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Abstract

Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say
that a graph G satisfies a term equation s & t if the corresponding
graph algebra A(G) satisfies s &~ ¢t. A class of graph algebras V' is called
a graph variety if V = Mod,¥ where ¥ is a subset of T(X) x T(X). A
graph variety V' = M odgE/ is called an (z(yz))z with reverse arc graph
variety if ¥’ is a set of (z(yz))z with reverse arc term equations.

In this paper we characterize identities in each (z(yz))z with reverse
arc graph variety.
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1 Introduction

Graph algebras have been invented in [10] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V' and the set of edges £ C V' x V. Define the graph
algebra A(G) corresponding to G with the underlying set V' U {oco}, where
oo is a symbol outside V', and with two basic operations, namely a nullary
operation pointing to oo and a binary one denoted by juxtaposition, given for
u,v € VU {oo} by

uv:{ u, if  (u,v) € E,

0, otherwise.

In [9] graph varieties had been investigated for finite undirected graphs in
order to get graph theoretic results (structure theorems) from universal algebra
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via graph algebras. In [8] these investigations are extended to arbitrary (finite)
directed graphs where the authors ask for a graph theoretic characterization of
graph varieties, i.e., of classes of graphs which can be defined by term equations
for their corresponding graph algebras. The answer is a theorem of Birkhoff-
type, which uses graph theoretic closure operations. A class of finite directed
graphs is equational (i.e., a graph variety) if and only if it is closed with respect
to finite restricted pointed subproducts and isomorphic copies.

In [2] J. Khampakdee and T. Poomsa-ard characterized identities in the
class of x(yx) =~ z(yy) - graph algebras. In [4] T. Poomsa-ard characterized
identities in the class of associative graph algebras. In [5], [6] T. Poomsa-
ard, J. Wetweerapong and C. Samartkoon characterized identities in the class
of idempotent graph algebras and in the class of transitive graph algebras
respectively. In [1] A. Apinantpinitwatna and T. Poomsa-ard characterize
identities in all biregular leftmost graph varieties.

In this paper we characterize identities in each (z(yz))z with reverse arc
graph variety.

2 Terms, identities and graph varieties

In [7] R. Poschel was introduced terms for graph algebras, the underlying
formal language has to contain a binary operation symbol (juxtaposition) and
a symbol for the constant co (denoted by 0o, t00).

Definition 2.1. The set 7'(X) of all terms over the alphabet
X = {xl,xg, xs3, }

is defined inductively as follows:

(i) every variable z;,7 = 1,2,3, ..., and oo are terms;

(ii) if ¢, and ty are terms, then ¢t is a term;

(iii) T'(X) is the set of all terms which can be obtained from (i) and (ii) in
finitely many steps.

Terms built up from the two-element set Xy = {z1, 25} of variables are thus
binary terms. We denote the set of all binary terms by 7'(X3). The leftmost
variable of a term ¢ is denoted by L(t) and rightmost variable of a term ¢ is
denoted by R(t). A term, in which the symbol oo occurs is called a trivial
term.

Definition 2.2. For each non-trivial term ¢ of type 7 = (2,0) one can define
a directed graph G(t) = (V(t), E(t)), where the vertex set V(¢) is the set of
all variables occurring in ¢ and the edge set E(t) is defined inductively by

E(t) = Qb if ¢ is a variable and E(tltg) = E(tl) U E(tg) U {(L(tl), L(tg))}
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where t = t,t5 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the
rooted graph corresponding to ¢t. Formally, we assign the empty graph ¢ to
every trivial term t.

Definition 2.3. A non-trivial term ¢ of type 7 = (2,0) is called (z(yz))z
with reverse arc term if and only if G(¢) is a graph with V(¢) = {x,y, z} and
E(t) = EUE', where £ = {(ZJZ, y)v (.I, Z)v (y7 Z)}’ E C {(ya ZL‘), (Z,ZL‘), (27y)}7
E' # ¢. A term equation s &~ t is called (z(yz)))z with reverse arc equation if
s and t are (x(yz))z with reverse arc terms.

