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Singular Behaviour of Bounded Radially Symmetric

Solutions of p - Laplace Nonlinear Equation

Mervan Pašić 1 and Andrija Raguž

Abstract

We study the boundary singular behaviour of radially symmetric
solutions u(x) of a class of p - Laplace nonlinear equations: −Δpu =
f(|x|, u, |∇u|) in a ball BR ⊂ RN , where u = 0 on ∂BR and u ∈
W 1,p

loc (BR) ∩ L∞(BR). If the nonlinear term f(x, η, ξ) satisfies some
suitable jumping and singular conditions near ∂BR, we show that box
(fractal)-dimension of the graph G(u) of u(x) takes a fractional value s >
N . It numerically verifies that G(u) is very high concentrated near ∂BR.
Next, a kind of singular behavior of |∇u| near ∂BR is established by
giving the lower bound for the box-dimension of its graph G(|∇u|) which
in particular implies u /∈ W 1,p(BR). It generalizes a study on the fractal
dimension of the graph of solutions of the one-dimensional p - Laplace
nonlinear equation presented in an early paper: Pašić [J. Differential
Equations 190 (2003), 268-305].

1 The statement of the main problem

Let BR = BR(0) be a ball in RN , N > 1, with radius R > 0 and centered at
the origin, and let ∂BR denote the boundary of BR. We consider the following
Dirichlet boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δpu = f(|x|, u, |∇u|) in BR,

u = 0 on ∂BR,

u ∈ W 1,p
loc (BR) ∩ C(BR),

(1)

where p > 1 and | . | denotes as usual the Euclidean norm in RN . The nonlinear
term f(t, η, ξ) is a Carathéodory function that is f(t, η, ξ) is measurable in t
and continuous in (η, ξ). The condition u ∈ W 1,p

loc (BR) means that u ∈ W 1,p(Ω)
for all Ω ⊂⊂ BR. Let θ = θ(t) be increasing and ω = ω(t) be decreasing real
functions defined on [0, R], θ(t) ≤ 0 ≤ ω(t), and θ(R) = ω(R) = 0.
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Definition 1.1 We say that a function u : BR −→ R is jumping over θ and
ω near ∂BR if there exists a sequence (rk) of positive real numbers such that
rk ↗ R and a sequence σk ∈ (rk−1, rk) such that⎧⎨

⎩
u(x) ≥ ess supz∈B2k−1,2k

ω(|z|) for all x ∈ B2k−1,2k, |x| = σ2k,

u(x) ≤ ess infz∈B2k,2k+1
θ(|z|) for all x ∈ B2k,2k+1, |x| = σ2k+1,

(2)

where the ring Bk,k+1 is defined by Bk,k+1 := {x ∈ BR : rk < |x| < rk+1}.
Although the condition (2) possesses a kind of radially symmetric structure,

it is clear that a function u(x) satisfying (2) may be non-radial on BR. Before
giving the motivation to consider it, we present two explicitly given classes of
functions satisfying (2).

Example 1.2 The function u(x) = −(R − |x|)α sin(R − |x|)−β, x ∈ BR, is
jumping over θ and ω near ∂BR, where ω(t) = −θ(t) = (R − t)α, rk = R −
(kπ)−β, and 0 < α < β. Required sequence σk in (2) can be taken as σk =
R − [(k + 1/2)π]−β. �

Example 1.3 Let a(t) be a bounded function with a(0+) = 0, let F (t) be
a T - periodic bounded function with F (T0) = 0 for some T0, and let b(t)
be decreasing and positive function such that b(0+) = ∞. Then the function
u(x) = a(R−|x|)F (b(R−|x|)) is jumping over θ and ω near ∂BR, where θ(t) =
−|a(t)|, ω(t) = |a(t)|, and rk = R−b−1(T0+kT ) and b−1(t) denotes the inverse
function of b(t). For instance, the function u(x) = (R − |x|)α sin(ln(R − |x|)),
x ∈ BR, is jumping over θ and ω near ∂BR, where −θ(t) = ω(t) = (R − t)α,
α > 0, and rk = R − e−kπ. �

