Convergence Theorems of CQ Iteration Processes for a Finite Family of Averaged Mappings in Hilbert $Spaces^1$

Jing Sun, Yanrong Yu and Rudong Chen

Department of Mathematics
Tianjin Polytechnic University, Tianjin, China 300160
chenrd@tjpu.edu.cn, tjpusunjing@2911.net

Abstract. In this paper, we study convergence theorems of CQ iteration processes for averaged mappings in Hilbert spaces. Let K be a bounded closed convex subset of a real Hilbert space H and Let $\{T_i\}_{i=1}^N: K \to K$ be a finite family averaged mappings such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Assume that $\{\alpha_n\}$ is real number sequences in (0,1) such that $\lim_{n\to\infty} \alpha_n = 0$. Define a sequence $\{x_n\}_{n=1}^{\infty}$ in K by the algorithm:

$$\begin{cases} x_1 \in K \ chosen \ arbitrarily, \\ y_n = (1 - \alpha_n) T_n x_n, \\ C_n = \{ z \in K : ||y_n - z||^2 \le ||x_n - z||^2 + \alpha_n ||z||^2 \}, \\ Q_n = \{ z \in K : \langle x_n - z, x_1 - x_n \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x_1. \end{cases}$$

 $T_n = T_{nmodN}$, Then $\{x_n\}$ converges in norm to $P_F x_1$.

Keywords: averaged mappings; CQ iteration processes; Hilbert spaces

1. Introduction

Let H be a real Hilbert space, K be a nonempty closed convex subset of H. Let T is a selfmapping of K. F(T) denotes the set of fixed points of T. The mapping T is said to be

- (1) nonexpansive, if $||Tx Ty|| \le ||x y||$, for all $x, y \in K$;
- (2) averaged mapping, if there exists a nonexpansive mapping $S: K \to K$ and a number $k \in (0,1)$ such that

$$T = (1 - k)I + kS.$$

¹This work is supported by the National Science Foundation of China, Grant 10771050.

Denote by F(S) the set of fixed points of S; that is $F(S) = \{x \in K : Sx = x\}$. If $F(S) \neq \emptyset$, then we obtain immediately that F(S) = F(T), Let $\{T_i\}_{i=1}^N$: $K \to K$ be a finite family averaged mappings, then from $T_i = (1 - k)I + kS_i$, if $\bigcap_{i=1}^N F(S_i) \neq \emptyset$, then we also have $\bigcap_{i=1}^N F(S_i) = \bigcap_{i=1}^N F(T_i)$.

It is clear that an averaged mapping is nonexpansive, but not vice versa. An example of an averaged mapping is the metric projection from a Hilbert space onto a closed convex subset. It is known that averaged mappings are always asymptotically regular and their Picard iterates converge weakly.

In the recently, Yonghong Yao, Haiyun Zhou and Rudong Chen [2] have proved strong convergence theorems of a new iterative algorithm for averaged mappings in Hilbert spaces, and proved the following theorem.

Theorem 1.1. Let H be a real Hilbert space. Let $T: H \to H$ be an averaged mapping with $F(T) \neq \emptyset$. Let $\{\alpha_n\}$ be a real numbers in (0,1). For given $x_0 \in H$, let the sequence $\{x_n\}$ be generated iteratively by

$$x_{n+1} = (1 - \alpha_n) T x_n, n \ge 0.$$

Assume that the following control conditions hold:

- (i) $\lim_{n\to\infty} \alpha_n = 0$; (ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$.

Then $\{x_n\}$ converges strongly to a fixed point of T.

In this paper, thanks to the iterative algorithm by Yonghong Yao, Haiyun Zhou and Rudong Chen [2], we establish Convergence theorems of CQ iteration processes for a finite family averaged mappings in Hilbert spaces.

PRELIMINARIES

We will use the notations:

- 1. \rightarrow for weak convergence and for \rightarrow strong convergence.
- 2. $\omega_w(x_n) := \{x : \exists x_{n_i} \to x\}$ denotes weak ω -limit set of x_n .

Lemma 2.1. ([1])Let H be a real Hilbert space. Then there hold the following well-known results:

$$(1)||tx + (1-t)y||^2 \le t||x||^2 + (1-t)||y||^2, \forall x, y \in H, \forall t \in [0,1].$$

$$(2)||x-y||^2 = ||x||^2 - ||y||^2 - 2\langle x-y, y \rangle, \forall x, y \in H.$$

Lemma 2.2. ([5])(Demi-closed principle). Let K be a nonempty closed convex subset of a real Hilbert space H. Let $S: K \to K$ be a nonexpansive mapping. Then S is demi-closed on K, i.e., if $x_n \rightharpoonup x \in K$ and $x_n - Sx_n \rightarrow 0$, then x = Sx.

