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Singular Behaviour of Bounded Radially Symmetric
Solutions of p - Laplace Nonlinear Equation

Mervan Pasié ' and Andrija Raguz

Abstract

We study the boundary singular behaviour of radially symmetric
solutions u(z) of a class of p - Laplace nonlinear equations: —Aju =
f(z|,u,|Vul) in a ball B ¢ RY, where v = 0 on dBg and u €
lef(BR) N L*°(Bgr). If the nonlinear term f(xz,n,§) satisfies some
suitable jumping and singular conditions near 0 B, we show that box
(fractal)-dimension of the graph G(u) of u(x) takes a fractional value s >
N. It numerically verifies that G(u) is very high concentrated near 0 Bpg.
Next, a kind of singular behavior of |Vu| near dBp is established by
giving the lower bound for the box-dimension of its graph G(|Vu/|) which
in particular implies u ¢ WP(Bg). It generalizes a study on the fractal
dimension of the graph of solutions of the one-dimensional p - Laplace
nonlinear equation presented in an early paper: Pasi¢ [J. Differential
Equations 190 (2003), 268-305].

1 The statement of the main problem

Let Br = Bg(0) be a ball in RN, N > 1, with radius R > 0 and centered at
the origin, and let 0Bg denote the boundary of Br. We consider the following
Dirichlet boundary value problem:

—Ayu = f(|z|,u, |Vu|) in Bg,
u=0 on 0B, (1)
u € Wyt (Br) N C(Br).

where p > 1 and | . | denotes as usual the Euclidean norm in R". The nonlinear
term f(t,n,§) is a Carathéodory function that is f(¢,n,&) is measurable in ¢
and continuous in (7, £). The condition u € W,-”(Bg) means that u € WP(Q)

for all Q@ CC Bg. Let @ = 6(t) be increasing and w = w(t) be decreasing real
functions defined on [0, R], 0(t) < 0 < w(t), and O(R) = w(R) = 0.
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Definition 1.1 We say that a function u : B — R is jumping over 6 and
w near 0Bpg if there exists a sequence (ry) of positive real numbers such that
r. /" R and a sequence oy, € (ry_1,7r%) such that

(2)

u(x) > esssup.cp,, ,,w(|z|) for all v € By 0k, |z = oo,
u(r) <essinf.cp, ., ,0(|2]) for all x € Boyori1, 7| = oopy1,

where the ring By i1 s defined by By 41 := {x € Br: 1 < |x| < Tp41}.

Although the condition (2) possesses a kind of radially symmetric structure,
it is clear that a function u(x) satisfying (2) may be non-radial on Bg. Before
giving the motivation to consider it, we present two explicitly given classes of
functions satisfying (2).

Example 1.2 The function u(z) = —(R — |z|)*sin(R — |z|)™?, # € Bg, is
jumping over 6 and w near dBg, where w(t) = —0(t) = (R—t)*, 1, = R —
(km)=%, and 0 < 04 < B. Required sequence oy, in (2) can be taken as o), =
R—|[(k+1/2)m]7". 0

Example 1.3 Let a(t) be a bounded function with a(0+) = 0, let F(t) be
a T- periodic bounded function with F(7y) = 0 for some Ty, and let b(t)
be decreasing and positive function such that b(0+) = co. Then the function
u(z) = a(R—|z|)F(b(R—|x|)) is jumping over § and w near dBg, where 0(t) =
—la(t)|, w(t) = |a(t)|, and ry = R—b""(To+kT) and b~*(¢) denotes the inverse
function of b(t). For instance, the function u(z) = (R — |z|)*sin(ln(R — |z])),
x € Bp, is jumping over # and w near 0Bgr, where —0(t) = w(t) = (R — t)*,
a>0,and 7, = R — e F7. O