A motivation to introduce (2). We consider the linear differential equation
(P ): y′′ + f(t)y = 0, where f(t) > 0 on (0, R), f(R−) = ∞, and the Hartman-
Wintner asymptotic condition is satisfied: f−1/4(f−1/4)′′ ∈ L1(0, R). On the
first hand, we know that all solutions y = y(t) of equation (P ) satisfy the
following a priori estimate (A): |y′(t)| ≤ f 1/4(t) near t = R, see for instance
[1] and [3]. On the other hand, if y1(t) and y2(t) are fundamental system
of solutions of equation (P ), then the Wronskian of y(t) and yi(t) satisfies:
|W (y(t), yi(t))| = c > 0 for i = 0 or i = 1 and for all t ∈ I. In particular for
t = sk, where y′(sk) = 0, we obtain |y(sk)| = |c|/|y′

i(sk)| which together with
(A) implies the following jumping condition:

|y(sk)| ≥ c

4

√
f(sk)

, sk ∈ (ak, ak+1), for sufficiently large k, (3)

where ak is increasing sequence of consecutive zeros of y(t) such that ak → R.

In particular for obstacles θ(t) = −ω(t), ω(t) = c/ 4

√
f(t), and sequences rk =
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ak and σk = sk from (3) follows that all solution y(t) of equation (P ) satisfy
the proposed condition (2). �

For the equation (1) we are not able to use the technique of Wronskian and a
priori estimate (A) mentioned above to get a jumping condition (2). Therefore,
we will use a method of the control of essential infimum and supremum of
solutions of quasilinear elliptic differential equations presented in [4]. In this
sense, the following assumption on the sign-change of f(t, η, ξ) in respect to η,⎧⎨

⎩
f(t, η, ξ) < 0 a.e. t ∈ (0, R), η > ω̃0, ξ ∈ R ,

f(t, η, ξ) > 0 a.e. t ∈ (0, R), η < θ̃0, ξ ∈ R ,
(4)

will ensure that any solution u(x) of equation (1) satisfies a priori estimate
θ(|x|) ≤ u(x) ≤ ω(|x|), x ∈ BR. The following assumptions on the singular
behaviour of f(t, η, ξ) in respect to t near R:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(t, η, ξ) ≥ 0 a.e. t ∈ (r2k−1, r2k), η ∈ (θ̃0, ω2k), ξ ∈ R ,

f(t, η, ξ) ≥ f2k(t) a.e. t ∈ (r2k−1 + δ2k, r2k − δ2k), η ∈ (θ̃0, ω2k), ξ ∈ R ,∫ r2k−δ2k
r2k−1+δ2k

f2k(t)dt > ppγ2k(ω2k − θ̃0)
p−1 ,

(5)
and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(t, η, ξ) ≤ 0 a.e. t ∈ (r2k, r2k+1), η ∈ (θ2k+1, ω̃0), ξ ∈ R ,

f(t, η, ξ) ≤ f2k+1(t), t ∈ (r2k + δ2k+1, r2k+1 − δ2k+1), η ∈ (θ2k+1, ω̃0), ξ ∈ R,∫ r2k+1−δ2k+1

r2k+δ2k+1
f2k+1(t)(t)dt < −ppγ2k+1(ω̃0 − θ2k+1)

p−1 ,

(6)
will ensure that any radial solution u(x) of equation (1) satisfies the jumping
condition (2), where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2k := ess sup(r2k−1,r2k)ω and θ2k+1 := ess inf(r2k,r2k+1)θ ,

θ̃0 ≤ ess inf(0,R)θ < θ2k+1 and ω2k < ess sup(0,R)ω ≤ ω̃0,

δk := rk−rk−1

4
and γk := 1

NrN−1
k−1

rN
k −rN

k−1

(rk−rk−1)p ,

fk ∈ L1(rk−1 + δk, rk + δk).

(7)

Here and in the sequel, a function u(x) is said to be a radial solution of equation
(1) if u(x) = y(|x|), where y(t) is a solution of the following second-order
differential equation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−(tN−1|y′|p−2y′)′ = tN−1f(t, y, |y′|) in (0, R),

y(R) = 0,

y ∈ W1,p
loc([0, R)) ∩ C([0, R]).

(8)
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The first main result of the paper is the following.

Theorem 1.4 Let f(t, η, ξ) satisfy the assumptions (4), (5), and (6). Then
every radial solution u(x) of equation (1) is jumping over θ and ω near ∂BR.

