Simplex Codes of Type γ over $F_3 + vF_3$

Yasemin Cengellenmis

Department of Mathematics
Trakya University
Edirne, Turkey
ycengellenmis@yahoo.com

Mohammed M. Al-Ashker

Department of Mathematics Islamic University of Gaza P.O. Box 108, Gaza, Palestine mashker@mail.iugaza.edu

Abstract

In this paper, it is constructed simplex linear codes over the ring $F_3 + vF_3$ of type γ , where $v^2 = 1$ and $F_3 = \{0, 1, 2\}$ and obtained the minimum Hamming, Lee and Bachoc weights of this codes.

Mathematics Subject Classification: 94B05

Keywords: Simplex codes

1. Introduction

Respectively, in [1] and [2], simplex codes of types α and β over the ring $F_2 + uF_2$ where $u^2 = 0$ and the ring $\sum_{n=0}^{s} u^n F_2$ were given as generalizations and extensions of simplex codes over Z_4 and Z_{2^s} . In [3], it was constructed simplex linear codes over the ring $F_2 + vF_2$ of type α and β , where $v^2 = v$ and $F_2 = \{0,1\}$. It was also determinated some of their properties. In [6], it was constructed simplex codes over the ring $F_3 + vF_3$ of type α , where $v^2 = 1$ and $F_3 = \{0,1,2\}$ and it was obtained the minimum Hamming, Lee and Bachoc weights of this codes.

In this paper, it is constructed simplex codes over the ring $F_3 + vF_3$ of type γ , where $v^2 = 1$ and $F_3 = \{0, 1, 2\}$ and obtained the minimum Hamming, Lee and Bachoc weights of this codes.

2. Preliminaries

The alphabet $R = F_3 + vF_3 = \{0, 1, 2, v, 2v, a = 1 + v, b = 2 + v, c = 1 + 2v, d = 2 + 2v\}$ where $v^2 = 1$ and $F_3 = \{0, 1, 2\}$ is a commutative ring with nine elements. The elements 1, 2, v, 2v are units. Addition and multiplication operation over R are given in the following tables,

+	0	1	2	V	2v	8	a	b	c	d
0	0	1	2	v	2v	ŧ	a	b	c	d
1	1	2	0	a	c	ŀ)	v	d	2v
2	2	0	1	b	d	7	7	a	2v	c
V	V	a	b	2v	0	(3	d	1	2
2v	2v	c	d	0	v]	L	2	a	b
a	a	b	v	c	1	(d	2v	2	0
b	b	v	a	d	2	2	v	\mathbf{c}	0	1
c	c	d	2v	1	a	2	2	0	b	v
d	d	2v	c	2	b	()	1	V	a
	0	1	2	v	2v	a	b	c	d	
0	0	1 0	2 0	v 0	2v 0	a 0	b 0	0	d 0	
									1	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0 v	0 2v	0 a	0 b	0 c	0 d	
0 1 2	0 0	0 1 2	0 2 1	0 v 2v	0 2v v	0 a d	0 b c	0 c b	0 d a	
0 1 2 v	0 0 0	0 1 2 v	0 2 1 2v	0 v 2v 1	0 2v v 2	0 a d a	0 b c	0 c b	0 d a d	
0 1 2 v 2v	0 0 0 0	0 1 2 v 2v	0 2 1 2v v	0 v 2v 1 2	0 2v v 2 1	0 a d a d	0 b c c b	0 c b b c	0 d a d a	
0 1 2 v 2v a	0 0 0 0 0	0 1 2 v 2v a	0 2 1 2v v d	0 v 2v 1 2	0 2v v 2 1	0 a d a d d	0 b c c b	0 c b b c c	0 d a d a a a	

This ring is semi-local ring, it has two maximal ideals (v-1) and (1+v). It can be shown that R/(v-1) and R/(v+1) are isomorphic to F_3 . From Chinese Remainder Theorem,

$$R = (v - 1) \oplus (v + 1)$$

where $(v-1) = \{0, v+2, 1+2v\}$ and $(1+v) = \{0, 1+v, 2+2v\}$ in [4].

In [4], it was shown that,

$$a + vb = (a - b)(v - 1) - (a + b)(v + 1)$$

for all $a, b \in F_3^n$.

A linear code C of length n over R is an R-submodule R^n . An element of C is called a codeword of C. There are three different weights for codes over R known. Hamming, Lee and

Bachoc weights.