Definition 2.4. We say that a graph G = (V| E) satisfies a term equation
s ~ t if the corresponding graph algebra A(G) satisfies s ~ t (i.e., we have
s = t for every assignment V (s) UV (t) — VU{oo}), and in this case, we write
G E s =~ t. Given a class G of graphs and a set X of term equations (i.e.,
Y. CT(X) x T(X)) we introduce the following notation:

GEXifGEs~tforallsx~tek,

GEs~tifGEs~tforal Geg,

GEYXiIfGEXforal G e,

IdG ={s=~t]|s,teT(X), GE=s~t},

Mod,¥ = {G | G is a graph and G |= X},

Vy(G) = Mod,1dgG.
Vy(G) is called the graph variety generated by G and G is called graph variety
if V,(G) = G. G is called equational if there exists a set X' of term equations
such that G = Mody>'. Obviously V,(G) = G if and only if G is an equational
class.

Definition 2.5. Let G = (V, E) and G' = (V', E') be graphs. A homomor-
phism h from G into G’ is a mapping h: V — V' carrying edges to edges ,that
is, for which (u,v) € F implies (h(u), h(v)) € E'.

3 Identities in (z(yz))z with reverse arc graph
varieties

All (z(yz))z with reverse arc graph varieties were characterized in [11] as the
following table:

Table 1. (z(yz))z with reverse arc graph varieties and the property of
graph.
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Graph variety

Property of graph
For any a,b € V if (a,b), (b, c),

(a,c) € E

KKy = Mody{(x(yz)z))z then (b,a) € F if and only if
~ (2(y(2y))) 2} (c,b) € E.

ICo = Mody{(x(yz)z))z then (b,a) € F if and only if
~ (z(y(zx)))z} (c,a) € E.

KCs = Mod,{(x(yz)z))z and (b,a) € E, then (¢, b) € E.
~ (x((yr)(2y)))z}

Ky = Mod,{(z(y(zy)))= then (¢,b) € F if and only if
~ (z(y(zx)))z} (c,a) € E.

KCs = Mod,{(z(y(zy)))= and (c,b) € E, then (b,a) € E.
~ (z((yr)(2y)))z}

Ke = Mod,{(z(y(zx)))z and (c,a) € E, then
~ (z((yx)(zx)))z (b,a) € E.

and (b,a) € E, then (¢,b) € E
if and only if (¢,a) € E.

~ (2(y(z2)))z}

(i) and (c,b) € E or (c,a) € E,
then (b,a) € E,

(77) and (b,a) € E,

then (¢, a), (c,b) € E.

Further let T be the set of all (z(yz))z with reverse arc term equations.
Since for any ¥ C T the (z(yz))z with reverse arc graph variety Mod,¥ =
Mlmies Mody{s = t}. Let K = Mody{(a((y2)2))2 ~ (a(y(:0)))2, (2(yz)2)
z = (x(y(zx)))z} = K1NKq. Then, they check that I = {Ko, K1, Ks, ..., Ks} is

the set of all (x(yz))z with reverse arc graph varieties, where Ky = Mod,{(z((yz)z))z

(x((yx)z))z} is the class of all graph algebras.
Graph identities were characterized in [3] by the following proposition:

Proposition 3.1. A non-trivial equation s ~ t is an identity in the class of
all graph algebras iff either both terms s and t are trivial or none of them is

trivial, G(s) = G(t) and L(s) = L(t).
Further it was proved.

Proposition 3.2. Let G = (V, E) be a graph and let h : XU{occ} — VU{o0}
be an evaluation of the variables such that h(oco) = oo. Consider the canonical
extension of h to the set of all terms. Then there holds: if t is a trivial term
then h(t) = oo. Otherwise, if h : G(t) — G is a homomorphism of graphs,
then h(t) = h(L(t)), and if h is not a homomorphism of graphs, then h(t) = oc.