When p = 2, in [6, Appendix] is presented the existence of at least one solution
of a class of equations like (8) where f(t, η, ξ) satisfies the assumptions (4),
(5), and (6). Such a class of the functions f(t, η, ξ) is explicitly given in the
following example.

Example 1.5 Let h1(t, ξ) and h2(t, ξ) be two measurable functions in t ∈
(a, b) and continuous in ξ ∈ R such that hi(t, ξ) > 0, i = 1, 2. The function
h(t, ξ, η) defined by

h(t, η, ξ) = −h1(t, ξ)(η − ω̃0)
+ + h2(t, ξ)(η − θ̃0)

− , t ∈ (0, R) , η ∈ R, ξ ∈ R,
(9)

satisfies the condition (4). Also, we note that the function g(t, η, ξ) defined by

g(t, η, ξ) = c0(p)(η − ω̃0)
−

∞∑
k=1

g2k(t, ξ)χ[r2k−1,r2k](t) (10)

− c0(p)(η − θ̃0)
+

∞∑
k=1

g2k+1(t, ξ)χ[r2k,r2k+1](t),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0(p) = π
2 sin π

4
pp,

g2k(t, ξ) = γ2k

r2k−r2k−1

(ω2k−θ̃0)p−1

ω̃0−ω2k
sin(π r2k−t

r2k−r2k−1
),

g2k+1(t, η) = γ2k+1

r2k+1−r2k

(ω̃0−θ2k+1)
p−1

θ2k+1−θ̃0
sin(π r2k+1−t

r2k+1−r2k
),

γk = 1
NrN−1

k−1

rN
k −rN

k−1

(rk−rk−1)p .

Now, let f(t, η, ξ) be defined by

f(t, η, ξ) = h(t, η, ξ) + g(t, η, ξ),

where h(t, η, ξ) and g(t, η, ξ) are defined as in (9) and (10) respectively. Since
gk(t, ξ) > 0 for all t ∈ (rk−1, rk) and ξ ∈ R, the function f(t, η, ξ) satisfies the
conditions (4), (5), and (6), where θ̃0 = ess inf(0,R)θ and ω̃0 = ess sup(0,R)ω. �

Next, let G(u) denote the graph of u(x) defined by

G(u) = {(x, u(x)) : x ∈ BR} ⊆ RN+1
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and let dimMG(u) denote the Minkowski-Bouligand dimension of the graph
G(u) defined by:

dimM G(u) = lim sup
ε→0

(N + 1 − log |Gε(u)|
log ε

),

where Gε(u) denotes the ε− neighborhood of the graph G(u) and |Gε(u)|
denotes the Lebesgue measure of Gε(u), see [2, Proposition 3.2]. For a function
u(x) which is jumping over θ and ω near ∂BR, we are able to estimate the
lower bounds for |Gε(u)| and dimMG(u) in term of the obstacles θ and ω. It is
numerically determine the order of growth for the concentration of the graph
G(u). It is subjected to the following theorems which will be proved in Section
3 below.

Theorem 1.6 For some ε0 > 0 and for all ε ∈ (0, ε0), let there be a natural
number k = k(ε) depending on ε > 0 such that:

rj − rj−1 ≤ ε/3 for each j ≥ k(ε). (11)

Let f(t, η, ξ) satisfy the assumptions (4), (5), and (6). Then for every radial
solution u(x) of equation (1) we have:

|Gε(u)| ≥ c
∫ R

rk(ε)

(ω(t) − θ(t))dt, (12)

dimMG(u) ≥ lim
ε→0

(
N + 1 −

log
∫R
rk(ε)

(ω(t) − θ(t))dt

log ε

)
. (13)

Now, we are able to observe the following consequence.