The Hamming weight $wt_H(x)$ of a codeword $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ is the number of nonzero components. The minimum weight $wt_H(C)$ of a code C is the smallest weight among all its nonzero codewords.

The Lee weight for the codeword $x=(x_1,x_2,\ldots,x_n)\in R^n$ is defined by, $wt_L(x)=\sum_{i=1}^n wt_L(x_i)$ where,

$$wt_L(x_i) = \begin{cases} 0 & \text{if} \quad x_i = 0\\ 1 & \text{if} \quad x_i = 1, 2, v \quad \text{or} \quad 2v\\ 2 & \text{if} \quad x_i = 1 + v, 2 + v, 1 + 2v \quad \text{or} \quad 2 + 2v \end{cases}$$

The Bachoc weight for the codeword $x=(x_1,x_2,\ldots,x_n)\in R^n$ is defined by, $wt_B(x)=\sum_{i=1}^n wt_B(x_i)$ where,

$$wt_B(x_i) = \begin{cases} 0 & \text{if} \quad x_i = 0\\ 1 & \text{if} \quad x_i = 1 + v, 2 + v, 1 + 2v \quad \text{or} \quad 2 + 2v\\ 3 & \text{if} \quad x_i = 1, 2, v \quad \text{or} \quad 2v \end{cases}$$

The minimum Lee weight $wt_L(C)$ and the minimum Bachoc weight $wt_B(C)$ of code C are defined analogously.

For $x = (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, $d_H(x, y) = |\{i | x_i \neq y_i\}|$ is called distance between x and $y \in \mathbb{R}^n$ is denoted,

$$d_H(x,y) = wt_H(x-y)$$

The minimum Hamming distance between distinct pairs of codewords of a code C is called the minmum distance of C and denoted by $d_H(C)$ or shortly d_H .

The Lee distance and Bachoc distance between x and $y \in \mathbb{R}^n$ is defined by,

$$d_L(x,y) = wt_L(x-y) = \sum_{i=1}^{n} wt_L(x_i - y_i)$$

$$d_B(x,y) = wt_B(x-y) = \sum_{i=1}^{n} wt_B(x_i - y_i)$$

respectively.

The minimum Lee and Bachoc distance between distinct pairs of codewords of a code C are called the minimum distance of C and denoted by $d_L(C)$ and $d_B(C)$ or shortly d_L and d_B , respectively.

If C is a linear code, $d_H(C) = wt_H(C), d_L(C) = wt_L(C), d_B(C) = wt_B(C)$.

A generator matrix of C is a matrix whose rows generate C.

Two codes are equivalent if one can be obtained from the other by permuting the coordinates.

The Gray map ϕ from \mathbb{R}^n to \mathbb{F}_3^{2n} is defined as

$$\phi: \mathbb{R}^n \to \mathbb{F}_3^{2n}$$

$$x + vy \mapsto (x, y)$$

where $x, y \in F_3^n$. The Lee weight of x + vy is the Hamming weight of its Gray image. Note that ϕ is linear.

By the properties of Chinese Remainder Theorem, any code over R is permutation equivalent to a code generated by the following matrix

$$\begin{pmatrix} I_{k_1} & (1-v)B_1 & (v+1)A_1 & (1+v)A_2 + (1-v)B_2 & (1+v)A_3 + (1-v)B_3 \\ 0 & (1+v)I_{k_2} & 0 & (1+v)A_4 & 0 \\ 0 & 0 & (1-v)I_{k_3} & 0 & (1-v)B_4 \end{pmatrix}$$

where A_i and B_j are ternary matrices. Such a code is said to have rank $\{9^{k_1}, 3^{k_2}, 3^{k_3}\}$. If H is a code over R, let H^+ (resp. H^-) be the ternary code such that $(1+v)H^+$ (resp. $(1-v)H^-$) is read H mod (1-v) (resp. H mod (1+v)).