Proposition 3.3. Let s and t be non-trivial terms from T(X) with variables
V(s) = V(t) = {xo,21,....,x,} and L(s) = L(t). Then a graph G = (V, E)
satisfies s ~ t if and only if the graph algebra A(G) has the following property:
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A mapping h : V(s) — V is a homomorphism from G(s) into G iff it is
a homomorphism from G(t) into G.

Now we apply our results to characterize all identities in each (z(yz))z
with reverse arc graph variety. Clearly, if s and t are trivial, then s &~ t is an
identity in each (z(yz))z with reverse arc graph variety and z ~ z, (z € X)
is an identity in each (x(yz))z with reverse arc graph variety, too. Further, if
s is a trivial term and ¢ is a non-trivial term or both of them are non-trivial
with L(s) # L(t) or V(s) # V(t), then s ~ t is not an identity in every
(x(yz))z with reverse arc graph variety, since for a complete graph G we have
an evaluation of the variables h such that h(s) = oo and h(t) # co. So we
consider the case that s and ¢ are non-trivial with L(s) = L(t), V(s) = V(¢)
and different from variables. Before we do this let us introduce some notation.
For any non-trivial term ¢ and = € V (¢), let

AL O={(z,y)}, Al (t) be the set of edges in G(t) which join between
an out-neighborhood of x and ¥y or join between and in-neighborhood of 3 and
x, Al,,)(t) be the set of edge (u',v") € E(t) whenever (u',v') € Af,,(t) for

(z,9)
some (u,v) € A, (t),., AL, ) (t) be the set of edge (u',v") € E( ) whenever
(u” ”)EA(lM)()for some (u,v) € A?Zyl() Let A7, (t) = UAxy)(t)

B?w,y)( )={(z,y)}, B(xy (t) be the set of edges in G(t) Wthh join between
an out-neighborhood of y and x or join between an in-neighborhood of y and

x, B(2 )(t) be the set of edge (u',v') € E(t) whenever (u',v') € B(lu’v)(t) for

some (u,v) € B(x () B, () e the set of edge (u',v") € E( ) whenever

(u",0") € B, (t) for some (u,v) € BY | (). Let Bf, (1) = UBZW()

(u, ()
Cox »O={(z,9)}, C(zy (t) be the set of edges in G(t) Wthh join between

an in-neighborhood of y and z, C'(Qx (t) be the set of edge (v',v") € E(t)
whenever (u',v") € C(, ,(t) for some ( v) € Cl,,)(),-,CL, ) (1) De the set of
edge (u",v") € E( ) whenever (u",v") € Cluw(t) for some (u,v) € C7 1( ).

()
Let CF, (1) = UC(W()
D, ()= {(x y)} D, (t) be the set of edges in G(t) which join between

(zy
an out-neighborhood of x and y or join between an in-neighborhood of z and

y, D{,,)(t) be the set of edge (u',v") € E(t) whenever (u',v') € D, (t) for
some (u,v) € D(, (t),....D{, ) (t) be the set of edge (u",v") € E(t) whenever
(u",0") € D}, ,(t) for some (u,v) € D, 1 (t). Let Dy, (t) = i[:'jo D, (®).
F& »O={(z,9)}, F (xy )(t) be the set of edges in G(¢) which join between
an out-neighborhood of x and y, F? (t) be the set of edge (u/,v') € E(t)

(zy)
whenever (u',v') € F, () for some (u,v) € F{, \(t),....F(. ) (t) be the set of

(z,y)
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edge (u”,v") € E( ) whenever (u",v") € F}

(u,v

)( ) for some (u,v) € F(T;El)(t)

Let £, (1) = U Flo g ()-

H(Oz ()= {(a: v)}, H(zy () be the set of edges in G(t) which join between
an out-neighborhood of y and x, H, ,(t) be the set of edge (u',v') € E(t)
Whenevsr (” v') € H,,(t) for so/r,ne”(u,v) € Hi, ,(t),... Hi, \(t) be the set of
edge (u ,v) € E( ) whenever (u',v") € H,, (t) for some (u,v) € H_ L(t).