Corollary 1.7 Let f(t, η, ξ) satisfy the assumptions (4), (5), and (6) in respect
to θ(t), ω(t), and (rk) given by

ω(t) = (R − t)α , θ(t) = −(R − t)α and rk = R − R

2

(1

k

) 1
β , (14)

where 0 < α < β, α < 1. Then for every radial solution u(x) of equation (1)
we have:

|Gε(u)| ≥ c ε
α+1
β+1 and dimMG(u) ≥ N + 1 − α + 1

β + 1
> N. (15)

If u(x) is a smooth function in BR and bounded on BR (for instance: u ∈
W 1,p(BR) ∩ C(BR) or u ∈ C1(BR)), then by using an elementary geometric
argumentation, it is not difficult to check that |Gε(u)| ∼ ε1 for ε ≈ 0. On the
other hand, for the function u(x) defined in Example 1.2, one can show that

|Gε(u)| ∼ ε
α+1
β+1 for ε ≈ 0 as well as u ∈ W 1,p

loc (BR)∩C∞(BR) and u /∈ W 1,p(BR).
Hence by (15), we can expect that the gradient ∇u of every radial solution of
(1) is singular near ∂BR in the sense of the following two results. The proof of
the following result will be sketched in Section 4 below.
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Theorem 1.8 Let f(t, η, ξ) satisfy the assumptions (4), (5), and (6). Then
for every radial solution u(x) of equation (1), we have

dimMG(‖∇u‖) ≥ lim sup
ε−→0

(
N + 1 − log

∑+∞
k=k(ε/2)(ω2k − θ2k−1))

logε

)
, (16)

where (ω2k) and (θ2k−1) are defined by (7). In particular, if θ(t), ω(t), and (rk)
are given by (14), then there holds

dimMG(‖∇u‖) ≥ N + 1 − α

1 + β
> N +

1

2
. (17)

Under the hypotheses (14) from Theorem 1.8 especially follows that ∇u /∈
Lp(BR) and so

lim
ε→0

∫
BR−ε

|∇u|pdx = ∞, (18)

where BR−ε is a ball with radius R − ε and centered at the origin. The order
of growth for the divergence in (18) will be given in the following theorem.

Theorem 1.9 Let f(t, η, ξ) satisfy the assumptions (4), (5), and (6) in respect
to θ(t), ω(t) and (rk) given by (14). Then then for every radial solution u(x)
of equation (1) we have

lim sup
ε−→0

log‖∇u‖Lp(BR−ε)

log 1
ε

≥ s − N ≥ 0 . (19)

The proof will be sketched in Section 4 below.

In Theorem 1.9, a lower bound for the order of growth of singular behaviour
of ||∇u||Lp is determined by the singular boundary behaviour of the nonlinear
term f(t, η, ξ). It could be compared with some known facts about the local
behaviour of ||∇u||Lp, where it was shown that the order of growth of regular
asymptotic behaviours of both ||∇u||Lp and coefficients in the equation are
equivalent each to other, in some way, see for instance [9], [10], [11], and
references therein.

2 The proof of Theorem 1.4

At the first, we establish some lemmas which state sufficient conditions on
f(t, η, ξ) so that any radial solution u(x) of equation (1) is jumping over θ and
ω near ∂BR.
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Lemma 2.1 Let 0 < a < b < R and let δ = (b − a)/4. Then for every c0 > 1
there exists Φ ∈ C∞

0 (a, b) with properties⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Φ(t) ≤ 1, t ∈ R ,

Φ(t) = 1, t ∈ (a + δ, b − δ) and Φ(t) = 0, t ∈ R/(a, b),

and |Φ′(t)| ≤ c0
b−a

, t ∈ R.

Proof. The claim follows immediately from Lemma 5, p. 267, [4], with A :=
(a + δ, b − δ) and Ar = (a, b), where r := δ. �

Lemma 2.2 Let θ̃0, ω2 and ω̃0 be real numbers such that θ̃0 < ω2 < ω̃0. Let
0 < r1 < r2 < R and let δ2 = (r2 − r1)/4. Let the function f(t, η, ξ) satisfy

f(t, η, ξ) ≥ 0 a.e. t ∈ (r1, r2), η ∈ (θ̃0, ω2), ξ ∈ R , (20)

f(t, η, ξ) ≥ f2(t) a.e. t ∈ (r1 + δ2, r2 − δ2), η ∈ (θ̃0, ω2), ξ ∈ R ,∫ r2−δ2

r1+δ2
f2(t)dt > (p − 1)p−1γ2 inf

s>0

1

s
((ω2 − θ̃0) + s)p , (21)

where

f2 ∈ L1(r1 + δ2, r2 − δ2) and γ2 :=
1

NrN−1
1

rN
2 − rN

1

(r2 − r1)p
.

