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Abstract

A graph G is (m,k)-colourable if its vertices can be coloured with m
colours such that the maximum degree of the subgraph induced on ver-
tices receiving the same colour is at most k. The k-defective chromatic
number χk(G) is the least positive integer m for which G is (m,k)-
colourable. Maddox proved that χk(G) + χk(Ḡ) ≤ 5� p

3k+4� whenever G
is a triangle-free of order p and k ≥ 0 is an integer. Simanihuruk et al
proved that Maddox’s upper bound is a weak upper bound for k = 1.
In this paper a better upper bound of χk(G) + χk(Ḡ) is established
whenever G is a triangle-free graph and k = 2. Hence finding a sharp
upper bound of χk(G) + χk(Ḡ) is an open problem whenever G is a
triangle-free graph.
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1 Introduction

All graphs considered in this paper are finite, undirected with no loops or
multiple edges. For undefined concepts and notation we refer the reader to
Chartrand and Lesniak [6]. If U is a subset of the vertex set V (G) of a graph
G then G[U ] denotes the subgraph induced on U . For a vertex u of G, dG(u)
denotes the degree of u and NG(u) is the set of all neigbours of u in G.

Let k be a non-negative integer. A subset U of V (G) is said to be k-
independent if the maximum degree in G[U ] is at most k. Note that a 0-
independent set is an independent set in the usual sense. A graph G is (m, k)-
colourable if there exists an assignment of m colours, say 1, 2, ..., m, to the
vertices of G, one colour to each vertex, such that the subgraph induced on
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the set of vertices that are assigned the same colour is k-independent. This type
of colouring is sometimes referred to as k-defective colouring in the literature.
Clearly any (m, k)-colouring of G produces a partition V1, V2, · · · , Vm of V (G)
such that Vi is k-independent for each i. The sets Vi are referred to as the
colour classes. The least integer m for which G is (m, k)-colourable is called
the k-defective chromatic number χk(G) of G. Note that χ0(G) is the usual
chromatic number of G. It is easy to see that χk(G) ≤ � p

k+1
�, where p is the

order of G.

The Nordhaus-Gaddum problem[16] associate with the parameter f(G) of
a graph G is to find sharp bound for f(G) + f(Ḡ) and f(G).f(Ḡ). Many
authors have established the Nordhaus-Gaddum problem associate with the
parameter f(G). For examples if f(G) is a point arboricity number a(G) of
graph G of order p then

2
√

p ≤ a(G) + a(Ḡ) ≤ p+3
2

, p ≤ a(G).a(Ḡ) ≤ (p+3
4

)2 (Mitchem [15]);

if f(G) is a point k-point partition number ρk(G) of graph G of order p then

2
√

p
f(k)

≤ ρk(G) + ρk(Ḡ) ≤ p+1+2k
k+1

,
p

f(k)
≤ ρk(G).ρk(Ḡ) ≤ (p+1+2k

2(k+1)
)2

where f(k) = 1+4
√

1+8k
2

(Lick and White [12]);

if f(G) is a clique-chromatic number χk(G, ω) of graph G of order p then

�
√

4p
R−1

� ≤ χk(G, ω) + χk(Ḡ, ω) ≤ �p+2k−5
k−2

�,
� p

R−1
� ≤ χk(G, ω).χk(Ḡ, ω) ≤ �1

2
�p+2k−5

k−2
���1

2
�p+2k−5

k−2
��

where R = R(n−1, n−1) is the Ramsey number (Achuthan [1]); and many
more.

The Nordhaus-Gaddum problem is unsolved whenever f(G) is the parame-
ter k-defective chromatic number χk(G). However partial results have been es-
tablished in the literature. Achuthan et al [2] proved that χk(G).χk(Ḡ) ≥ p

R−1

where R = 2k + 1 for k is odd or R = 2k, otherwise. The determination of a
sharp upper bound of χk(G) + χk(Ḡ) is an open problem. Some researchers
have investigated this problem.