(z,y)

I, y)( )= {(x y)} I(,,)(t) be the set of edge in G(t) which join between
a both out- nelghborhood and in-neighborhood of x and y, Imy)( ) be the
set of edge (u',v") € E(t) whenever (u/,v") € I(lw)() for some (u,v) €

1(117 )( )7 7I&y () be the set of edge (un UN) c E() whenever (’LL”,UN) c

I(1 ()for some (u,v)ef(”jl)() Let [E}y() U[(xy()

Jom oO={(z, 9}, J (zy )(t) be the set of edges in G(t) which join between
an in-neighborhood of y and x or join between an out-neighborhood of z and
y or join between an out-neighborhood of y and z, J2 ( ) be the set of edge
(u',v") € E(t) whenever (v, )EJW)()forsome( )EJM)() ol ()
be the set of edge (u',v") € E() whenever (u”,v") € Jw)() for some

(u,v) € i () Let Ji, (1) = U(w()

Then all identities in each (x (yz))z with reverse arc graph variety are charac-
terized by the following theorems:

Theorem 3.1. Let s and t be non-trivial terms and difference from variables.
Then s =t € 1dK; if and only if

(1) for any x € V(s), (x,x) € E(s) if and only if (z,x) € E(t),

(i1) for any x,y € V(s) withx # vy, (x,y) € E(s) or (y,z) € E(s) and there
exists (u,v) € Af, ,(s) such that (v,u) € E(s) if and only if (z,y) € E(t) o
(y,2) € E(t) and there exists (u',v") € A7, ) (t) such that (v',u) € E(1).

Proof. Suppose that there exists x € V(s) such that (x,x) € E(s) but (z,z) ¢
E(t). Consider the graph G = (V, E') such that V' = {0, 1} E ={(0,1),(1,0),(1,1)}.
By Table 1, we see that G € K;. Let h : V(s) — V such that h(z) = 0, h(y) =
1 for all other y € V(s). We see that h(s) = oo, h(t) = h(L(t)). Hence s = t ¢
IdC;. Suppose that there exist z,y € V(s) withx # y, (z,y) € ( Jor (y,x) €
E(s) and there exists (u, v) € A7, (s) such that (v,u) € E( ) but (z,y) ¢ E(t)

and (y,z) ¢ E(t) or there exists no (u',v') € Af, (t) such that ( u') € E(t).
If (z,y) ¢ E(t)and (y,z) ¢ E(t), then consider the graph G = (V] E) such that
vV =40,1,2}, E ={(0,0),(0,1),(1,0),(1,1),(0,2),(2,0),(2,2)}. By Table 1,
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we see that G € Ky. Let h : V(s) — V such that h(x) = 1, h(y) = 2 and
h(z) = 0 for all other z € V (s). We see that h(s) = oo, h(t) = h(L(t)). Hence
s ~ 1 ¢ IdK;. Suppose that (y, ) € E(t) and there exists no (u',v') € A7, ()
such that (v, u’) € E(t). We see that the subgraph of G(¢) induced by A where
A is the set of end vertices of edges in A7, () belong to Ky. Consider the
graph G = (V, E') which obtains from G(t) by adding minimum edges to G(t)
until G € Ky. Let h : V(s) — V such that h(z) = z for all z € V(s). We
have that h(s) = oo, h(t) = h(L(t)). Hence, s =t ¢ 1dK;.

