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Abstract

Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say
that a graph G satisfies a term equation s ≈ t if the corresponding
graph algebra A(G) satisfies s ≈ t. A class of graph algebras V is called
a graph variety if V = ModgΣ where Σ is a subset of T (X) × T (X). A
graph variety V ′ = ModgΣ

′
is called an (x(yz))z with reverse arc graph

variety if Σ
′
is a set of (x(yz))z with reverse arc term equations.

In this paper we characterize identities in each (x(yz))z with reverse
arc graph variety.
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1 Introduction

Graph algebras have been invented in [10] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V and the set of edges E ⊆ V ×V . Define the graph
algebra A(G) corresponding to G with the underlying set V ∪ {∞}, where
∞ is a symbol outside V , and with two basic operations, namely a nullary
operation pointing to ∞ and a binary one denoted by juxtaposition, given for
u, v ∈ V ∪ {∞} by

uv =

{
u, if (u, v) ∈ E,
∞, otherwise.

In [9] graph varieties had been investigated for finite undirected graphs in
order to get graph theoretic results (structure theorems) from universal algebra
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via graph algebras. In [8] these investigations are extended to arbitrary (finite)
directed graphs where the authors ask for a graph theoretic characterization of
graph varieties, i.e., of classes of graphs which can be defined by term equations
for their corresponding graph algebras. The answer is a theorem of Birkhoff-
type, which uses graph theoretic closure operations. A class of finite directed
graphs is equational (i.e., a graph variety) if and only if it is closed with respect
to finite restricted pointed subproducts and isomorphic copies.

In [2] J. Khampakdee and T. Poomsa-ard characterized identities in the
class of x(yx) ≈ x(yy) - graph algebras. In [4] T. Poomsa-ard characterized
identities in the class of associative graph algebras. In [5], [6] T. Poomsa-
ard, J. Wetweerapong and C. Samartkoon characterized identities in the class
of idempotent graph algebras and in the class of transitive graph algebras
respectively. In [1] A. Apinantpinitwatna and T. Poomsa-ard characterize
identities in all biregular leftmost graph varieties.

In this paper we characterize identities in each (x(yz))z with reverse arc
graph variety.

2 Terms, identities and graph varieties

In [7] R. Pöschel was introduced terms for graph algebras, the underlying
formal language has to contain a binary operation symbol (juxtaposition) and
a symbol for the constant ∞ (denoted by ∞, too).

Definition 2.1. The set T (X) of all terms over the alphabet

X = {x1, x2, x3, ...}
is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;
(ii) if t1 and t2 are terms, then t1t2 is a term;
(iii) T (X) is the set of all terms which can be obtained from (i) and (ii) in

finitely many steps.

Terms built up from the two-element set X2 = {x1, x2} of variables are thus
binary terms. We denote the set of all binary terms by T (X2). The leftmost
variable of a term t is denoted by L(t) and rightmost variable of a term t is
denoted by R(t). A term, in which the symbol ∞ occurs is called a trivial
term.

Definition 2.2. For each non-trivial term t of type τ = (2, 0) one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of
all variables occurring in t and the edge set E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}



Identities in (X(YZ))Z with reverse arc graph varieties 1367

where t = t1t2 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the
rooted graph corresponding to t. Formally, we assign the empty graph φ to
every trivial term t.

Definition 2.3. A non-trivial term t of type τ = (2, 0) is called (x(yz))z
with reverse arc term if and only if G(t) is a graph with V (t) = {x, y, z} and
E(t) = E ∪ E′, where E = {(x, y), (x, z), (y, z)}, E ′ ⊆ {(y, x), (z, x), (z, y)},
E ′ �= φ. A term equation s ≈ t is called (x(yz)))z with reverse arc equation if
s and t are (x(yz))z with reverse arc terms.

Definition 2.4. We say that a graph G = (V, E) satisfies a term equation
s ≈ t if the corresponding graph algebra A(G) satisfies s ≈ t (i.e., we have
s = t for every assignment V (s)∪V (t) → V ∪{∞}), and in this case, we write
G |= s ≈ t. Given a class G of graphs and a set Σ of term equations (i.e.,
Σ ⊆ T (X) × T (X)) we introduce the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ,

G |= s ≈ t if G |= s ≈ t for all G ∈ G,

G |= Σ if G |= Σ for all G ∈ G,

IdG = {s ≈ t | s, t ∈ T (X), G |= s ≈ t},
ModgΣ = {G | G is a graph and G |= Σ},
Vg(G) = ModgIdG.