In [4], it is obtained that,

$$H = (1+v)H^+ \oplus (1-v)H^-$$

with

$$H^{+} = \{s | \exists t \in F_3^n | (1+v)s + (1-v)t \in H\}$$

$$H^{-} = \{t | \exists s \in F_3^n | (1+v)s + (1-v)t \in H\}$$

The code H^+ is permutation equivalent to a code with generator matrix of the form

$$\left(\begin{array}{cccc}
I_{k_1} & 0 & 2A_1 & 2A_2 & 2A_3 \\
0 & I_{k_2} & 0 & A_4 & 0
\end{array}\right)$$

where A_i are ternary matrices for i = 1, 2, 3, 4 and ternary code H^- is permutation equivalent to a code with generator matrix of the form

$$\begin{pmatrix} I_{k_1} & 2B_1 & 0 & 2B_2 & 2B_3 \\ 0 & 0 & I_{k_3} & 0 & B_4 \end{pmatrix}$$
 where B_i are ternary matrices for $i=1,2,3,4$ in [4].

In [6], it was constructed simplex codes over the ring R of type α as in the following Let G_k^{α} be a $k \times 3^{2k}$ matrix over R defined inductively by,

where

$$G_1^{\alpha} = \left(\begin{array}{cccccccc} 0 & 1 & 2 & v & 2v & a & b & c & d \end{array}\right)$$

The columns of G_k^{α} consist of all distinct k-tuples over R. The code S_k^{α} generated by G_k^{α} has length 3^{2k} .

If A_{k-1} denotes the $(9^{k-1} \times 9^{k-1})$ array consisting of all codewords in S_{k-1}^{α} and i = (i, i, ..., i) then the $(9^k \times 9^k)$ array of codewords of S_k^{α} is given by,

If R_1, R_2, \ldots, R_k denote the rows of the matrix G_k^{α} , then

$$wt_H(R_i) = wt_H(2R_i) = wt_H(vR_i) = wt_H(2vR_i) = 8.3^{2(k-1)}$$

 $wt_H(aR_i) = wt_H(bR_i) = wt_H(cR_i) = wt_H(dR_i) = 6.3^{2(k-1)}$

$$wt_L(R_i) = wt_L(2R_i) = wt_L(vR_i) = wt_L(2vR_i) = 4.3^{(2k-1)}$$

$$wt_L(aR_i) = wt_L(bR_i) = wt_L(cR_i) = wt_L(dR_i) = 4.3^{(2k-1)}$$

$$wt_B(R_i) = wt_B(2R_i) = wt_B(vR_i) = wt_B(2vR_i) = 16.3^{2(k-1)}$$

$$wt_B(aR_i) = wt_B(bR_i) = wt_B(cR_i) = wt_B(dR_i) = 2.3^{2k-1}$$

in [6].

Let
$$c = (c_1, ..., c_n) \in C$$
. For each $j \in R$, let $w_i(c) = |\{i | c_i = j\}|$.

Lemma 2.1 Let $c \in S_k^{\alpha}$, $c \neq 0$. If for at least one i, c_i is unit, then $\forall j \in R, w_j = 9^{k-1}$, if $\forall i, c_i \in \{0, a, d\}$, then $\forall j \in \{0, a, d\}, w_j = 3^{2k-1}$ in c, if $\forall i, c_i \in \{0, c, b\}$, then $\forall j \in \{0, c, b\}, w_j = 3^{2k-1}$ in c in [6].

Let $A_H(i), A_L(i), A_B(i)$ be the number of codewords Hamming, Lee, Bachoc weight i in the code C respectively, for i = 1, 2, ..., n. Then $\{A_H(0), A_H(1), ..., A_H(n)\}, \{A_L(0), A_L(1), ..., A_L(n)\}, \{A_B(0), A_B(1), ..., A_B(n)\}$ is called the Hamming, Lee or Bachoc weight distribution of C respectively.

Hamming , Lee and Bachoc weight distributions of S_k^{α} are

$$A_H(0) = 1, A_H(8.3^{2(k-1)}) = (3^k - 1)(3^k - 1), A_H(6.3^{2(k-1)}) = 2.(3^k - 1)$$

$$A_L(0) = 1, A_L(4.3^{2k-1}) = (3^k - 1)(3^k - 1), A_L(4.3^{2k-1}) = 2.(3^k - 1)$$

$$A_B(0) = 1, A_B(16.3^{2(k-1)}) = (3^k - 1)(3^k - 1), A_B(2.3^{2k-1}) = 2.(3^k - 1)$$

in [6].

The minimum weights of S_k^{α} are $d_H = 6.3^{2(k-1)}, d_L = 4.3^{2k-1}$ and $d_B = 2.3^{2k-1}$.