Conversely, suppose that s and ¢ are non-trivial terms satisfying (i) and (i7).
Let G = (V, E) be a graph in K; and let h : V(s) — V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x,y) € E(t). If x =y,
then by (i), we have (z,x) € E(s). Hence (h(z),h(z)) € E. If © # y, then by
(1), we have (z,y) € E(s) or (y,z) € E(s) and there exists (u,v) € Af, ,(s)
such that (v,u) € E(s). If (z,y) € E(s), then (h(z),h(y)) € E. Suppose that
(y,z) € E(s), since (z,y) ¢ E(s), hence there exists (u,v) € A, (s) such
that (v,u) € E(s). We have (u,v) € Af, (s) for some n with n > 1. Let
(u, )EA(UU (s) where (u',v') € Al” 1)( s). We have (u/,v"), (v/,0") € E(s) or

(', 0"), (u, )GE() (! 0), (), 0), (0, 0), (0.0) € E(s) or (u,v'), ('), (v,
B(s). Hence (h(u'), h(t)), (h(+)), h(t')) € E or (h(u), h(t/)), (h(u'), h(u')) €
Eor (h(u )h(g))  (h(w'), h(v)), (h(v"), ()) (h(v),h( ) € Eor (h(u),

u'), h(v)), (h(v), h(u)), (h(v), h(v)) €

Since G € K4, by Table 1, we have (h(v"), h(u")) € E for each case. Let
(u',v') € A%u/,’v,/)(s) where (u”,v”) € A, f)(s). Consider in the similar way,
we have (h(v"),h(u")) € E. Continue this process we get (h(z),h(y)) € E.
Therefore h is a homomorphism from G(t) into G. In the same way, we can
prove that if h is a homomorphism from G(t) into G, then it is a homomorphism

from G(s) into G. Hence, by Proposition 3.3, we get s ~ t € IdK;. 0

Theorem 3.2. Let s and t be non-trivial terms and difference from variables.
Then s =~ t € IdICy if and only if

(i) for any x € V(s), (x,x) € E(s) if and only if (z,x) € E(t),

(1) for any x,y € V(s) with x # vy, (x,y) € E(s) or (y,z) € E(s) and there

exists (u,v) € By, y(s) such that (v,u) € E(s) if and only if (x,y) € E(t) or

(v,
(y,z) € E(t) and there exists (u',v') € B, y(t) such that (v, u') € E(?).

Proof. The proof is similar to the proof of Theorem 3.1. O

Theorem 3.3. Let s and t be non-trivial terms and difference from variables.
Then s =~ t € IdICs if and only if

(1) for any x € V(s), (x,x) € E(s) if and only if (z,x) € E(t),

(i1) for any x,y € V(s) with x # y, (x,y) € E(s) or (y,x) € E(s) and
there exists (u,v) € Cf, y(s) such that (v,u) € E(s) if and only if (x,y) € E(1)
or (y,z) € E(t) and there exists (u',v") € C, (1) such that (v',u') € E(t).

h(v")), (h(

u'), (v,0') €
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Proof. Suppose that there exists x € V(s) such that (x,x) € E(s) but (z,z) ¢
E(t). Consider the graph G = (V, E) such that V = {0,1}, £ = {(0,1), (1,0), (
By Table 1, we see that G € K3. Let h : V(s) — V such that h(z) = 0, h(y) =
1 for all other y € V(s). We see that h(s) = oo, h(t) = h(L(t)). Hence s = t ¢
IdKs. Suppose that there exist z,y € V(s )Wlthx # vy, (x,y) € E(s)or (y,x) €
E(s) and there exists (u, v) € Cf, ) (s) such that (v,u) € E(s) but (z,y) ¢ E(t)
and (y,z) ¢ E(t) or there exists no (u',v") € C, ,,(t) such that (v, ') € E(?).
If (z,y) ¢ E(t)and (y,z) ¢ E(t), then consider the graph G = (V, E') such that
V ={0,1,2}, E = {(0,0),(0,1), (1,0), (1,1),(0,2), (2,0),(2,2)}. By Table 1,
we see that G € K3. Let h : V(s) — V such that h(z) = 1, h(y) = 2 and
h(z) = 0 for all other z € V'(s). We see that h(s) = oo, h(t) = h(L(t)). Hence
s ~ 1 ¢ IdKs. Suppose that (y,z) € E(t) and there exists no (u',v") € Cf, ()
such that (v, u’) € E(t). We see that the subgraph of G(t) induced by C where
C' is the set of end vertices of edges in C, (t) belong to KC3. Consider the
graph G = (V, E) which obtains from G(t) by adding minimum edges to G ()
until G € 3. Let h : V(s) — V such that h(x) = z for all z € V(s). We
have that h(s) = oo, h(t) = h(L(t)). Hence, s ~ t ¢ IdKCs.