A motivation to introduce (2). We consider the linear differential equation
(P): v+ f(t)y = 0, where f(t) > 0on (0, R), f(R—) = 00, and the Hartman-
Wintner asymptotic condition is satisfied: f~'/4(f~1/4)" € L'(0, R). On the
first hand, we know that all solutions y = y(t) of equation (P) satisfy the
following a priori estimate (A): [y/(t)] < fY4(t) near t = R, see for instance
[1] and [3]. On the other hand, if y;(f) and ys(t) are fundamental system
of solutions of equation (P), then the Wronskian of y(t) and y;(t) satisfies:
(W (y(t),y:(t))] = c>0fori=0ori=1and for all t € I. In particular for
t = si, where y/(s) = 0, we obtain |y(sx)| = |c|/|yi(sx)| which together with
(A) implies the following jumping condition:

ly(sk)| > ———, sk € (ax,ary1), for sufficiently large k, (3)

./ (sk)

where ay is increasing sequence of consecutive zeros of y (t) such that a;, — R.
In particular for obstacles 6(t) = —w( =¢/{/f(t), and sequences r, =
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ar and oy = s from (3) follows that all solution y(¢) of equation (P) satisfy
the proposed condition (2). O

For the equation (1) we are not able to use the technique of Wronskian and a
priori estimate (A) mentioned above to get a jumping condition (2). Therefore,
we will use a method of the control of essential infimum and supremum of
solutions of quasilinear elliptic differential equations presented in [4]. In this
sense, the following assumption on the sign-change of f(t,7n,£) in respect to 7,

{ f(t,n,&) <0 ae. te(0,R),n>d, ER,

f(tﬂ?,f)>0 a.e.tE(O,R),n<§0,§€R’ (4>

will ensure that any solution u(z) of equation (1) satisfies a priori estimate
0(|z|) < u(z) < w(|z|), x € Bg. The following assumptions on the singular
behaviour of f(t,7n,£) in respect to ¢t near R:

f(t>77>€> > 0 ae te (712167177.2]6)7 ne (é07w2k>7 5 S R:
F(t,n,6) > for(t) ae. t € (rop_1 4 0o, Tox — 0a), 7 € (B, war), € € R,
JrA0 for(t)dt > pPrar(war, — Oo)P 7L,
(5)
and
f(t,n,€) <0 ae. t € (rog,rops1), 1€ (Oapr1,00), £ €R,
F(t,n,6) < fors1(t),t € (Tog + Ooks1, T2k+1 — O2k41), N € (Oap41,@0), £ € R,

r -0 ~ -
Jratbmei ™ a1 () () At < —pPyargr (@o — Oapsn )P -
6
will ensure that any radial solution u(z) of equation (1) satisfies the jumping
condition (2), where:

Wok 1= €SS SUDP(y,, | pp W and  Oopig = essinf,, o, 0,

50 <essinf(g r)f) < Ogp41 and wyy < ess Sup (o, W < Wo,
L (7)
r]iv:ll (re—rE—1)P ?

e T TR —
Op 1= = and =

fr € LYN(rp_1 + 0p, i + ).

Here and in the sequel, a function u(x) is said to be a radial solution of equation
(1) if u(x) = y(|x|), where y(t) is a solution of the following second-order
differential equation:

="y Py) =t Gy ly]) i (0, R),
y(R) =0, (8)
y € Wye([0, R) N C([0, R)).
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The first main result of the paper is the following.

Theorem 1.4 Let f(t,n,&) satisfy the assumptions (4), (5), and (6). Then
every radial solution u(x) of equation (1) is jumping over 6 and w near OBg.

When p = 2, in [6, Appendix] is presented the existence of at least one solution
of a class of equations like (8) where f(¢,7,§) satisfies the assumptions (4),
(5), and (6). Such a class of the functions f(t,n,§) is explicitly given in the
following example.