Maddox [14] proved χk(G) + χk(Ḡ) ≤ 5� p
3k+4

� if G is a triangle-free graph
of order p. When k = 1 he improved the above bound to 6�p

9
�. Furthermore

he suggested the following conjecture for k ≥ 1: For a graph G of order p,
χk(G)+χk(Ḡ) ≤ 2+� p−1

k+1
�. This conjecture is true whenever G is triangle-free

graph and k = 1(Simanihuruk et al [18]). Hence the upper bound of Maddox
is a weak upper bound for k = 1. Therefore finding a sharp upper bound of
χk(G) + χk(Ḡ) is an open problem whenever G is a triangle-free graph.

In [2] Achuthan et al proved that Maddox’s conjecture is also true whenever
G is a P4-free graph and k = 1. Further they disproved Maddox’s conjecture
for all k ≥ 1 by constructing a graph G of order p ≡ 1(mod(k + 1)) with
χk(G) + χk(Ḡ) = 3 + � p−1

k+1
�. Achuthan et al [2] also established the following
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weak upper bound: For a graph G of order p, χk(G) + χk(Ḡ) ≤ 2p+2k+4
k+2

. For

k = 1, Achuthan et al [3] proved that χ1(G) + χ1(Ḡ) ≤ �2p+4
3

� for any graph
G of order p.

In this paper we will study the Nordhaus-Gaddum problem for 2-defective
chromatic number over the class of triangle-free graphs. We will prove that
χ2(G) + χ2(Ḡ) ≤ 2 + �p+3

3
� whenever G is a triangle-free graph of order p.

The proof depend on the characterization of the smallest order of triangle-free
graph G with χ2(G) = 3 which was established in [4].

We define f(m, k) to be the smallest order of a triangle-free graph G with
χk(G) = m. Clearly f(2, k) = k + 2. The problem of determining f(m, k)
is unsolved even for k = 0 (see Toft [19]). It is easy to see that f(3, 0) = 5.
Chvátal [7] has shown that f(4, 0) = 11. Jensen and Royle [11] have shown
that f(5, 0) = 22. We refer the reader to Avis [5], Hanson and MacGillivray [9]
and Grinstead et al [8] for related results. Simanihuruk et al [18] proved that
f(3, 1) = 9 and also completely determined the class of triangle-free graphs of
order 9 with χ1(G) = 3. Similarly Achuthan et al[4] proved that f(3,2) = 13
and also completely determined the class of triangle-free graphs of order 13
with χ2(G) =13.

In all the figures of this paper, a double line (a double dotted line) between
sets X and Y means that every (no) vertex of X is adjacent to every (any)
vertex of Y . Similarly a line (dotted line) between two vertices sets x and y
means that the edge xy is (is not) in the graph.

2 Preliminary Notes

This section provide some previous result that will be used to prove the main
results of this paper.

Hopkins and Staton [9] and Lovász [13] generalized Brook’s type result in
the following theorem.

Theorem 2.1 ([9]and [13]) For a graph G with maximum degree Δ, we have
χk(G) ≤ �Δ+1

k+1
�.

The following three theorems were established in Achuthan et al [4]

Theorem 2.2 [4] For integers k ≥ 0 and m ≥ 3, f(m, k) ≥ (k + 1)

(
m
2

)
+

m − 1.

Theorem 2.3 [4] The smallest order of a triangle-free graph G with χ2(G) =
3 is 13, that is, f(3, 2) = 13
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The proof of the main results of this paper depend on the following results.

Theorem 2.4 [4] Let G be a triangle-free graph of order 13. Then χ2(G) = 3
if and only if G is isomorphic to one of the graphs Gi, 1 ≤ i ≤ 3 shown in
Figure 1. In these figures, Gi[Aj] ∼= K3 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4.
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Figure 1: Graphs G1, G2 and G3

Maddox [14] proved the upper bound of the sum χk(G)+ χk(Ḡ) for a class
of triangle-free graph in the following theorem.