Conversely, suppose that s and ¢ are non-trivial terms satisfying (¢) and (i).
Let G = (V, E) be a graph in KC3 and let h : V(s) — V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x,y) € E(t). If x =y,
then by (i), we have (x,x) € E(s). Hence (h(z),h(z)) € E. If © # y, then by
(1), we have (z,y) € E(s) or (y,x) € E(s) and there exists (u,v) € C{, ,,(s)
such that (v,u) € E(s). If (z,y) € E(s), then (h(z),h(y)) € E. Suppose that
(y,z) € E(s), since (z,y) ¢ E(s), hence there exists (u,v) € C{, ,,(s) such
that (v,u) € E(s). We have (u,v) € C7, ,(s) for some n with n > 1. Let
(u,v) € Ol (8) where (u',v") € C”Z’;( s). We have (u/,v"), (v/,u’) € E(s) or
(u',0"), (v,2), (W, v), (v,v") € E(s). Hence (h(u'), h(v')), (h(u), h(v')) € E or
(h(a'), h()), (h(v): h(w)), (h(u'), h(v)), (h
(v), h(v)) €

Since G € ng, by Table 1, we have (h(v'),h(u')) € E for each case. Let
(u',v') € C’(lu,,vv,,)(s) where (u”,v") € € C, f (s). Consider in the similar way,
we have (h(v"),h(u")) € E. Continue this process we get (h(z),h(y)) € E.
Therefore h is a homomorphism from G(¢) into G. In the same way, we can
prove that if h is a homomorphism from G(t) into G, then it is a homomorphism
from G(s) into G. Hence by Proposition 3.3, we get s ~ t € IdICs. O

Theorem 3.4. Let s and t be non-trivial terms and difference from variables.
Then s =~ t € IdIC, if and only if

(1) for any x € V(s), (x,x) € E(s) if and only if (z,x) € E(t),

(1) for any x,y € V(s) with x # vy, (x,y) € E(s) or (y,z) € E(s) and there
ezists (u,v) € Dy, . (s) such that (v,u) € E(s) if and only if (z,y) € E(t) or
(y,z) € E(t) and there exists (u',v") € Dy, (1) such that (v',u') € E(t).
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Proof. The proof is similar to the proof of Theorem 3.1. O

Theorem 3.5. Let s and t be non-trivial terms and difference from variables.
Then s =t € 1dKs if and only if

(1) for any x € V(s), (x,x) € E(s) if and only if (z,x) € E(t),

(i1) for any x,y € V(s) with x # y, (x,y) € E(s) or (y,x) € E(s) and
there exists (u,v) € F, \(s) such that (v,u) € E(s) if and only if (z,y) € E(t)
or (y,z) € E(t) and there exists (u',v") € F, (1) such that (v',u') € E(t).

Proof. The proof is similar to the proof of Theorem 3.3. O

Theorem 3.6. Let s and t be non-trivial terms and difference from variables.
Then s =t € 1dKg if and only if

(1) for any x € V(s), (x,x) € E(s) if and only if (z,x) € E(t),

(1) for any x,y € V(s) with x # vy, (x,y) € E(s) or (y,z) € E(s) and there
exists (u,v) € H, ,(s) such that (v,u) € E(s) if and only if (z,y) € E(t) or
(y,2) € E(t) and there exists (u',v") € Hj, )(t) such that (v',u') € E(t).