Vg(G) is called the graph variety generated by G and G is called graph variety
if Vg(G) = G. G is called equational if there exists a set Σ′ of term equations
such that G = ModgΣ

′. Obviously Vg(G) = G if and only if G is an equational
class.

Definition 2.5. Let G = (V, E) and G
′
= (V

′
, E

′
) be graphs. A homomor-

phism h from G into G′ is a mapping h : V → V
′
carrying edges to edges ,that

is, for which (u, v) ∈ E implies (h(u), h(v)) ∈ E
′
.

3 Identities in (x(yz))z with reverse arc graph

varieties

All (x(yz))z with reverse arc graph varieties were characterized in [11] as the
following table:

Table 1. (x(yz))z with reverse arc graph varieties and the property of
graph.
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Graph variety Property of graph
For any a, b ∈ V if (a, b), (b, c),

(a, c) ∈ E
K1 = Modg{(x(yx)z))z then (b, a) ∈ E if and only if

≈ (x(y(zy)))z} (c, b) ∈ E.
K2 = Modg{(x(yx)z))z then (b, a) ∈ E if and only if

≈ (x(y(zx)))z} (c, a) ∈ E.
K3 = Modg{(x(yx)z))z and (b, a) ∈ E, then (c, b) ∈ E.

≈ (x((yx)(zy)))z}
K4 = Modg{(x(y(zy)))z then (c, b) ∈ E if and only if

≈ (x(y(zx)))z} (c, a) ∈ E.
K5 = Modg{(x(y(zy)))z and (c, b) ∈ E, then (b, a) ∈ E.

≈ (x((yx)(zy)))z}
K6 = Modg{(x(y(zx)))z and (c, a) ∈ E, then

≈ (x((yx)(zx)))z} (b, a) ∈ E.
K7 = Modg{(x((yx)(zy)))z and (b, a) ∈ E, then (c, b) ∈ E

≈ (x((yx)(zx)))z} if and only if (c, a) ∈ E.
K8 = Modg{(x(yx)z))z (i) and (c, b) ∈ E or (c, a) ∈ E,

≈ (x(y(zy)))z, then (b, a) ∈ E,
(x(yx)z))z (ii) and (b, a) ∈ E,
≈ (x(y(zx)))z} then (c, a), (c, b) ∈ E.

Further let T be the set of all (x(yz))z with reverse arc term equations.
Since for any Σ ⊆ T the (x(yz))z with reverse arc graph variety ModgΣ =⋂

s≈t∈Σ Modg{s ≈ t}. Let K8 = Modg{(x((yx)z))z ≈ (x(y(zy)))z, (x(yx)z))
z ≈ (x(y(zx)))z} = K1∩K2. Then, they check that K = {K0,K1,K3, ...,K8} is
the set of all (x(yz))z with reverse arc graph varieties, where K0 = Modg{(x((yx)z))z ≈
(x((yx)z))z} is the class of all graph algebras.

Graph identities were characterized in [3] by the following proposition:

Proposition 3.1. A non-trivial equation s ≈ t is an identity in the class of
all graph algebras iff either both terms s and t are trivial or none of them is
trivial, G(s) = G(t) and L(s) = L(t).

Further it was proved.

Proposition 3.2. Let G = (V, E) be a graph and let h : X∪{∞} −→ V ∪{∞}
be an evaluation of the variables such that h(∞) = ∞. Consider the canonical
extension of h to the set of all terms. Then there holds: if t is a trivial term
then h(t) = ∞. Otherwise, if h : G(t) −→ G is a homomorphism of graphs,
then h(t) = h(L(t)), and if h is not a homomorphism of graphs, then h(t) = ∞.