Theorem 2.5 [14] If G is triangle-free graph of order p then χk(G)+χk(Ḡ) ≤
5� p

3k+4
�.

Simanihuruk et al [18] proved that the upper bound of Theorem 2.5 is
a weak upper bound for k = 1. In this note we will also show that the
upper bound of Theorem 2.5 is a weak upper bound for k = 2. Hence the
determination of the sharp upper bound of the sum χk(G) + χk(Ḡ) for a class
of triangle-free graph is an open problem.

3 Main Results

The results of this paper depend on the improvement of the lower bound of
Theorem 2.2 for k = 2.

Lemma 3.1 For integer m ≥ 4, f(m, 2) ≥ (3m+8)(m−3)
2

+ 13.

Proof: Consider a triangle-free graph G of order f(m, 2) such that χ2(G) =
m. Let u be a vertex of degree Δ(G), A = NG(u), B = V (G) − A − {u} and
G[B] = H . Since G is triangle-free, A is independent. Also the order of H
is at least f(m − 1, 2), for otherwise, H is (m − 2, 2)-colourable. This implies
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that G is (m − 1, 2)-colourable, a contradiction to the assumption that χ2(G)
= m. Thus the order of G is f(m, 2) ≥ Δ(G) + 1 + f(m − 1, 2). Now using
Theorem 2.1, it is easy to show that Δ(G) ≥ 3(m − 1). Thus

f(m, 2) ≥ Δ(G) + 1 + f(m − 1, 2)

≥ 3(m − 1) + 1 + f(m − 1, 2).

Proceeding in this manner we have

f(m, 2) ≥ 3[(m − 1) + (m − 2) + ... + 3] + (m − 3) + f(3, 2)

≥ (3m + 8)(m − 3)

2
+ f(3, 2).

Now applying Theorem 2.3 in the last inequality we have the required inequal-
ity. This completes the proof of the lemma.

Next we will state the main result of this paper.

Theorem 3.1 Let G be a triangle-free graph of order p. Then χ2(G)+χ2(Ḡ) ≤
2 + �p+3

3
�

Proof: First let χ2(G) ≤ 2. If χ2(G) = 1 then χ2(Ḡ) ≤ �p
3
�. Hence χ2(G) +

χ2(Ḡ) ≤ 2 + �p+3
3
�. If χ2(G) = 2 then G has K(1, 3). The vertices of K(1, 3)

is 2-independent in Ḡ and therefore χ2(Ḡ) ≤ �p−4
3
� + 1 = �p−1

3
�. Hence

χ2(G) + χ2(Ḡ) ≤ 2 + �p+3
3
�.

From now on we assume χ2(G) ≥ 3. We prove the theorem by induction
on p. Let G be a triangle-free graph of order 13. By Theorem 2.4 we have
χ2(G) ≤ 3. Thus χ2(G) = 3. Now by Theorem 2.4, G is isomorphic to one
of the graph Gi, 1 ≤ i ≤ 3 of Theorem 4. It is easy to see that χ2(Ḡi) ≤ 3.
Hence χ2(Ḡ) ≤ 3. Therefore χ2(G) + χ2(Ḡ) ≤ 2 + �p+3

3
�.

Next let p ≥ 14. We make the induction hypothesis that the theorem is
true for every triangle-free graph of order less than p and then prove it for any
triangle-free graph of order p.

Case 1: There is a subset L of cardinality 13 of V (G) such that χ2(G[L]) =
3.

By Theorem 2.4, G[L] is isomorphic to one of the graph Theorem 2.4. Each
Gi , 1 ≤ i ≤ 3 has a subgraph H = G1[A1∪A2∪A3∪A4]. By Theorem 2.3 and
minimality of f(3, 2), we have that χ2(H) ≤ 2, since the number of vertices
of H is 12. It is also easy to verify that χ2(H̄) ≤ 2. Hence χ2(G) + χ2(Ḡ) ≤
χ2(G−H)+χ2(Ḡ−H)+χ2(H)+χ2(H̄) ≤ 2+ �p−12+3

3
+�+2+2 ≤ 2+ �p+3

3
�.