Proof. Suppose that there exists x € V(s) such that (x,x) € E(s) but (z,z) ¢
E(t). Consider the graph G = (V, E) such that V' = {0, 1} E={(0,1),(1,0),(1,1)}.
By Table 1, we see that G € Kg. Let h : V(s) — V such that h(z) = 0,
h(y) = 1 for all other y € V(s). We see that h(s) = oo, h(t) = h(L(t)).
Hence s ~ t ¢ IdKg. Suppose that there exist z,y € V(s) with = #

Yy, (z,y) € E(s) or (y,x) € E(s) and there exists (u,v) € H{, (s) such
that (v,u) € E(s) but (z,y) ¢ E(t) and (y,x) ¢ E(t) or there exists no
(W', v') € Hf, ,(t) such that (') € E(t). If (z,y) ¢ E(t) and (y,z) ¢
E(t), then consider the graph G = (V,FE) such that V' = {0,1,2}, F =
{(0,0),(0,1),(1,0),(1,1),(0,2),(2,0), ( 2)}. By Table 1, we see that G € K.
Let h : V(s) — V such that h(x) = 1, h(y) = 2 and h(z) = 0 for all other
z € V(s). We see that h(s) = oo, h() = h(L(t)). Hence s ~ t ¢ IdKs.
Suppose that (y,z) € E(t) and there exists no (u',v") € H{, . (t) such that
(v',u') € E(t). We see that the subgraph of G(t) induced by H where H is
the set of end vertices of edges in H(, ,(¢) belong to K. Consider the graph
G = (V, E) which obtains from G(t) by adding minimum edges to G(t) until
G € Kg. Let h: V(s) — V such that h(z) = z for all z € V(s). We have
that h(s) = oo, h(t) = h(L(t)). Hence s =t ¢ IdKs.

Conversely, suppose that s and ¢ are non-trivial terms satisfying (7) and (i7).
Let G = (V, E) be a graph in KCg and let h : V(s) — V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x,y) € E(t). If z =y,
then by (i), we have (x,z) € E(s). Hence (h(z),h(z)) € E. If © # y, then by
(1), we have (z,y) € E(s) or (y,z) € E(s) and there exists (u,v) € H{, ,,(s)
such that (v,u) € E(s). If (z,y) € E(s), then (h(z),h(y)) € E. Suppose that
(y,z) € E(s), since (z,y) & E(s), hence there exists (u,v) € H{, , (s) such that
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(v,u) € E(s). We have (u,v) € Hy, ,(s) for some n with n > 1. Let (u,v) €
H(lu,vv,)(s) where (u/,v") € H(T;Txl)(s). We have (u',v"), (v, v), (v,), (V,v) €
E(s). Hence (h(u'), h(v)), (h(u'), h(v)), (h(v), h(u)), (h(v"), h(v)) € E.

Since G € Kg, by Table 1, we have (h(v'), h(u')) € E for each case. Let
(u/,0v') € H! )(s) where (u”,v") € H'2(s). Consider in the similar way,

(u” " (y,x)
we have (h(v"),h(u")) € E. Continue this process we get (h(z),h(y)) € E.
Therefore h is a homomorphism from G(t) into G. In the same way, we can
prove that if h is a homomorphism from G(t) into G, then it is a homomorphism
from G(s) into G. Hence by Proposition 3.3, we get s ~ t € IdKs. O

Theorem 3.7. Let s and t be non-trivial terms and difference from variables.
Then s =t € 1dK; if and only if

(i) for any x € V(s), (z,x) € E(s) if and only if (z,z) € E(t),

(i1) for any x,y € V(s) with x # vy, (x,y) € E(s) or (y,z) € E(s) and
there exists (u,v) € 17, . (s) such that (v,u) € E(s) if and only if (z,y) € E(t)

or (y,x) € E(t) and there exists (u',v") € I, ) (t) such that (v',u) € E(t).

Proof. The proof is similar to the proof of Theorem 3.6. O

Theorem 3.8. Let s and t be non-trivial terms and difference from variables.
Then s =t € 1dKg if and only if

(i) for any x € V(s), (z,x) € E(s) if and only if (z,x) € E(t),

(i1) for any x,y € V(s) with x # vy, (x,y) € E(s) or (y,z) € E(s) and
there exists (u,v) € Jj, ,(s) such that (v,u) € E(s) if and only if (z,y) € E(t)

or (y,x) € E(t) and there exists (u',v") € Jj, ) (t) such that (v',u') € E(t).