Proposition 3.3. Let s and t be non-trivial terms from T (X) with variables
V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph G = (V, E)
satisfies s ≈ t if and only if the graph algebra A(G) has the following property:
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A mapping h : V (s) −→ V is a homomorphism from G(s) into G iff it is
a homomorphism from G(t) into G.

Now we apply our results to characterize all identities in each (x(yz))z
with reverse arc graph variety. Clearly, if s and t are trivial, then s ≈ t is an
identity in each (x(yz))z with reverse arc graph variety and x ≈ x, (x ∈ X)
is an identity in each (x(yz))z with reverse arc graph variety, too. Further, if
s is a trivial term and t is a non-trivial term or both of them are non-trivial
with L(s) �= L(t) or V (s) �= V (t), then s ≈ t is not an identity in every
(x(yz))z with reverse arc graph variety, since for a complete graph G we have
an evaluation of the variables h such that h(s) = ∞ and h(t) �= ∞. So we
consider the case that s and t are non-trivial with L(s) = L(t), V (s) = V (t)
and different from variables. Before we do this let us introduce some notation.
For any non-trivial term t and x ∈ V (t), let

A0
(x,y)(t)={(x, y)}, A1

(x,y)(t) be the set of edges in G(t) which join between
an out-neighborhood of x and y or join between and in-neighborhood of y and
x, A2

(x,y)(t) be the set of edge (u′, v′) ∈ E(t) whenever (u′, v′) ∈ A1
(u,v)(t) for

some (u, v) ∈ A1
(x,y)(t),...,A

n
(x,y)(t) be the set of edge (u

′′
, v

′′
) ∈ E(t) whenever

(u
′′
, v

′′
) ∈ A1

(u,v)(t) for some (u, v) ∈ An−1
(x,y)(t). Let A∗

(x,y)(t) =
∞⋃
i=0

Ai
(x,y)(t).

B0
(x,y)(t)={(x, y)}, B1

(x,y)(t) be the set of edges in G(t) which join between
an out-neighborhood of y and x or join between an in-neighborhood of y and
x, B2

(x,y)(t) be the set of edge (u′, v′) ∈ E(t) whenever (u′, v′) ∈ B1
(u,v)(t) for

some (u, v) ∈ B1
(x,y)(t),...,B

n
(x,y)(t) be the set of edge (u

′′
, v

′′
) ∈ E(t) whenever

(u
′′
, v

′′
) ∈ B1

(u,v)(t) for some (u, v) ∈ Bn−1
(x,y)(t). Let B∗

(x,y)(t) =
∞⋃
i=0

Bi
(x,y)(t).

C0
(x,y)(t)={(x, y)}, C1

(x,y)(t) be the set of edges in G(t) which join between

an in-neighborhood of y and x, C2
(x,y)(t) be the set of edge (u′, v′) ∈ E(t)

whenever (u′, v′) ∈ C1
(u,v)(t) for some (u, v) ∈ C1

(x,y)(t),...,C
n
(x,y)(t) be the set of

edge (u
′′
, v

′′
) ∈ E(t) whenever (u

′′
, v

′′
) ∈ C1

(u,v)(t) for some (u, v) ∈ Cn−1
(x,y)(t).

Let C∗
(x,y)(t) =

∞⋃
i=0

Ci
(x,y)(t).

D0
(x,y)(t)={(x, y)}, D1

(x,y)(t) be the set of edges in G(t) which join between
an out-neighborhood of x and y or join between an in-neighborhood of x and
y, D2

(x,y)(t) be the set of edge (u′, v′) ∈ E(t) whenever (u′, v′) ∈ D1
(u,v)(t) for

some (u, v) ∈ D1
(x,y)(t),...,D

n
(x,y)(t) be the set of edge (u

′′
, v

′′
) ∈ E(t) whenever

(u
′′
, v

′′
) ∈ D1

(u,v)(t) for some (u, v) ∈ Dn−1
(x,y)(t). Let D∗

(x,y)(t) =
∞⋃
i=0

Di
(x,y)(t).