Example 1.5 Let hy(t,£) and ho(t,€) be two measurable functions in t €
(a,b) and continuous in £ € R such that h;(¢,€) > 0, ¢ = 1,2. The function
h(t,&,n) defined by

h(t>777€) = _hl(t> 5)(77 - (*:)O)Jr + h2(t7£)(77 - 90)7 ) te (O7R) /i € R7 5 € (R';
9

satisfies the condition (4). Also, we note that the function g(¢,7, &) defined by

g(ta 7, 6) = CO(P)(U - @0)7 Z ng(tv E)X[T2k7177'2k} (t) (10)
k=1
- G (p) (77 - ONO)Jr Z 92k+1(t7 g)X[TQkJ’QkJrl](t)?
k=1

where
CO(p) = ﬁﬂ;

gor(t,§) = —2 (wat—00)""! sin(r—22=t )

Tok—T2k—1 Wo—Wak Tok—T2k—1

o —0 L r —t
Y2k+1 (0 2k+1) sm(w 2k+1 )

92k+1(t’ 77) - 9 T2k+1—T2k

Tok+1—T2k  BOap41—00 ’

N__.N
o 1 " TTk—1
k Nrpy P (re—re—1)P”

Now, let f(t,n,&) be defined by

f(t,n,8) = h(t,n, &)+ g(t,n, &),

where h(t,n,€) and g(t,n,&) are defined as in (9) and (10) respectively. Since
ge(t,&) > 0 for all t € (rp_1,7) and £ € R, the function f(t,n,§) satisfies the
conditions (4), (5), and (6), where 6y = essinf( z)0 and Wy = esssup pyw. O

Next, let G(u) denote the graph of u(z) defined by

G(U) = {(x,u(x)) ‘x E BR} C RN+
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and let dimy;G(u) denote the Minkowski-Bouligand dimension of the graph
G(u) defined by:

log |Ge
dimy; G(u) = limsup (N + 1 — log |G (u)|
e—0 logg

)7

where G.(u) denotes the e— neighborhood of the graph G(u) and |Ge(u)l
denotes the Lebesgue measure of G (u), see [2, Proposition 3.2]. For a function
u(z) which is jumping over # and w near 0Bg, we are able to estimate the
lower bounds for |G.(u)| and dim;G(u) in term of the obstacles § and w. It is
numerically determine the order of growth for the concentration of the graph
G(u). It is subjected to the following theorems which will be proved in Section
3 below.

Theorem 1.6 For some g9 > 0 and for all € € (0,ey), let there be a natural
number k = k(e) depending on € > 0 such that:

r; —rj—1 < €/3 for each j > k(e). (11)
Let f(t,n,&) satisfy the assumptions (4), (5), and (6). Then for every radial

solution u(x) of equation (1) we have:

Cw)] 2 e [ (lt) — 00t (12)

Tk(e)

log [ (w(t) - e<t>>dt> o

dimyG(u) > ilir(l] <N +1-— Tog ¢

Now, we are able to observe the following consequence.

Corollary 1.7 Let f(t,n, &) satisfy the assumptions (4), (5), and (6) in respect
to O(t), w(t), and (ry) given by

W(t) = (R—1) . 0(t) = —(R—)° and rk:R—g(%)%, (14)

where 0 < a < 3, a < 1. Then for every radial solution u(x) of equation (1)
we have:

a+t+l 1
G.(u)] > cePT and dimyGu) > N +1— gil

If u(z) is a smooth function in Bg and bounded on Bg (for instance: u €
W'P(Bg) N C(Bg) or u € C'(Bg)), then by using an elementary geometric
argumentation, it is not difficult to check that |G.(u)| ~ &' for € ~ 0. On the
other hand, for the function u(z) defined in Example 1.2, one can show that
|Ge(u)| ~ e for £ & 0 as well as u € WP (Br)NC>®(Bg) and u ¢ WP (Bg).
Hence by (15), we can expect that the gradient Vu of every radial solution of
(1) is singular near 0By in the sense of the following two results. The proof of
the following result will be sketched in Section 4 below.

