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Abstract

In this article we provide generalized versions of two well-known
theorems from the vector lattice theory, Kantorovich extension theorem
and Riesz-Kantorovich theorem, for directed wedges. In order to achieve
our goal, we study generalized order structures by considering the set
of all increasing, non-empty, downward-directed, lower bounded subsets
of a directed, ordered vector space with the Riesz decomposition prop-
erty. This set becomes a partially ordered generalized wedge, and we
discuss the behavior of certain types of mappings (linear mappings and
order bounded mappings) that can be defined between such wedges. We
further prove a Kantorovich type theorem for additive mappings , and
finally, as an application, we prove a Riesz-Kantorovich type theorem
for order bounded mappings.
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1 Introduction

In this note we formulate and investigate certain types of mappings between
partially ordered, directed, generalized wedges. In particular, we make use of
certain associated spaces of a partially ordered vector space with the Riesz
decomposition property. This property makes it possible to assign a meaning
to expressions like |x|, x+ and x−, where x is an element of the initial vector
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space. Given this consideration, we are able to prove generalized versions
of the well-known Kantorovich theorem (cf. [1] Theorem 1.15) as well as
the Riesz-Kantorovich theorem (cf. [3] Theorem 2.6.1 or [1] Theorem 1.16)
for mappings between generalized ordered structures. For certain purposes,
towards our goal, it will be necessary to work with objects known as generalized
wedges. Unlike vector spaces, addition in generalized wedges need not satisfy
the cancellation law (i.e., v + w = u + w implies v = u), and these objects
also need not be embeddable in vector spaces. That is, we shall consider
structures that are closed to the usual vector spaces, and whose elements do
not necessarily have additive inverses.

For an extensive presentation of generalized wedges the reader may refer
to [2, 4, 7]. In addition, approximation theory based on generalized wedges is
provided in [6], where the authors make use of the term ordered cone instead of
the term generalized wedge used in the present work. Unless otherwise stated,
the terminology throughout the paper is taken from [1, 3, 4, 7].

2 Preliminary Notes

Our definition of a generalized wedge follows the one provided in [7]; in par-
ticular, a generalized wedge is a set E equipped with two operations (denoted
by +, ·) such that: (a) (E, +) is a commutative semi-group with zero (i.e., the
mapping (x, y) �→ x + y : E ×E → E, is associative, commutative and admits
a unique neutral element), and (b) the mapping (λ, x) �→ λ · x : R

∗
+ ×E → E

satisfies the following axioms for all λ, μ ∈ R
∗
+, v, w ∈ E :

(i) λ · (v + w) = λ · v + λ · w
(ii) (λ + μ) · v = λ · v + μ · v
(iii) λ · (μ · v) = (λμ) · v
(iv) 1 · v = v.

For all λ ∈ R
∗
+, the equality λ ·0 = 0 is a consequence of the above axioms.

Indeed, λ · 0 + x = λ · 0 + (λλ−1) · x = λ · 0 + λ · (λ−1 · x) = λ · (0 + λ−1 · x) =
λ · (λ−1 · x) = x and by the uniqueness of the neutral element it follows that
λ · 0 = 0. Also, as in [2, 6], in the previous definition of the generalized wedge
we assume, for each x ∈ E, the additional axiom

0 · x = 0,

in order to extend the scalar multiplication to λ = 0.

Example 2.1. Most common examples of generalized wedges are:
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(1) Any ordinary wedge contained in a vector space.

(2) The extended non-negative real numbers i.e., R+ = R+∪{+∞} equipped
with the usual linear order, addition and scalar multiplication. The
order, addition and multiplication are extended to +∞ in the usual way.
In particular, we define 0 · +∞ = 0.

(3) The set of convex subsets of a vector space, where the two operations
(addition and scalar multiplication) have their conventional meaning.

A partially ordered generalized wedge is a generalized wedge E with a partial
order (≤) compatible with the algebraic structure of E in the sense that it
satisfies the following two axioms, for all λ ∈ R+, v1, v2, w ∈ E :

(i) v1 ≤ v2 implies v1 + w ≤ v2 + w

(ii) v1 ≤ v2 implies λ · v1 ≤ λ · v2

In what follows, the notation λv stands for the operation λ · v, λ ∈ R+, v ∈ E.