3. Simplex codes of type γ

The length of S_k^{α} is large and increase fast, so we can omit some columns from G_k^{α} to obtain good codes over R of smaller length and we will call the simplex codes of type γ .

Let G_k^{γ} be the $k \times \sum_{n=0}^{k-1} 5^{k-(n+1)} 3^{2n}$ matrix defined inductively by

$$G_2^{\gamma} = \begin{pmatrix} 1111111111 & | & 0 & | & a & | & b & | & c & | & d \\ 012v2vabcd & | & 1 & | & 1 & | & 1 & | & 1 \end{pmatrix}$$

and for k > 2

$$\mathbf{G}_{k}^{\gamma} = \left(\begin{array}{cccc|cccc} 1 \dots 1 & | & 0 \dots 0 & | & a \dots a & | & b \dots b & | & c \dots c & | & d \dots d \\ G_{k-1}^{\alpha} & | & G_{k-1}^{\gamma} & | & G_{k-1}^{\gamma} & | & G_{k-1}^{\gamma} & | & G_{k-1}^{\gamma} \\ \end{array} \right)$$

By induction, it is easy to verify that no two columns of G_k^{γ} are multiple of each other.

Remark 3.1 Each row of G_k^{γ} has Hamming weight

$$\sum_{n=0}^{k-1} 5^{k-(n+1)} 3^{2n} - \sum_{n=0}^{k-2} 5^{(k-1)-(n+1)} 3^{2n}$$

Lee weight

$$\sum_{n=0}^{k-1} 5^{k-(n+1)} 3^{2n} + 3 \sum_{n=0}^{k-2} 5^{(k-1)-(n+1)} 3^{2n}$$

and Bachoc weight

$$3^{2k-1} + 2^2 \sum_{n=0}^{k-2} 5^{(k-1)-(n+1)} 3^{2n}$$

for k = 2, 3, ...

Proposition 3.2 Each rows of G_k^{γ} contains 3^{2k-2} units and $w_a = w_b = w_c = w_d = \sum_{n=0}^{k-1} 5^{k-(n+1)} 3^{2n}$.

Proof By induction, for k=2 the result is true. Assume that the result is true for each row of G_{k-1}^{γ} . The number of units in each row of G_{k-1}^{γ} is equal to 3^{2k-4} . From Lemma 2.1, the number of units in any row of G_{k-1}^{α} is 4.3^{2k-4} . Because 1, 2, v, 2v are units. For the total number of units in any row of G_k^{γ} , we have $4.3^{2k-4} + 5.3^{2k-4} = 3^{2k-2}$. It is similarly shown that for the number of a's, b's, c's and a's.

Remark 3.3 Let S_k^{γ} be the code generated by G_k^{γ} . The minimum Hamming weight of S_k^{γ} is

$$3^{2k-2} + 2^{k-2} \sum_{n=0}^{k-2} 5^{(k-1)-(n+1)} 3^{2n}$$

the Lee weight of S_k^{γ} is

$$3^{2k-2} + 2^3 \sum_{n=0}^{k-2} 5^{(k-1)-(n+1)} 3^{2n}$$

the minimum Bachoc weight of S_k^{γ} is

$$3^{2k-2} + 2^{k-2} \sum_{n=0}^{k-2} 5^{(k-1)-(n+1)} 3^{2n}$$

References

- [1] M.M. Al Ashker, Simplex codes over the ring $F_2 + uF_2$, The Arabian Journal For Science and Engineering, **30**, Issue 2A, (July 2005),277-285.
- [2] M.M. Al Ashker, Simplex codes over the ring $\sum_{n=0}^{s} u^n F_2$, Turk J Math., 29,(2005),221-233.
- [3] M.M. Al Ashker, Simplex codes over the ring $F_2 + vF_2$, An-Najah Univ J Res (N.sc), $\mathbf{22}$, (2008), 25-42.
- [4] R.Chapman, S.T.Dougherty, P.Gaborit and P.Sole, 2-modular lattices from ternary codes, Journal de Theorie des Nombres de Bordeaux tome 14, no 1, (2002), 73-85.
- [5] I.M Isleem, On Linear codes $F_2 \times F_2$, Master Thesis, Islamic University of Gaza, 2007.
- [6] Y.Cengellenmis, Simplex codes of type α over $F_3 + vF_3$, Journal Informatics and Mathematical Sciences, to appear.

Received: January, 2010