F 0
(x,y)(t)={(x, y)}, F 1

(x,y)(t) be the set of edges in G(t) which join between

an out-neighborhood of x and y, F 2
(x,y)(t) be the set of edge (u′, v′) ∈ E(t)

whenever (u′, v′) ∈ F 1
(u,v)(t) for some (u, v) ∈ F 1

(x,y)(t),...,F
n
(x,y)(t) be the set of
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edge (u
′′
, v

′′
) ∈ E(t) whenever (u

′′
, v

′′
) ∈ F 1

(u,v)(t) for some (u, v) ∈ F n−1
(x,y)(t).

Let F ∗
(x,y)(t) =

∞⋃
i=0

F i
(x,y)(t).

H0
(x,y)(t)={(x, y)}, H1

(x,y)(t) be the set of edges in G(t) which join between

an out-neighborhood of y and x, H2
(x,y)(t) be the set of edge (u′, v′) ∈ E(t)

whenever (u′, v′) ∈ H1
(u,v)(t) for some (u, v) ∈ H1

(x,y)(t),...,H
n
(x,y)(t) be the set of

edge (u
′′
, v

′′
) ∈ E(t) whenever (u

′′
, v

′′
) ∈ H1

(u,v)(t) for some (u, v) ∈ Hn−1
(x,y)(t).

Let H∗
(x,y)(t) =

∞⋃
i=0

H i
(x,y)(t).

I0
(x,y)(t)={(x, y)}, I1

(x,y)(t) be the set of edge in G(t) which join between

a both out-neighborhood and in-neighborhood of x and y, I2
(x,y)(t) be the

set of edge (u′, v′) ∈ E(t) whenever (u′, v′) ∈ I1
(u,v)(t) for some (u, v) ∈

I1
(x,y)(t),...,I

n
(x,y)(t) be the set of edge (u

′′
, v

′′
) ∈ E(t) whenever (u

′′
, v

′′
) ∈

I1
(u,v)(t) for some (u, v) ∈ In−1

(x,y)(t). Let I∗
(x,y)(t) =

∞⋃
i=0

I i
(x,y)(t).

J0
(x,y)(t)={(x, y)}, J1

(x,y)(t) be the set of edges in G(t) which join between
an in-neighborhood of y and x or join between an out-neighborhood of x and
y or join between an out-neighborhood of y and x, J2

(x,y)(t) be the set of edge

(u′, v′) ∈ E(t) whenever (u′, v′) ∈ J1
(u,v)(t) for some (u, v) ∈ J1

(x,y)(t),...,J
n
(x,y)(t)

be the set of edge (u
′′
, v

′′
) ∈ E(t) whenever (u

′′
, v

′′
) ∈ J1

(u,v)(t) for some

(u, v) ∈ Jn−1
(x,y)(t). Let J∗

(x,y)(t) =
∞⋃
i=0

J i
(x,y)(t).

Then all identities in each (x(yz))z with reverse arc graph variety are charac-
terized by the following theorems:

Theorem 3.1. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK1 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),

(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and there
exists (u, v) ∈ A∗

(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t) or

(y, x) ∈ E(t) and there exists (u′, v′) ∈ A∗
(y,t)(t) such that (v′, u′) ∈ E(t).

Proof. Suppose that there exists x ∈ V (s) such that (x, x) ∈ E(s) but (x, x) /∈
E(t). Consider the graph G = (V, E) such that V = {0, 1}, E = {(0, 1), (1, 0), (1, 1)}.
By Table 1, we see that G ∈ K1. Let h : V (s) −→ V such that h(x) = 0, h(y) =
1 for all other y ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence s ≈ t /∈
IdK1. Suppose that there exist x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈
E(s) and there exists (u, v) ∈ A∗

(y,x)(s) such that (v, u) ∈ E(s) but (x, y) /∈ E(t)

and (y, x) /∈ E(t) or there exists no (u′, v′) ∈ A∗
(y,x)(t) such that (v′, u′) ∈ E(t).