Then every solution y ∈ W 1,p
loc ([0, R)) ∩ C([0, R]) of equation (8) satisfies: if

there holds ess inf(r1,r2)y ≥ θ̃0, then there holds ess sup(r1,r2)y ≥ ω2.

Proof. Let y(t) be a solution of equation (8). Let us assume the opposite, i.e.,
let for every t ∈ (r1, r2) there holds y(t) ≥ θ̃0 and y(t) ≤ ω2. Testing equation
(8) by any ϕ ∈ C∞

0 (r1, r2) we obtain∫ r2

r1

tN−1|y′|p−2y′ϕ′dt =
∫ r2

r1

tN−1f(t, y, |y′|)ϕdt .

In particular for ϕ(t) = −(y(t)− τ)−Φp(t), where η− := max{−η, 0} and Φ(t)
is from Lemma 2.1, we obtain∫

(r1,r2)∩{y<τ}
tN−1|y′|p−2y′(y′Φp + (y − τ)pΦp−1Φ′)dt

=
∫
(r1,r2)∩{y<τ}

tN−1f(t, y, |y′|)(y − τ)Φpdt ,

and∫
(r1,r2)∩{y<τ}

tN−1|y′|pΦpdt ≤ p
∫
(r1,r2)∩{y<τ}

tN−1|y′|p−1(τ − y)Φp−1|Φ′|dt

−
∫
(r1,r2)∩{y<τ}

tN−1f(t, y, |y′|)(τ − y)Φpdt .
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We apply the Young inequality c1(pc2) ≤ d
p′ c

p′
1 + (p

d
)p−1cp

2 for any d > 0 and

c1 := |y′|p−1(τ − y)
1
p′ Φp−1 , c2 := (τ − y)

1
p |Φ′| ,

to get

∫
(r1,r2)∩{y<τ}

tN−1|y′|pΦpdt ≤ d

p′

∫
(r1,r2)∩{y<τ}

tN−1|y′|p(τ − y)Φpdt

+ (
p

d
)p−1

∫
(r1,r2)∩{y<τ}

tN−1(τ − y)|Φ′|pdt

−
∫
(r1,r2)∩{y<τ}

tN−1f(t, y, |y′|)(τ − y)Φpdt .

Then y(t) ≥ θ̃0 and y(t) ≤ ω2, t ∈ (r1, r2), gives

∫
(r1,r2)∩{y<τ}

tN−1|y′|pΦpdt ≤ (τ − θ̃0)
d

p′

∫
(r1,r2)∩{y<τ}

tN−1|y′|pΦpdt

+ (τ − θ̃0)(
p

d
)p−1

∫
(r1,r2)∩{y<τ}

tN−1|Φ′|pdt

− (τ − ω2)
∫
(r1,r2)∩{y<τ}

tN−1f(t, y, |y′|)Φpdt ,

that is:

(1 − (τ − θ̃0)
d

p′
)
∫
(r1,r2)∩{y<τ}

tN−1|y′|pΦpdt ≤

(
p

d
)p−1(τ − θ̃0)

∫ r2

r1

tN−1|Φ′|pdt − (τ − ω2)
∫
(r1,r2)∩{y<τ}

tN−1f(t, y, |y′|)Φpdt ,

where we chose τ > ω2. By properties of Φ and f it follows

(1 − (τ − θ̃0)
d

p′
)
∫
(r1,r2)∩{y<τ}

tN−1|y′|pΦpdt

≤ (
p

d
)p−1(τ − θ̃0)

cp
0

(r2 − r1)p

∫ r2

r1

tN−1dt − (τ − ω2)r
N−1
1

∫ r2−δ2

r1+δ2
f2(t)dt .

By putting d := p′
τ−ω̃0

, from the last inequality we get

0 ≤ (
p

p′
)p−1(τ − θ̃0)

p cp
0

(r2 − r1)p

∫ r2

r1

tN−1dt − (τ − ω2)r
N−1
1

∫ r2−δ2

r1+δ2
f2(t)dt .