Lemma 2.3. ([1])Let H be a real Hilbert space. Given a closed convex subset $K \subset H$ and points $x, y, z \in H$. Given also a real number $a \in R$. The set

$$D := \{ v \in K : \|y - v\|^2 \le \|x - v\|^2 + \langle z, v \rangle + a \}$$

is convex (and closed).

Recall that a closed convex subset K of a real Hilbert space H, the nearest point projection P_K from H onto K assigns to each $x \in H$ its nearest point denoted by $P_K x$ in K from x to K; that is the unique point in K with the property

$$||x - P_K x|| \le ||x - y||, \forall y \in K.$$

Lemma 2.4. ([1])Let K be a closed convex subset of a real Hilbert space H and let P_K be the projection from H onto K. Given $x \in K$ and $z \in K$. Then $z = P_K x$ if and only if there holds the relation:

$$\langle x - z, y - z \rangle \le 0, \forall y \in K.$$

Lemma 2.5. ([1])Let K be a closed convex subset of a Hilbert space H and let $\{x_n\}$ be a sequence in H and $u \in H$. Let $q = P_K u$. If $\{x_n\}$ is such that $\omega_w(x_n) \subset K$ and satisfies the condition

$$||x_n - u|| \le ||u - q||, \forall n.$$

Then $x_n \to q$.

3. Main Results

In this section, we will prove our main result.

Theorem 3.1. Let K be a bounded closed convex subset of a real Hilbert space H and Let $\{T_i\}_{i=1}^N: K \to K$ be a finite family averaged mappings such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Assume that $\{\alpha_n\}$ is real number sequences in (0,1) such that $\lim_{n\to\infty} \alpha_n = 0$. Define a sequence $\{x_n\}_{n=1}^{\infty}$ in K by the algorithm:

$$\begin{cases} x_{1} \in K \ chosen \ arbitrarily, \\ y_{n} = (1 - \alpha_{n})T_{n}x_{n}, \\ C_{n} = \{z \in K : ||y_{n} - z||^{2} \leq ||x_{n} - z||^{2} + \alpha_{n}||z||^{2}\}, \\ Q_{n} = \{z \in K : \langle x_{n} - z, x_{1} - x_{n} \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{1}. \end{cases}$$
(3.1)

 $T_n = T_{nmodN}$, Then $\{x_n\}$ converges in norm to $P_F x_1$.

Proof. It is obvious that Q_n is closed and convex, C_n is closed. Since K is bounded, let M = diam K, that M is a positive constant. From (3.1) we have

$$||y_n - z||^2 \le ||x_n - z||^2 + \alpha_n ||z||^2 \le ||x_n - z||^2 + M^2.$$

Then we observe that C_n is convex by Lemma 2.3. So $C_n \cap Q_n$ is closed and convex, and $\{x_n\}$ is well defined. Next, we show that $F \subset C_n$ for all n.

Indeed, we have , for all $p \in F$, and $T_n x_n = (1 - k)x_n + kS_n x_n$.

$$||y_{n} - p||^{2}$$

$$= ||(1 - \alpha_{n})T_{n}x_{n} - p||^{2}$$

$$= ||(1 - \alpha_{n})((1 - k)x_{n} + kS_{n}x_{n}) - p||^{2}$$

$$= ||(1 - \alpha_{n})((1 - k)x_{n} + kS_{n}x_{n} - p) - \alpha_{n}p||^{2}$$

$$\leq (1 - \alpha_{n})||(1 - k)x_{n} + kS_{n}x_{n} - p||^{2} + \alpha_{n}||p||^{2}$$

$$= (1 - \alpha_{n})||(1 - k)(x_{n} - p) + k(S_{n}x_{n} - p)||^{2} + \alpha_{n}||p||^{2}$$

$$\leq (1 - \alpha_{n})((1 - k)||x_{n} - p||^{2} + k||S_{n}x_{n} - p||^{2}) + \alpha_{n}||p||^{2}$$

$$\leq ||x_{n} - p||^{2} + \alpha_{n}||p||^{2}$$
(3.2)

So $p \in C_n$ for all n. Next, we show that

$$F \subset Q_n, \forall n \ge 0. \tag{3.3}$$

We prove this by induction. For n=1, we have $F \subset K = Q_1$. Assume that $F \subset Q_n$. Since $x_{n+1} = P_{C_n \cap Q_n} x_1$, by Lemma 2.4, we have

$$\langle x_{n+1} - z, x_1 - x_{n+1} \rangle \ge 0, \forall z \in C_n \cap Q_n.$$

As $F \subset Q_n \cap C_n$ by the induction assumption, the last inequality holds, in particular, for all $z \in F$. This together with the definition of Q_{n+1} implies that $F \subset Q_{n+1}$. Hence the $F \subset Q_n$ holds for all $n \geq 0$. And also $F \subset Q_n \cap C_n$ holds for all $n \geq 0$.