> N. (15)
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Theorem 1.8 Let f(t,n,&) satisfy the assumptions (4), (5), and (6). Then
for every radial solution u(z) of equation (1), we have

log S wop, — Bop—
dimarG([|Vu||) > lim sup <N+1— B i hies2) (2t — ot 1))) . (16)
e—0

loge

where (wor) and (Bax—1) are defined by (7). In particular, if 0(t), w(t), and (ry)
are given by (14), then there holds

o 1
. > a L
dimpG(||Vul]) > N +1 155 >N+ 5 (17)

Under the hypotheses (14) from Theorem 1.8 especially follows that Vu ¢
LP(Bg) and so
lim |VulPdx = oo, (18)
e—=0.J/Bp_.
where Bg_. is a ball with radius R — ¢ and centered at the origin. The order
of growth for the divergence in (18) will be given in the following theorem.

Theorem 1.9 Let f(t,n,§) satisfy the assumptions (4), (5), and (6) in respect
to 6(t), w(t) and (rg) given by (14). Then then for every radial solution u(x)
of equation (1) we have

log||Vully, g, Ss_N>0. (19)

lim su
E%Op log%

The proof will be sketched in Section 4 below.

In Theorem 1.9, a lower bound for the order of growth of singular behaviour
of ||Vul|Lr is determined by the singular boundary behaviour of the nonlinear
term f(t,n,£). It could be compared with some known facts about the local
behaviour of ||[Vul||z», where it was shown that the order of growth of regular
asymptotic behaviours of both ||Vu||z» and coefficients in the equation are
equivalent each to other, in some way, see for instance [9], [10], [11], and
references therein.

2 The proof of Theorem 1.4

At the first, we establish some lemmas which state sufficient conditions on
f(t,n, &) so that any radial solution u(x) of equation (1) is jumping over # and
w near 0Bp.
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Lemma 2.1 Let 0 < a <b< R and let = (b—a)/4. Then for every ¢y > 1
there exists ® € C¥(a,b) with properties

0<d(t)<1,teR,

O(t)=1,t€ (a+0,b—9) and ®(t) =0, t € R/(a,b),

and |®'(t)] < 72, t € R.

Proof. The claim follows immediately from Lemma 5, p. 267, [4], with A :=
(a+6,b—9) and A, = (a,b), where r := . O

Lemma 2.2 Let éo, we and wqy be real numbers such that éo < we < wy. Let
0<ry<ry< R and let 05 = (ro — r1)/4. Let the function f(t,n,§) satisfy

ft,n,6) >0 ae te(r,r),ne (50,w2), EeER, (20)
f(t>777€> zfQ(t) a.e. € (T1—|—52,T2—(52), ne (é07w2>7 SGR,
ro—0d2 ~
[ pattydt > (p— 1 g (e — o) + ) (21)
r1402 >0 s

where
1 =N

NT{V_I (TQ - 7"1)p'

Then every solution y € V[fllo’f([(),R)) N C([0, R]) of equation (8) satisfies: if
there holds essinf(y, 1, y > 6o, then there holds esssup,, ,,yy > wa.

fa € Ll(rl + 9,79 — 09) and ye =

Proof. Let y(t) be a solution of equation (82 Let us assume the opposite, i.e.,
let for every t € (r1,72) there holds y(t) > 6y and y(t) < wy. Testing equation
(8) by any ¢ € C§°(r1,72) we obtain

72 72
/ Ny PRy ol dt = / NIy, [ ) pdt
71 T1

In particular for p(t) = —(y(t) — 7)~ PP(¢), where n~ := max{—n,0} and ®(¢)
is from Lemma 2.1, we obtain

/ Y P (Y P + (y — T)pPP T @) de
(r1,m2)N{y<7}
-/ Uy )y — TPt
(r1,m2)N{y<7}
and
/ yperdr < p | Ny P (7 — )PPt
(r1,m2)N{y<7} (r1,r2)N{y<7}

— Ny, Y] (T — y) PPt

(r1,m2)N{y<7}
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We apply the Young inequality ¢; (pcg) < ﬁcﬁ”/ + (5)P~'¢} for any d > 0 and