Set F2 :=
∫ r2−δ2
r1+δ2

f2(t)dt, τ = s + ω2, s > 0. Then

(τ − ω2)F2 ≤ (p − 1)p−1(τ − θ̃0)
p 1

rN−1
1

cp
0

(r2 − r1)p

1

N
(rN

2 − rN
1 ) .
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Since γ2 = 1

NrN−1
1

rN
2 −rN

1

(r2−r1)p , we have

sF2 ≤ (p − 1)p−1(s + (ω2 − θ̃0))
pγ2c

p
0 .

Since c0 > 1 is arbitrarily given, we can pass to the limit as c0 → 1, so that

F2 ≤ (p − 1)p−11

s
(s + (ω2 − θ̃0))

pγ2 .

At last, we take infimum over all s > 0, and so

F2 ≤ (p − 1)p−1 inf
s>0

1

s
(s + (ω2 − θ̃0))

pγ2 .

By assumption y(t) ≤ ω2 we arrive at contradiction with (21), so that the
claim of the proposition is true. �

Lemma 2.3 Let θ̃0, θ1 and ω̃0 be real numbers such that θ̃0 < θ1 < ω̃0. Let
0 < r2 < r3 < R and let δ3 = (r3 − r2)/4. Let the function f(t, η, ξ) satisfy

f(t, η, ξ) ≤ 0 a.e. t ∈ (r2, r3), η ∈ (θ1, ω̃0), ξ ∈ R , (22)

f(t, η, ξ) ≤ f3(t) a.e. t ∈ (r2 + δ3, r3 − δ3), η ∈ (θ1, ω̃0), ξ ∈ R ,∫ r3−δ3

r2+δ3
f3(t)dt < −(p − 1)p−1 inf

s>0

1

s
((ω̃0 − θ1) + s)pγ3 , (23)

where

f3 ∈ L1(r2 + δ3, r3 − δ3) and γ3 :=
1

NrN−1
2

rN
3 − rN

2

(r3 − r2)p
.

Then every solution y ∈ W 1,p
loc ([0, R)) ∩ C([0, R]) of equation (8) satisfies: if

there holds ess sup(r2,r3)y ≤ ω̃0, then there holds ess inf(r2,r3)y ≤ θ1.

Proof. Similar to proof of Lemma 2.2. �

Remark 2.4 If rk ↗ R as k −→ +∞, we can set rk := αkR, for instance
αk = 1 − 1

2k . Then r1 = 1
2
R, r2 = 3

4
R, r3 = 7

8
R, estimates are again of order

1
Rp−1 , as in the case N = 1. �

Remark 2.5 The right hand sides in (21) and (23) can be simplified because

inf
s>0

1

s
(c + s)p =

pp

(p − 1)p−1
cp−1 ,

where c > 0. Therefore, the conditions (21) and (23) can be rewritten in the
form ∫ r2−δ2

r1+δ2
f2(t)dt > ppγ2(ω2 − θ̃0)

p−1 , (24)

∫ r3−δ3

r2+δ3
f3(t)dt < −ppγ3(ω̃0 − θ1)

p−1 . (25)

Proof of Theorem 1.4. Directly from Lemma 2.2, Lemma 2.3, and Remark 2.5.
�
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3 The proof of Theorem 1.6 and Corollary 1.7

At the first, we give an useful lemma which generalizes [7, Lemma 2.1] to the
multi-dimensional case.

Lemma 3.1 Let k(ε) be a natural number defined as in (11). Let u(x) be a
function with jumping over θ and ω near ∂BR. Then for every ε ∈ (0, ε0) we
have

|Gε(u)| ≥
∫ R

rk(ε)

(ω(t) − θ(t))dt . (26)

Proof. Let u(x) be a function with jumping over θ and ω near ∂BR and let σk

be a sequence determined in (2). Let ε be a fixed number from the interval
(0, ε0). Let Sk and Tk be two sequences of subsets in RN+1 defined as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sk = {(x, y) ∈ RN × R : σk ≤ |x| ≤ σk+1 and θ(|x|) ≤ y ≤ ω(|x|)},
T2k−1 = {(x, y) ∈ RN ×R : σ2k−1 ≤ |x| ≤ σ2k and θ(σ2k−1) ≤ y ≤ ω(σ2k)},
T2k = {(x, y) ∈ RN ×R : σ2k ≤ |x| ≤ σ2k+1 and θ(σ2k+1) ≤ y ≤ ω(σ2k)}.