Proof. Suppose that there exists x € V(s) such that (x,x) € E(s)

E(t). Consider the graph G = (V, E)) such that V' = {0, 1}, E = {(0, 1), (1,
By Table 1, we see that G € Ks. Let h : V(s) — V such that h(z) = 0, h(
1 for all other y € V(s). We see that h(s) = oo, h(t) = h(L(t)). Hence s = ¢
IdCs. Suppose that there exist x,y € V(s) with z # y, (z,y) € E(s) or (y, x)
E(s) and there exists (u,v) € J{, . (s) such that (v, u) € E(s) but (z,y) ¢ E(t)
and (y,z) € E(t) or there exists no (u',v") € Ji, ,,(t) such that (v',u) € E(t).
If (z,y) ¢ E(t) and (y,z) ¢ E(t), then consider the graph G = (V, E') such that
Vv ={0,1,2}, E = {(0,0),(0,1),(1,0),(1,1),(0,2),(2,0),(2,2)}. By Table 1,
we see that G € Ks. Let h : V(s) — V such that h(x) = 1, h(y) = 2 and
h(z) = 0 for all other z € V/(s). We see that h(s) = oo, h(t) = h(L(t)). Hence
s~ t ¢ 1dKs. Suppose that (y,z) € E and there exists no (u',v') € J, ,(t)
such that (v',u) € E(t). We see that the subgraph of G(t) induced by J
where J is the set of end vertices of edges in Jj (t) belong to Kg. Consider
the graph G = (V, E) which obtains from G(t) by adding minimum edges to
G(t) until G € Kg. Let h : V(s) — V such that h(z) = x for all z € V(s).
We have that h(s) = oo, h(t) = h(L(t)). Hence s ~ t ¢ IdKs.
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Conversely, suppose that s and ¢ are non-trivial terms satisfying (¢) and (i).
Let G = (V, E) be a graph in KCg and let h : V(s) — V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x,y) € E(t). If x =y,
then by (i), we have (x,z) € E(s). Hence (h(z),h(z)) € E. If © # y, then by
(1), we have (z,y) € E(s) or (y,z) € E(s) and there exists (u,v) € Ji, ,,(s)
such that (v,u) € E(s). If (z,y) € E(s), then (h(z),h(y)) € E. Suppose that
(y,2) € E(s), since (z,y) ¢ E(s), hence there exists (u,v) € Ji, . (s) such
that (v,u) € E(s). We have (u,v) € Jg, . (s) for some n with n > 1. Let
(1,0) € Ty y(5) where (u/,0') € Ji75(s). We have (u/,v'), (v/,u') € E(s )

(', "), (), (v, )(U,U’)GE()OT(U o), (W' u), (u, ), (V',u) € E(s) o
(u',0"), (W, v), (v,u), (v',v) € E(s). Hence (h(u'), h(v')), (h(u), h(v')) € E or
(h ( ), h(v")), (h ( ), h(v)), (h(v), h(

u')), (h(v), h

(v)) € E or (h(u'), h(v")), (h(u'), h(u)), (h(u), h(v")), (h(v"), h(u))
€ Eor (h(u'), h(v")), (h(), h(v)), (h(v), h(w), (h(v'), h(v)) € E

Since G € Ks, by Table 1, we have (h(v'),h(u’)) € E for each case. Let
(u',v') € J(u//’v,,)( s) where (u",v") € Sl f( ). Consider in the similar way,
we have (h(v"),h(u")) € E. Continue this process we get (h(z),h(y)) € E.
Therefore h is a homomorphism from G(¢) into G. In the same way, we can

prove that if h is a homomorphism from G(t) into G, then it is a homomorphism
from G(s) into G. Hence by Proposition 3.3, we get s ~ t € IdKs. O
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