1 1
= P T =P = (=)

to get
N—1y,/ d N-1y,/
/ Ny perds < o Ny P (7 — y)dPdt
(r1,r2){y<t} P J(rra)n{y<r}

Pip-1 N—-1 /
+ Gy | N — )| Pdt
(d) (r1,m2)N{y<7} ( y)’ ‘

/ AT CEE
(ri,r2)n{y<t}

Then y(t) > 6y and y(t) < ws, t € (11, 7), gives

~ . d
/ tN—l‘y/‘pq)pdt < (7._90>_,/ tN—lyy/’pq)pdt
(ri,r2)n{y<t} D J(ryre)n{y<t}
7\ Pyp—1 N-1|g/
+ (r =GBy /' N1 @' Pt
( 0)(d) (ri,r2){y<t} ]
- (r-w) [ Y F(t g, |y @t
(r1,r2)N{y<7}
that is:

- d
1—(1—06h)— /
( ( O>p’> (r1,m2)N{y<7}

e O R O A A (A )L
1 1,72

N{y<7}

tN*l’y/’p(bpdt S

where we chose 7 > wy. By properties of ® and f it follows

1 (%

/ Ny PP dt
P (1 ra)n{y<r}

Dy\p—1 7 " N—1 No1 [P0
<Gy -6 Ot — (r— e [ )t

(T2 - Tl)p 1 1402

By putting d := Tf;;o, from the last inequality we get

ro—02

p —1 0 Cg /T2 N-1 N—l/
0< (=) (1 -0y ——— t dt — (1 —w t)dt .
—( /) ( 0) (TQ Tl)p 1“1 ( 2)7”1 1462 fQ( )

Set Iy := [12;;522 fa(t)dt, T = s+ wa, s > 0. Then

(r—w)Fy < (p— 1) (7 — Go)P— Sy ).



Boundary singular behaviour of radial solutions 1783

N__.N
1 Ty T
NpV =L (rg—r1)P?

sFy < (p— 1)P7 (s + (w2 — 0p))Pyach .

Since ¢y > 1 is arbitrarily given, we can pass to the limit as ¢y — 1, so that

Since v, = we have

1 .
F<(p- 1)p_1;(8 + (w2 = 00))"2 -
At last, we take infimum over all s > 0, and so

1 _
Fy < (p—1r! inf —(s + (w2 = 60))™2 -

By assumption y(t) < wy we arrive at contradiction with (21), so that the
claim of the proposition is true. O

Lemma 2.3 Let 90, 01 and @y be real numbers such that 6’~0 < 01 < @y. Let
0<ry<r3<R andlet 03 = (r3 —rg)/4. Let the function f(t,n,§) satisfy

f(t7777§) SO a.e. t e (T27T3)7 776 (017&0); geR? (22>
ft,n,6) < f3(t) a.e. t € (ro+03,73—103), n€ (61,0), E €R,

/ BT 0t < —(p— 1P Vinf 2((@0 — 6) + )75 | (23)

r2+03 5>0 5

where N N
1 3 — T3

]\[’I“év_1 (Tg —Tg)p '
Then every solution y € W,5P([0, R)) N C([0, R]) of equation (8) satisfies: if
there holds esssupy,, ,.\y < wo, then there holds essinf(,, .5y < 6;.

f3 € LY(ry + 63,73 — 03)  and 3 :=

Proof. Similar to proof of Lemma 2.2. O
Remark 2.4 If r, / R as k — +o00, we can set r, := iR, for instance
ap =1 — 2% Then ry = %R, ro = %R, r3 = %R, estimates are again of order
7T, as in the case N = 1. O
Remark 2.5 The right hand sides in (21) and (23) can be simplified because
1
inf —(c+s)? = Lc”_l )
>0 s (p— 1)t

where ¢ > 0. Therefore, the conditions (21) and (23) can be rewritten in the
form

/TT:;2 fa(t)dt > pPrya(we — 90)%1 ; (24)
r3—03
/ Dbt < —pa(@0 - 0 (25)

Proof of Theorem 1.4. Directly from Lemma 2.2, Lemma 2.3, and Remark 2.5.
O
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3 The proof of Theorem 1.6 and Corollary 1.7

At the first, we give an useful lemma which generalizes [7, Lemma 2.1] to the
multi-dimensional case.