If (x, y) /∈ E(t) and (y, x) /∈ E(t), then consider the graph G = (V, E) such that
V = {0, 1, 2}, E = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (2, 2)}. By Table 1,
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we see that G ∈ K1. Let h : V (s) −→ V such that h(x) = 1, h(y) = 2 and
h(z) = 0 for all other z ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence
s ≈ t /∈ IdK1. Suppose that (y, x) ∈ E(t) and there exists no (u′, v′) ∈ A∗

(y,x)(t)

such that (v′, u′) ∈ E(t). We see that the subgraph of G(t) induced by A where
A is the set of end vertices of edges in A∗

(y,x)(t) belong to K1. Consider the

graph G = (V, E) which obtains from G(t) by adding minimum edges to G(t)
until G ∈ K1. Let h : V (s) −→ V such that h(x) = x for all x ∈ V (s). We
have that h(s) = ∞, h(t) = h(L(t)). Hence, s ≈ t /∈ IdK1.

Conversely, suppose that s and t are non-trivial terms satisfying (i) and (ii).
Let G = (V, E) be a graph in K1 and let h : V (s) −→ V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x, y) ∈ E(t). If x = y,
then by (i), we have (x, x) ∈ E(s). Hence (h(x), h(x)) ∈ E. If x �= y, then by
(ii), we have (x, y) ∈ E(s) or (y, x) ∈ E(s) and there exists (u, v) ∈ A∗

(y,x)(s)

such that (v, u) ∈ E(s). If (x, y) ∈ E(s), then (h(x), h(y)) ∈ E. Suppose that
(y, x) ∈ E(s), since (x, y) /∈ E(s), hence there exists (u, v) ∈ A∗

(y,x)(s) such

that (v, u) ∈ E(s). We have (u, v) ∈ An
(y,x)(s) for some n with n ≥ 1. Let

(u, v) ∈ A1
(u′,v′)(s) where (u′, v′) ∈ An−1

(y,x)(s). We have (u′, v′), (v′, v′) ∈ E(s) or

(u′, v′), (u′, u′) ∈ E(s) or (u′, v′), (u′, v), (v′, v), (v, v′) ∈ E(s) or (u′, v′), (u′, v), (v, u′), (v, v′) ∈
E(s). Hence (h(u′), h(v′)), (h(v′), h(v′)) ∈ E or (h(u′), h(v′)), (h(u′), h(u′)) ∈
E or (h(u′), h(v′)), (h(u′), h(v)), (h(v′), h(v)), (h(v), h(v′)) ∈ E or (h(u′), h(v′)), (h(
u′), h(v)), (h(v), h(u′)), (h(v), h(v′)) ∈ E.

Since G ∈ K1, by Table 1, we have (h(v′), h(u′)) ∈ E for each case. Let
(u′, v′) ∈ A1

(u′′ ,v′′ )(s) where (u
′′
, v

′′
) ∈ An−2

(y,x)(s). Consider in the similar way,

we have (h(v
′′
), h(u

′′
)) ∈ E. Continue this process we get (h(x), h(y)) ∈ E.

Therefore h is a homomorphism from G(t) into G. In the same way, we can
prove that if h is a homomorphism from G(t) into G, then it is a homomorphism
from G(s) into G. Hence, by Proposition 3.3, we get s ≈ t ∈ IdK1.

Theorem 3.2. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK2 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and there

exists (u, v) ∈ B∗
(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t) or

(y, x) ∈ E(t) and there exists (u′, v′) ∈ B∗
(y,x)(t) such that (v′, u′) ∈ E(t).

Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.3. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK3 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and

there exists (u, v) ∈ C∗
(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t)

or (y, x) ∈ E(t) and there exists (u′, v′) ∈ C∗
(y,x)(t) such that (v′, u′) ∈ E(t).
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Proof. Suppose that there exists x ∈ V (s) such that (x, x) ∈ E(s) but (x, x) /∈
E(t). Consider the graph G = (V, E) such that V = {0, 1}, E = {(0, 1), (1, 0), (1, 1)}.
By Table 1, we see that G ∈ K3. Let h : V (s) −→ V such that h(x) = 0, h(y) =
1 for all other y ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence s ≈ t /∈
IdK3. Suppose that there exist x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈
E(s) and there exists (u, v) ∈ C∗

(y,x)(s) such that (v, u) ∈ E(s) but (x, y) /∈ E(t)

and (y, x) /∈ E(t) or there exists no (u′, v′) ∈ C∗
(y,x)(t) such that (v′, u′) ∈ E(t).