A small difference in the definition of sets T2k−1 and T2k appears because
of (2), that is, since the function u(x) is jumping over θ(|x|) and ω(|x|) on
(r2k−2, r2k−1) and (r2k−1, r2k) respectively. Next, let Sε be a set defined by:

Sε = {(x, y) ∈ RN × R : |x| ≥ rk(ε) and θ(|x|) ≤ y ≤ ω(|x|)},

where k(ε) is a natural number defined in (11). It is clear that for all k ≥ k(ε)
we have

Tk ⊇ Sk+1,
⋃

k≥k(ε)−1

Sk+1 ⊇ Sε, and |Sε| =
∫ R

rk(ε)

(ω(t) − θ(t))dt. (27)

Let us suppose for a moment that the following statement holds true:

Gε(u|[σk−1,σk]N ) ⊇ Tk, k ≥ k(ε), (28)

where [a, b]N is a classic cube in RN that is [a, b]N = {x ∈ RN : a ≤ |x| ≤ b}.
Since A1 ⊇ A2 implies A1(ε) ⊇ A2(ε) and (A3∪A4)(ε) ⊇ A3(ε)∪A4(ε) for any
set Ai and its ε-neighborhood Ai(ε), from (27) and (28) immediately follows
that

Gε(u) ⊇ Gε(u|[rk(ε)−2,R]N ) ⊇ ⋃
k≥k(ε)−1

Tk ⊇ ⋃
k≥k(ε)−1

Sk+1 ⊇ Sε,

which proves the desired statement (26). Now, we need to show (28), i.e., that
the assumption (x0, y0) ∈ Tk implies (x0, y0) ∈ Gε(u|[σk−1,σk]N ). To show that,
let (x0, y0) ∈ Tk and let ON denote the origin of RN . Let P0 be a line in RN
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generated by two points ON and x0. Let pk and qk be two sequences in RN

defined by:

pk = P0 ∩ {x ∈ RN : ||x|| = σk} and qk = P0 ∩ {x ∈ RN : |x| = rk}.

Obviously x0 ∈ Pk,k+1 ⊆ [σk, σk+1]
N , where Pk,k+1 denotes the segment in P0

with the boundary points pk and pk+1. That is, the set Pk,k+1 is a projection
of [σk, σk+1]

N into P0. By (2), it is clear that there is a point p0 ∈ Pk−1,k such
that y(p0) = y0 obtained by

(p0, y0) = {(x, y0) ∈ RN ×R : x ∈ Pk−1,k} ∩ G(u|Pk−1,k
).

Hence, we have

d((x0, y0), G(u|Pk−1,k
)) ≤ d((x0, y0), (p0, y0))). (29)

Since Pk−1,k ⊆ [σk−1, σk]
N , we have G(u|Pk−1,k

) ⊆ G(u|[σk−1,σk]N ) and so,

d((x0, y0), G(u|[σk−1,σk]N )) ≤ d((x0, y0), G(u|Pk−1,k
)). (30)

Now, as x0 ∈ Pk,k+1 and p0 ∈ Pk−1,k, by (11), (29), and (30), for all k ≥ k(ε)
we obtain:

d((x0, y0), G(u|[σk−1,σk]N )) ≤ d((x0, y0), G(u|Pk−1,k
)) ≤ d((x0, y0), (p0, y0)))

≤ |x0−p0| ≤ |pk+1−pk−1| = |σk+1−σk−1| ≤ |rk+1−rk−2| ≤ ε/3+ε/3+ε/3 = ε,

which proves that (x0, y0) ∈ Gε(u|[σk,σk+1]N ). Hence, the statement (28) is
shown. �

Proof of Theorem 1.6. By Theorem 1.4 every radial solution u(x) of equation
(1) is jumping over θ and ω near ∂BR. Hence the desired statement (12)
immediately follows from Lemma 3.1. Next, by the definition of the upper
Minkowski-Bouligand dimension and by (12) we obtain that

dimMG(u) = lim sup
ε−→0

(
N + 1 − log|Gε(u)|

logε

)

≥ lim
ε→0

(
N + 1 −

log
∫R
rk(ε)