Lemma 3.1 Let k(¢) be a natural number defined as in (11). Let u(x) be a
function with jumping over 6 and w near OBgr. Then for every e € (0,gq) we

have
R

Ge(uw)] = [ (w(t) —6(2))dt . (26)

Tk(e)
Proof. Let u(x) be a function with jumping over § and w near 0Bg and let oy,
be a sequence determined in (2). Let € be a fixed number from the interval
(0,&0). Let Sg and T}, be two sequences of subsets in RY*! defined as follows:

Sr={(z,y) e RN xR : 0}, < |z| < opyq and 0(|z]) <y < w(|z])},
Tor—1 = {(x,y) E RN xR : 091 < |x] < 09p and O(o2p—1) <y < w(oa)},
Tor, = {(z,y) e RY X R : o9, < |z| < o9p41 and 0(oap11) <y < w(ow)}-

A small difference in the definition of sets T5,_; and 15, appears because
of (2), that is, since the function u(x) is jumping over 6(|z|) and w(|z|) on
(rog—2,T2k—1) and (rgr_1, Tox) respectively. Next, let S. be a set defined by:

Se={(z,y) €ERY xR+ [2] 2 ry(e) and 0(|z]) <y < w(|z])},

where k(¢) is a natural number defined in (11). It is clear that for all k > k(e)
we have

R
T2 S, U Seei 28, and |8 = / (w(t) — 6()dt.  (27)
k>k(e)—1 Tk(e)

Let us suppose for a moment that the following statement holds true:
GE(U’[%A,UHN) 2 Tk, k > k(e), (28)

where [a, b]" is a classic cube in R that is [a,b]Y = {zr € RY : a < |z] < b}.
Since A; O A, implies A;(g) D Ay(e) and (A3UAy)(e) D As(e) U Ay(e) for any
set A; and its e-neighborhood A;(¢), from (27) and (28) immediately follows
that
Ge(u) 2 Gelulp )2 U T2 U Sk 25,
k>k(e)—1 k>k(e)—1

which proves the desired statement (26). Now, we need to show (28), i.e., that
the assumption (zo,yo) € T} implies (2o, yo) € G(u|s, , oqv). To show that,
let (zo,0) € Ty and let Oy denote the origin of RY. Let P be a line in RY
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generated by two points Oy and . Let p, and ¢, be two sequences in RY
defined by:

pe=Pon{rcRY: ||z|| =04} and g =P, Nn{z ¢ RY: |2| =r}.

Obviously 2o € Py 1 C [0k, 0r11]Y, where Py ;41 denotes the segment in P
with the boundary points p;, and pgyi1. That is, the set Py ;41 is a projection
of [k, ok11]" into Py. By (2), it is clear that there is a point py € Py_1 such

that y(po) = yo obtained by

(po, yo) = {(z,10) € RYxR: z¢ Pi_1x} N G(u\pkfl’k).

Hence, we have

d((l’o:yo)a G(“’Pk,lyk)) < d((mo, yO)a (p07 yo)))- (29)
Since Py_1 % C o1, 04", we have G(ulp,_,,) € G(u|s,_,,0~) and so,
d((x0,Y0), G(Uljg,_,.0,v)) < d((T0,90), G(ulp,_,,))- (30)

Now, as g € Py 41 and pg € Py_1, by (11), (29), and (30), for all & > k(e)
we obtain:

d((20,90), G(ulfo,_y.01%)) < d((0,0), G(ulp,_, ) < d((z0, Y0), (o, ¥0)))