If (x, y) /∈ E(t) and (y, x) /∈ E(t), then consider the graph G = (V, E) such that
V = {0, 1, 2}, E = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (2, 2)}. By Table 1,
we see that G ∈ K3. Let h : V (s) −→ V such that h(x) = 1, h(y) = 2 and
h(z) = 0 for all other z ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence
s ≈ t /∈ IdK3. Suppose that (y, x) ∈ E(t) and there exists no (u′, v′) ∈ C∗

(y,x)(t)

such that (v′, u′) ∈ E(t). We see that the subgraph of G(t) induced by C where
C is the set of end vertices of edges in C∗

(y,x)(t) belong to K3. Consider the

graph G = (V, E) which obtains from G(t) by adding minimum edges to G(t)
until G ∈ K3. Let h : V (s) −→ V such that h(x) = x for all x ∈ V (s). We
have that h(s) = ∞, h(t) = h(L(t)). Hence, s ≈ t /∈ IdK3.

Conversely, suppose that s and t are non-trivial terms satisfying (i) and (ii).
Let G = (V, E) be a graph in K3 and let h : V (s) −→ V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x, y) ∈ E(t). If x = y,
then by (i), we have (x, x) ∈ E(s). Hence (h(x), h(x)) ∈ E. If x �= y, then by
(ii), we have (x, y) ∈ E(s) or (y, x) ∈ E(s) and there exists (u, v) ∈ C∗

(y,x)(s)

such that (v, u) ∈ E(s). If (x, y) ∈ E(s), then (h(x), h(y)) ∈ E. Suppose that
(y, x) ∈ E(s), since (x, y) /∈ E(s), hence there exists (u, v) ∈ C∗

(y,x)(s) such

that (v, u) ∈ E(s). We have (u, v) ∈ Cn
(y,x)(s) for some n with n ≥ 1. Let

(u, v) ∈ C1
(u′,v′)(s) where (u′, v′) ∈ Cn−1

(y,x)(s). We have (u′, v′), (u′, u′) ∈ E(s) or

(u′, v′), (v, u′), (u′, v), (v, v′) ∈ E(s). Hence (h(u′), h(v′)), (h(u′), h(u′)) ∈ E or
(h(u′), h(v′)), (h(v), h(u′)), (h(u′), h(v)), (h
(v), h(v′)) ∈ E.

Since G ∈ K3, by Table 1, we have (h(v′), h(u′)) ∈ E for each case. Let
(u′, v′) ∈ C1

(u′′ ,v′′ )(s) where (u
′′
, v

′′
) ∈ Cn−2

(y,x)(s). Consider in the similar way,

we have (h(v
′′
), h(u

′′
)) ∈ E. Continue this process we get (h(x), h(y)) ∈ E.

Therefore h is a homomorphism from G(t) into G. In the same way, we can
prove that if h is a homomorphism from G(t) into G, then it is a homomorphism
from G(s) into G. Hence by Proposition 3.3, we get s ≈ t ∈ IdK3.

Theorem 3.4. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK4 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and there

exists (u, v) ∈ D∗
(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t) or

(y, x) ∈ E(t) and there exists (u′, v′) ∈ D∗
(y,x)(t) such that (v′, u′) ∈ E(t).
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Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.5. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK5 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and

there exists (u, v) ∈ F ∗
(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t)

or (y, x) ∈ E(t) and there exists (u′, v′) ∈ F ∗
(y,x)(t) such that (v′, u′) ∈ E(t).

Proof. The proof is similar to the proof of Theorem 3.3.

Theorem 3.6. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK6 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and there

exists (u, v) ∈ H∗
(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t) or

(y, x) ∈ E(t) and there exists (u′, v′) ∈ H∗
(y,x)(t) such that (v′, u′) ∈ E(t).