(ω(t) − θ(t))dt

log ε

)
,

which proves (13). �

Proof of Corollary 1.7. At the first, it is clear that the functions θ(t) and
ω(t) given in (14) are increasing and decreasing respectively and that θ(R) =
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ω(R) = 0. Next, we claim that the sequence rk given in (14) satisfies the
required condition (11) in respect to k(ε) ∈ N determined by:

M0

(1

ε

) β
β+1 ≤ k(ε) ≤ 2M0

(1

ε

) β
β+1 , ε ∈ (0, ε0), (31)

where ε0 = R
β

and M0 = 2ε
β

β+1

0 . Indeed, the desired statement (11) follows

immediately from (31) and from the following elementary inequalities:

1

β

(1

k

)1+ 1
β ≤

( 1

k − 1

) 1
β −

(1

k

) 1
β

≤ 1

β

( 1

k − 1

)1+ 1
β ≤ 21+ 1

β

β

(1

k

)1+ 1
β . (32)

Then, by Theorem 1.6, we have:

|Gε(u)| ≥ c
∫ R

rk(ε)

(ω(t) − θ(t))dt ≥ 2c

α + 1
(R − rk(ε))

α+1,

and

dimMG(u) ≥ lim sup
ε−→0

(
N + 1 −

log
∫R
rk(ε)

(ω(t) − θ(t))dt

logε

)

= lim sup
ε−→0

(
N + 1 − log 2

α+1
(R − rk(ε))

α+1

logε

)
.

By (14) and (31) follows that for every ε ∈ (0, ε0) and every k ≥ k(ε) there
holds

R − rk(ε) =
R

2

( 1

k(ε)

) 1
β ≥ R

2

( 1

2M0

) 1
β ε

1
β+1 = c1ε

1
β+1 ,

and hence

|Gε(u)| ≥ 2c

α + 1
(R − rk(ε))

α+1 ≥ c2ε
α+1
β+1 ,

and

dimMG(u) ≥ lim sup
ε−→0

(
N + 1 − log 2

α+1
(c1ε

1
β+1 )α+1

logε

)

≥ N + 1 − α + 1

β + 1
,

which proves this corollary. �
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4 The proofs of Theorem 1.8 and Theorem 1.9

In this section we sketch the proofs of Theorem 1.8 and Theorem 1.9.

Sketch of the proof of Theorem 1.8. Since for radial functions u there holds
|∇u| = |y′(t)| where t = |x|, u(x) = y(t), we have dist(x,G(|∇u|)) = dist(t, G(|y′|)),
Gε(|∇u|) = Gε(|y′|), so that

dimMG(|∇u|) = dimMG(|y′|) .

By Lemma 3.1 and Lemma 3.2 in Pašić-Županović [7] there holds

|Gε(y
′)| ≥

+∞∑
k=k(ε/2)

(ω2k − θ2k−1) .

Then it follows

|Gε(y
′)| ≥

+∞∑
k=k(ε/2)

(
R

2
)α
[( 1

2k − 1

)α
β +

( 1

2k

)α
β
]

|Gε(y
′)| ≥

+∞∑
k=k(ε/2)

Rα

2α−1

( 1

2k

)α
β ≥ Rα

2α−1

( 1

2k( ε
2
)

)α
β .

By (31) for every ε ∈ (0, ε0) there holds 1
k(ε/2)

≥ 1
2M0

(
ε
2

) β
β+1 , that is, |Gε(y

′)| ≥
c2ε

α
β+1 , where c2 := R

αβ
β+1

2α−18
α
β

β
2

α
β+1 . Thus dimMG(y′) ≥ N + 1 − α

1+β
. On

the other hand, we can write G(y′) = A ∪ B, G(|y′|) = A′ ∪ B, where
A := {(x, y′(x)) : y′(x) < 0}, B := G(y′)\A and where A′ is a set obtained
by reflection of A with respect to x-axes. In particular, dimMA = dimMA′.
By the finite stability of upper Minkowski-Bouligand dimension, there holds
dimMG(y′) = max{dimMA, dimMB}, dimMG(|y′|) = max{dimMA′, dimMB},
and so we have dimMG(y′) = dimMG(|y′|). Therefore, (16) and (17) hold true.
�

Proof of Theorem 1.9. Obviously there holds |∇u|Lp(BR−ε) = |y′|Lp(0,R−ε). To
prove (19), we adapt the proof of Theorem 8.1. in [6]. �
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