< |zo—po| < |prs1—Pk—-1| = |oks1—0k-1] < |Thr1—TE—2| < e/3+¢/34+¢/3 =¢,

which proves that (vo,y0) € Ge(ulis,0,,,v). Hence, the statement (28) is
shown. O

Proof of Theorem 1.6. By Theorem 1.4 every radial solution u(z) of equation
(1) is jumping over # and w near 0Bgr. Hence the desired statement (12)
immediately follows from Lemma 3.1. Next, by the definition of the upper
Minkowski-Bouligand dimension and by (12) we obtain that

1 €
dim ;G (u) = lim sup (N +1-— M)
e—0 logé
log [ (w(t) —0(t))dt
Elim<N+1_ 8 o (t) —0(t)) ),
=0 log &
which proves (13). .

Proof of Corollary 1.7. At the first, it is clear that the functions 0(¢) and
w(t) given in (14) are increasing and decreasing respectively and that 0(R) =
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w(R) = 0. Next, we claim that the sequence r; given in (14) satisfies the
required condition (11) in respect to k(¢) € N determined by:

1\ 77 I\ 77

Mo(g) <k(e) < 2M0(g) , £ € (0,2), (31)
5

where g = % and My = 2¢)*". Indeed, the desired statement (11) follows

immediately from (31) and from the following elementary inequalities:

1
1, 1 g 2Y5 11
AT 153 R
Then, by Theorem 1.6, we have:

Gew)] 2 e [ (wlt) — (et > 2

Th(e) a—+1

(R - Tk(€)>a+1a
and

e—0

log [F (w(t) — 0(t))dt
dimpyG(u) > limsup (N—i—l— gfk(s>(lo(g)8 (t)) )

e—0

loe—2—(R — r 5 a+1
lim sup (N—i—l— gaH( k(<) )

By (14) and (31) follows that for every € € (0,¢0) and every k > k(e) there
holds

R—Tk(s)zg( ! )%>R

and hence

and

e—0

log—2- (¢ 7)o+
dimyG(u) > limsup <N+1— Barz(c1e™) )
loge
a+1
> N41-272
- B+1

which proves this corollary.
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4 The proofs of Theorem 1.8 and Theorem 1.9

In this section we sketch the proofs of Theorem 1.8 and Theorem 1.9.

Sketch of the proof of Theorem 1.8. Since for radial functions u there holds
|Vu| = |y/(t)| where t = |z|, u(z) = y(t), we have dist(z, G(|Vu|)) = dist(t, G(|Y])),
G:(|Vul) = Ge(|y']), so that

By Lemma 3.1 and Lemma 3.2 in Pasi¢-Zupanovié [7] there holds

+0o0

]Gg(y’)] > Z (wor, — Oor—1) -

k=k(c/2)

Then it follows

W)z Y &1l + ()

k=k(e/2)
1\8_ R, 1 \2
Gz Y ()t e )
k=k(e /2)2 1< ) 2 1(%(5))
B
By (31) for every ¢ € (0,¢p) there holds D] /2) > ﬁ(g)ﬁ that is, |G.(y')| >
ap
CoePHT, where ¢y = fﬂjslﬂ gﬁ“. Thus dimyG(y') > N + 1 — 775 On

the other hand, we can write G(y') = AU B, G(|y|) = A’ U B, where
A= {(z,y(x)) : ¥(z) < 0}, B := G(y')\A and where A’ is a set obtained
by reflection of A with respect to z-axes. In particular, dimy;A = dimyA".
By the finite stability of upper Minkowski-Bouligand dimension, there holds
dimyG(y') = max{dimy A, dimy B}, dimyG(|y’|) = max{dimy A’, dimy, B},
and so we have dim /G (y') = dimpyG(|y'|). Therefore, (16) and (17) hold true.
O

Proof of Theorem 1.9. Obviously there holds |Vu|ir(p, ) = |¥|1r@0,r—c). To
prove (19), we adapt the proof of Theorem 8.1. in [6]. O
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