By the definition of Q_n , we have $x_n = P_{Q_n}x_1$, and since $F \subset Q_n$, we have

$$||x_n - x_1|| \le ||p - x_1||, \forall p \in F.$$

in particular,

$$||x_n - x_1|| \le ||q - x_1||, whereq = P_F x_1.$$
 (3.4)

The fact that $x_{n+1} \in Q_n$ implies that $\langle x_{n+1} - x_n, x_n - x_1 \rangle \ge 0$. This together with Lemma 2.1, implies

$$||x_{n+1} - x_n||^2$$

$$= ||(x_{n+1} - x_1) - (x_n - x_1)||^2$$

$$= ||x_{n+1} - x_1||^2 - ||x_n - x_1||^2 - 2\langle x_{n+1} - x_n, x_n - x_1 \rangle$$

$$\leq ||x_{n+1} - x_1||^2 - ||x_n - x_1||^2$$
(3.5)

This implies that the sequence $\{\|x_n - x_1\|\}$ is increasing. Since K is bounded, then $\{x_n\}$ is bounded, we get that $\lim_{n\to\infty} \|x_n - x_1\|$ exists. It turn out from (3.5) that

$$||x_{n+1} - x_n|| \to 0, n \to \infty.$$
 (3.6)

By the fact $x_{n+1} \in C_n$ implies that

$$||y_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2 + \alpha_n ||x_{n+1}||^2$$

However, since $\lim_{n\to\infty} \alpha_n = 0$, and $\{x_n\}$ is bounded, we have

$$||y_n - x_{n+1}|| \to 0, n \to \infty.$$
 (3.7)

And also have

$$||y_n - x_n|| \le ||y_n - x_{n+1}|| + ||x_{n+1} - x_n|| \to 0, n \to \infty.$$
 (3.8)

Noticing that $T_n x_n = y_n + \alpha_n T_n x_n$, and since K is bounded, we have

$$||T_{n}x_{n} - x_{n}||$$

$$= ||y_{n} - x_{n} + \alpha_{n}T_{n}x_{n}||$$

$$\leq ||y_{n} - x_{n}|| + \alpha_{n}||T_{n}x_{n}|| \to 0, n \to \infty.$$
(3.9)

Following $T_n x_n = (1 - k)x_n + kS_n x_n$, we have

$$||S_n x_n - x_n|| = \frac{1}{k} ||T_n x_n - x_n|| \to 0, n \to \infty.$$
 (3.10)

We know that $||x_{n+1} - x_n|| \to 0$, so that for all $j = 1, 2, \dots, N$,

$$||x_n - x_{n+j}|| \to 0, n \to \infty.$$
 (3.11)

So for any $i = 1, 2, \dots, N$, we also have

$$||x_{n} - S_{n+i}x_{n}||$$

$$\leq ||x_{n} - x_{n+i}|| + ||x_{n+i} - S_{n+i}x_{n+i}|| + ||S_{n+i}x_{n+i} - S_{n+i}x_{n}||$$

$$\leq ||x_{n} - x_{n+i}|| + ||x_{n+i} - S_{n+i}x_{n+i}|| + ||x_{n+i} - x_{n}||$$

$$\leq 2||x_{n} - x_{n+i}|| + ||x_{n+i} - S_{n+i}x_{n+i}||$$

$$(3.12)$$

Thus, it follows from (3.11) and (3.10) that

$$\lim_{n \to \infty} ||x_n - S_{n+i}x_n|| = 0, i = 1, 2, \dots, N.$$
(3.13)

Because $S_n = S_{nmodN}$, it is easy to see, for any l = 1, 2, ..., N, that

$$\lim_{n \to \infty} ||x_n - S_l x_n|| = 0. (3.14)$$

then

$$\lim_{n \to \infty} ||x_n - T_l x_n|| = k||x_n - S_l x_n|| = 0.$$
 (3.15)

By (3.14) and lemma 2.2 we obtain that $\omega_w(x_n) \subset F$. this together with (3.4) and Lemma 2.5, guarantees the strong convergence of $\{x_n\}$ to $P_F x_0$. \square

References

- 1. Carlos Martines-yanes, Hongkun-Xu Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal.64(2006)2400-2411.
- 2. Yonghong Yao, Haiyun Zhou, Rudong Chen, Strong convergence of a new iterative algorithm for averaged mappings in Hilbert spaces, preprint
- 3. Yongfu Su, Xiaolong Qin, Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators, Nonlinear Analysis: Theory, Methods & Applications, Volume 68, Issue 12, 15 June 2008, Pages 3657-3664
- 4. Yonghong Yao, Rudong Chen, Convergence to common fixed points of averaged mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis: Theory, Methods & Applications, Volume 67, Issue 6, 15 September 2007, Pages 1758-1763
- 5. K.Goebel, W.A.Kirk, *Topics in Metric Fixed Point Theory*, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.

Received: March 18, 2008