Proof. Suppose that there exists x ∈ V (s) such that (x, x) ∈ E(s) but (x, x) /∈
E(t). Consider the graph G = (V, E) such that V = {0, 1}, E = {(0, 1), (1, 0), (1, 1)}.
By Table 1, we see that G ∈ K6. Let h : V (s) −→ V such that h(x) = 0,
h(y) = 1 for all other y ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)).
Hence s ≈ t /∈ IdK6. Suppose that there exist x, y ∈ V (s) with x �=
y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and there exists (u, v) ∈ H∗

(y,x)(s) such

that (v, u) ∈ E(s) but (x, y) /∈ E(t) and (y, x) /∈ E(t) or there exists no
(u′, v′) ∈ H∗

(y,x)(t) such that (v′, u′) ∈ E(t). If (x, y) /∈ E(t) and (y, x) /∈
E(t), then consider the graph G = (V, E) such that V = {0, 1, 2}, E =
{(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (2, 2)}. By Table 1, we see that G ∈ K6.
Let h : V (s) −→ V such that h(x) = 1, h(y) = 2 and h(z) = 0 for all other
z ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence s ≈ t /∈ IdK6.
Suppose that (y, x) ∈ E(t) and there exists no (u′, v′) ∈ H∗

(y,x)(t) such that

(v′, u′) ∈ E(t). We see that the subgraph of G(t) induced by H where H is
the set of end vertices of edges in H∗

(y,x)(t) belong to K6. Consider the graph

G = (V, E) which obtains from G(t) by adding minimum edges to G(t) until
G ∈ K6. Let h : V (s) −→ V such that h(x) = x for all x ∈ V (s). We have
that h(s) = ∞, h(t) = h(L(t)). Hence s ≈ t /∈ IdK6.

Conversely, suppose that s and t are non-trivial terms satisfying (i) and (ii).
Let G = (V, E) be a graph in K6 and let h : V (s) −→ V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x, y) ∈ E(t). If x = y,
then by (i), we have (x, x) ∈ E(s). Hence (h(x), h(x)) ∈ E. If x �= y, then by
(ii), we have (x, y) ∈ E(s) or (y, x) ∈ E(s) and there exists (u, v) ∈ H∗

(y,x)(s)

such that (v, u) ∈ E(s). If (x, y) ∈ E(s), then (h(x), h(y)) ∈ E. Suppose that
(y, x) ∈ E(s), since (x, y) /∈ E(s), hence there exists (u, v) ∈ H∗

(y,x)(s) such that
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(v, u) ∈ E(s). We have (u, v) ∈ Hn
(y,x)(s) for some n with n ≥ 1. Let (u, v) ∈

H1
(u′,v′)(s) where (u′, v′) ∈ Hn−1

(y,x)(s). We have (u′, v′), (u′, v), (v, u′), (v′, v) ∈
E(s). Hence (h(u′), h(v′)), (h(u′), h(v)), (h(v), h(u′)), (h(v′), h(v)) ∈ E.

Since G ∈ K6, by Table 1, we have (h(v′), h(u′)) ∈ E for each case. Let
(u′, v′) ∈ H1

(u′′ ,v′′ )(s) where (u
′′
, v

′′
) ∈ Hn−2

(y,x)(s). Consider in the similar way,

we have (h(v
′′
), h(u

′′
)) ∈ E. Continue this process we get (h(x), h(y)) ∈ E.

Therefore h is a homomorphism from G(t) into G. In the same way, we can
prove that if h is a homomorphism from G(t) into G, then it is a homomorphism
from G(s) into G. Hence by Proposition 3.3, we get s ≈ t ∈ IdK6.

Theorem 3.7. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK7 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and

there exists (u, v) ∈ I∗
(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t)

or (y, x) ∈ E(t) and there exists (u′, v′) ∈ I∗
(y,x)(t) such that (v′, u′) ∈ E(t).

Proof. The proof is similar to the proof of Theorem 3.6.

Theorem 3.8. Let s and t be non-trivial terms and difference from variables.
Then s ≈ t ∈ IdK8 if and only if

(i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) and

there exists (u, v) ∈ J∗
(y,x)(s) such that (v, u) ∈ E(s) if and only if (x, y) ∈ E(t)

or (y, x) ∈ E(t) and there exists (u′, v′) ∈ J∗
(y,x)(t) such that (v′, u′) ∈ E(t).