This proves the theorem in this case.

Case 2: For every subset L of cardinality 13 of V (G) we have χ2(G[L]) ≤ 2.
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Since χ2(G) ≥ 3, G contains a K(1, 3). Let t be the largest number of
vertex disjoint K(1, 3) in G and Q1, Q2, ..., Qt are the t vertex disjoint K(1, 3)
in G. Let M =

⋃t
i=1 V (Qi). Note that V (G) − M is 2-independent in G and

the subgraph Ḡ[V (Qi)] is K(1, 3)-free for each i. Thus

χ2(Ḡ[M ]) ≤ t (1)

Since Ḡ − M is a graph of order p − 4t, we have

χ2(Ḡ) ≤ χ2(Ḡ[M ]) + χ2(Ḡ − M) ≤ t + �p − 4t

3
� = �p − t

3
� (2)

Also

χ2(G) ≤ χ2(G[M ]) + χ2(G − M) ≤ χ2(G[M ]) + 1 (3)

First let t ≥ 24 and let N =
⋃24

i=1 V (Qi). Note that |N | = 96. Using Lemma
3.1 we have f(9, 2) ≥ 118. Therefore from the minimality of f(9, 2) and the
fact that |N | = 96, we have χ2(G[N ]) ≤ 8. Since V (Qi) is 2-independent
in Ḡ for each i, 1 ≤ i ≤ 24, it follows that χ2(Ḡ[N ]) ≤ 24. Now χ2(G) ≤
χ2(G[N ]) + χ2(G − N) and χ2(Ḡ) ≤ χ2(Ḡ[N ]) + χ2(Ḡ − N). Thus χ2(G) +
χ2(Ḡ) ≤ χ2(G[N ]) + χ2(Ḡ[N ]) + χ2(G − N) + χ2(Ḡ − N) ≤ 8 + 24 + χ2(G −
N) + χ2(Ḡ − N) ≤ 32 + χ2(G − N) + χ2(Ḡ − N). By induction hypothesis,
χ2(G−N)+χ2(Ḡ−N) ≤ �p−4.24+3

3
�+2. Thus χ2(G)+χ2(Ḡ) ≤ 32+�p−4.24+3

3
�+

2 = 2 + �p+3
3
� . This prove the theorem when t ≥ 24. Next we will consider

the case 1 ≤ t ≤ 23. From (2) and (3) we have

χ2(G) + χ2(Ḡ) ≤ χ2(G[M ]) + 1 + �p − t

3
� (4)

By Lemma 3.1 we have f(4, 2) ≥ 23, f(5, 2) ≥ 36, f(6, 2) ≥ 52, f(7, 2) ≥ 71
and f(8, 2) ≥ 93, f(9, 2) ≥ 118 and by Theorem 2.3 we have f(3, 2) = 13.

Notice that |M | = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68,
72, 76, 80, 84, 88, 92 respectively for t = 1, 2, ..., 23. Using these facts and the
minimality of f(3, 2), f(4, 2), f(5, 2), f(6, 2) and f(7, 2) we have

χ2(G[M ]) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if t = 1, 2, 3;
3 if t = 4, 5;
4 if t = 6, 7, 8;
5 if t = 9, 10, 11, 12;
6 if t = 13, 14, ..., 17;
7 if t = 18, 19, ..., 23.

Combining these last inequality with inequality (4) we have the required
inequality for each t = 1,2,...,23. This completes the proof of the theorem.
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Remark: For k = 2 and p ≥ 11 it is not difficult to show that 2 + �p+3
3
� ≤

5� p
10
�. Hence the upper bound of Theorem 3.1 is better than that of Theorem

2.5 for k = 2 and p ≥ 11.
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