic distribution function induces on
a generalized metric space a generalized probabilistic metric.

Example 3.5 Let (Ω,K, P ) be a complete probability measure space, let
(L, ‖.‖) be a separable Banach space and let (L,B) be the measurable space
under the σ-algebra B of Borel subsets of (L, ||.||). We denote by X the linear
space of all almost surely equal class of random variables defined on (Ω,K, P )
with values in (L,B)[1].
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For all x, y, z ∈ X, t ∈ R+, we define the mapping F : X3 → D+ given by
F(x, y, z) = Fx,y,z(t), where

Fx,y,z(t) = P ({ω ∈ Ω : ||x(ω)− y(ω)||+ ||x(ω)− y(ω)|| + ||y(ω)− z(ω)|| < t})
The triple (X,F , Tm) verifies the axioms of a generalized Menger metric space
(Tm(a, b, c) = Max{a + b + c − 2}).

Example 3.6 Let (X, d) be a generalized metric space. We define the map-
ping F : X3 → D+ given by Fx,y,z(t) = H0 if x = y = z and Fx,y,z(t) =

t
t+d(x,y,z)

otherwise. Then the triple (X,F , T ) verifies the axioms of a general-

ized Menger metric space for the th-norm (T (a, b, c) = Min{a, b, c}.
Definition 3.7 A sequence {xn} of points in a generalized probabilistic met-

ric space (X,F , τ) is said to be convergent to a point x ∈ X if for every t > 0
there exists n0 ∈ N such that

Fxn,xm,x(t) > 1 − t,

for all n, m ≥ n0.

Definition 3.8 We say that a sequence {xn} of a generalized probabilistic
metric space (X,F , τ) is a F-Cauchy sequence if, for every t > 0 there exists
n0 ∈ N such that

Fxn,xm,xp(t) > 1 − t,

for all m, p > n ≥ n0.

Definition 3.9 A self mapping f of a generalized probabilistic metric space
(X,F , T ) is said to be continuous if fxn → fx, whenever xn → x.

Proposition 3.10 Let {xn} be a sequence of points in a generalized prob-
abilistic metric space (X,F , T ) under a continuous th-norm T . Then :

(a) xn → x if, and only if, Fxn,xm,x(t) → H0(t), for all t > 0.
(b) {xn} is a F-Cauchy sequence if, and only if, Fxn,xm,xp(t) → H0(t),

for all t > 0.

The following theorem shows us that, under some th-norm, on a generalized
probabilistic metric space can be defined a deterministic generalized metric
and the topologies induced are equivalent.

Theorem 3.11 Let (X,F , T ) be a generalized Menger metric space under
a continuous th-norm T such that T ≥ Tm and let consider the mapping d :
X3 → R defined by

d(x, y, z) = sup{ε ∈ [0, 1) : Fx,y,z(ε) ≥ 1 − ε}.
Then we have :
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(a) d(x, y, z) < t if and only if Fx,y,z(t) > 1 − t.
(b) (X, d) is a D-metric space.
(c) The convergence under the generalized probabilistic metric F

is equivalent with convergence under the generalized metric d.

Proof. (a) If 1 < t, then d(x, y, z) ≥ 1 < t and also Fx,y,z(t) ≥ 0 > 1 − t.
Suppose d(x, y, z) < t ≥ 1 and choose δ such that d(x, y, z) < δ < t ≥ 1. Then
Fx,y,z(t) ≥ Fx,y,z(δ) > 1 − δ > 1 − t.

Conversely, suppose Fx,y,z(t) > 1 − t, where 0 < t ≥ 1. Then there exists
0 < δ0 < t such that d(x, y, z) < δ0 < t. If d(x, y, z) > δ for each δ < t then
Fx,y,z(δ) ≥ 1 − δ for each δ < t. This implies that Fx,y,z(t) = lim

δ→t−
Fx,y,z(δ) ≥

lim
δ→t−

(1− δ) = 1− t. So, we have a contradiction, hence there exists 0 < δ0 < t

such that d(x, y, z) < δ0 < t.
(b) If x = y = z then Fx,y,z = H0 and d(x, y, z) = sup{0} = 0. Inverse

implications are also true. So d(x, y, z) = 0 ⇔ x = y = z. The symmetry of
Fx,y,z is equivalent with that of d(x, y, z).
Now, we show that d satisfies the tetrahedral inequality for a generalized met-
ric. It is sufficient to show that d(x, y, u) < ε1, d(x, u, z) < ε2, d(u, y, z) < ε3,
implies d(x, y, z) < ε, where ε1 + ε2 + ε3 = ε. If d(x, y, u) < ε1, d(x, u, z) < ε2,
d(u, y, z) < ε3 then there exists δi, i = 1, 2, 3 such that d(x, y, u) < δ1 < ε1,
d(x, u, z) < δ2 < ε2, d(u, y, z) < δ3 < ε3. By the inequality (12) we have :
Fx,y,z(ε) ≥ Fx,y,z(δ1 + δ2 + δ3) ≥ T (Fx,y,u(δ1), Fx,u,z(δ2), Fu,y,z(δ3)) ≥
Tm(1 − δ1, 1 − δ2, 1 − δ3) ≥ 1 − (δ1 + δ2 + δ3) > 1 − ε.
By statement (a) it follows that d(x, y, z) < ε. Thus, the mapping d satisfies
the tetrahedral inequality (4) for a generalized metric. The statement (c) fol-
lows as a consequence of (a) and (b).
In the sequel we show that a generalized probabilistic metric structure can be
induced on a arbitrary set by a function defined on that set with values into a
generalized probabilistic metric space.

Theorem 3.12 Let g be a injective mapping defined on a generalized Menger
metric space (X,F , T ) into itself. Then the following statements are true :

(a) The mapping F g defined on X×X×X with values in D+, by F g(x, y, z) =
Fg(x),g(y),g(z) is a generalized probabilistic metric on X, that is, (X,F g, T ) is a
generalized Menger metric space under the same t-norm T.

(b) If X1 = g(X) and (X1,F , T ) is a complete generalized Menger metric
space then, (X,F g, T ) is also a complete generalized Menger metric space.

(c) If (X1,F , T ) is compact then (X,F g, T ) is also compact.

Proof. We will prove only the statement (c). Let (xn)n≥1 be a sequence in X.
Then (un)n≥1 with un = g(xn) is a sequence in X1, which is a compact Menger
D-metric space. Now, we can find a subsequence {vn : n ≥ 1} ⊂ {un : n ≥ 1}
convergent to an element v ∈ X1. This is equivalent to Fvn,vm,v(t) → H0(t),
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(n, m → ∞), for every t > 0. If we set yn = g−1(vn), ym = g−1(vm) and
y = g−1(v) then, we have :

F g
yn,ym,y(t) = Fg(yn),g(ym),g(y)(t) = Fvn,vm,v(t) → H0(t), (n, m → ∞),

for every t > 0. This show us that (X,F g, T ) is a compact generalized Menger
metric space.
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