Proof. Suppose that there exists x ∈ V (s) such that (x, x) ∈ E(s) but (x, x) /∈
E(t). Consider the graph G = (V, E) such that V = {0, 1}, E = {(0, 1), (1, 0), (1, 1)}.
By Table 1, we see that G ∈ K8. Let h : V (s) −→ V such that h(x) = 0, h(y) =
1 for all other y ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence s ≈ t /∈
IdK8. Suppose that there exist x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈
E(s) and there exists (u, v) ∈ J∗

(y,x)(s) such that (v, u) ∈ E(s) but (x, y) /∈ E(t)

and (y, x) /∈ E(t) or there exists no (u′, v′) ∈ J∗
(y,x)(t) such that (v′, u′) ∈ E(t).

If (x, y) /∈ E(t) and (y, x) /∈ E(t), then consider the graph G = (V, E) such that
V = {0, 1, 2}, E = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (2, 2)}. By Table 1,
we see that G ∈ K8. Let h : V (s) −→ V such that h(x) = 1, h(y) = 2 and
h(z) = 0 for all other z ∈ V (s). We see that h(s) = ∞, h(t) = h(L(t)). Hence
s ≈ t /∈ IdK8. Suppose that (y, x) ∈ E and there exists no (u′, v′) ∈ J∗

(y,x)(t)

such that (v′, u′) ∈ E(t). We see that the subgraph of G(t) induced by J
where J is the set of end vertices of edges in J∗

(y,x)(t) belong to K8. Consider

the graph G = (V, E) which obtains from G(t) by adding minimum edges to
G(t) until G ∈ K8. Let h : V (s) −→ V such that h(x) = x for all x ∈ V (s).
We have that h(s) = ∞, h(t) = h(L(t)). Hence s ≈ t /∈ IdK8.



Identities in (X(YZ))Z with reverse arc graph varieties 1375

Conversely, suppose that s and t are non-trivial terms satisfying (i) and (ii).
Let G = (V, E) be a graph in K8 and let h : V (s) −→ V be a function. Suppose
that h is a homomorphism from G(s) into G and let (x, y) ∈ E(t). If x = y,
then by (i), we have (x, x) ∈ E(s). Hence (h(x), h(x)) ∈ E. If x �= y, then by
(ii), we have (x, y) ∈ E(s) or (y, x) ∈ E(s) and there exists (u, v) ∈ J∗

(y,x)(s)

such that (v, u) ∈ E(s). If (x, y) ∈ E(s), then (h(x), h(y)) ∈ E. Suppose that
(y, x) ∈ E(s), since (x, y) /∈ E(s), hence there exists (u, v) ∈ J∗

(y,x)(s) such

that (v, u) ∈ E(s). We have (u, v) ∈ Jn
(y,x)(s) for some n with n ≥ 1. Let

(u, v) ∈ J1
(u′,v′)(s) where (u′, v′) ∈ Jn−1

(y,x)(s). We have (u′, v′), (u′, u′) ∈ E(s) or

(u′, v′), (u′, v), (v, u′), (v, v′) ∈ E(s) or (u′, v′), (u′, u), (u, v′), (v′, u) ∈ E(s) or
(u′, v′), (u′, v), (v, u′), (v′, v) ∈ E(s). Hence (h(u′), h(v′)), (h(u′), h(u′)) ∈ E or
(h(u′), h(v′)), (h(u′), h(v)), (h(v), h(
u′)), (h(v), h(v′)) ∈ E or (h(u′), h(v′)), (h(u′), h(u)), (h(u), h(v′)), (h(v′), h(u))
∈ E or (h(u′), h(v′)), (h(u′), h(v)), (h(v), h(u′), (h(v′), h(v)) ∈ E.

Since G ∈ K8, by Table 1, we have (h(v′), h(u′)) ∈ E for each case. Let
(u′, v′) ∈ J1

(u′′ ,v′′ )(s) where (u
′′
, v

′′
) ∈ Jn−2

(y,x)(s). Consider in the similar way,

we have (h(v
′′
), h(u

′′
)) ∈ E. Continue this process we get (h(x), h(y)) ∈ E.

Therefore h is a homomorphism from G(t) into G. In the same way, we can
prove that if h is a homomorphism from G(t) into G, then it is a homomorphism
from G(s) into G. Hence by Proposition 3.3, we get s ≈ t ∈ IdK8.
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