Example 2.2. Consider the positive cone E+ of any partially ordered vec-
tor space E. We define an order (�) on E+ by x � y if an only if x, y > 0
and x ≤ y or else x = y = 0. Then (E+, �) is a partially ordered generalized
wedge.

We shall consider partially ordered generalized wedges E possessing the
Riesz interpolation property (i.e., for each a, b, c, d ∈ E with a, b ≤ c, d there
exists an element v ∈ E such that a, b ≤ v ≤ c, d). Recall that in partially
ordered vector spaces the Riesz decomposition property (i.e., if v, w1, w2 ∈
E, v, w1, w2 ≥ 0 with v ≤ w1 + w2 then there exist v1, v2 ∈ E such that
v = v1 + v2 and 0 ≤ v1 ≤ w1, 0 ≤ v2 ≤ w2) is equivalent with the Riesz inter-
polation property. These properties are not equivalent for a partially ordered
generalized wedge (cf. [7] Example 3 in p.2 as well as the comments of p.3).
For notions on ordered spaces and ordered subspaces with the Riesz decompo-
sition property or the Riesz interpolation property, that are not defined here,
the reader is referred to [3, 5].

A subset C of a partially ordered set S is upward- (resp. downward-)directed
if for every pair c1, c2 of elements of C there exists an element c ∈ C such that
c1, c2 ≤ c (or c ≤ c1, c2, respectively). If C is both upward and downward
directed then C is called directed. A subset A of S is increasing if a ∈ A and
a ≤ b implies b ∈ A. In what follows, we shall refer to any partially ordered,
directed, generalized wedge as directed wedge.

Let V,W be directed wedges. A mapping T : V → W is called order iso-
morphism if it preserves the order structure as well as the algebraic structure.
That is, for all v, w ∈ V and each λ ∈ R+, the following properties hold
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(i) T (v + w) = T (v) + T (w) (additivity),

(ii) T (λv) = λT (v) (positive homogeneity),

(iii) T (v) ≥ 0 if and only if v ≥ 0.

A mapping T : V → W is called linear, if it is additive and positive homoge-
neous.

Assume that W is a directed wedge possessing the Riesz interpolation prop-
erty. According to [7], the directed wedge W can be embedded in another
directed wedge, that we shall denote by U(W ), which also possesses the Riesz
interpolation property. In addition, U(W ) is an upper semi-lattice (i.e., the
supremum of each two elements of U(W ) exists). We illustrate the details of
the construction of U(W ) :

Let U(W ) be the set of all increasing, non-empty, downward-directed, lower
bounded subsets of W. A partial order (≤) on U(W ) is defined by

A ≤ B if and only if B ⊆ A, for all A, B ∈ U(W ).

For each A, B ∈ U(W ) it follows that the set A ∩ B is increasing. Also, since
A, B are downward-directed and W has the Riesz interpolation property we
obtain that A ∩ B is downward-directed. It is easy to see that A ∩ B is lower
bounded and non-empty since, if a ∈ A, b ∈ B from the directedness of W there
exists some z ∈ W with a, b ≤ z, but A, B are increasing so z ∈ A, z ∈ B.
Hence, A∩B is an element of U(W ) and an easy argument shows that A∩B
is the least upper bound of the sets A, B. In fact, U(W ) is a directed upper
semi-lattice that possesses the Riesz interpolation property. The symbol �
stands for the semi-lattice operation on U(W ) and for each A, B ∈ U(W ) it
holds that

A�B = A ∩ B.

For each A, B ∈ U(W ) the following two operations can be defined in U(W ),
namely

A + B = {w ∈ W |w ≥ a + b, for some a ∈ A, b ∈ B}
and

λA = {λa|a ∈ A}, λ ∈ R
∗
+ , 0 · A = {w ∈ W |w ≥ 0}.

Under these two operations U(W ) becomes a directed wedge.
For each x ∈ W we shall denote by x̌ the set {w ∈ W |w ≥ x}. Then the

mapping

ˇ: x �→ x̌

is an order isomorphism from W onto a subset of U(W ). For each A ∈ U(W ),
one has A ⊆ ⋃

a∈A ǎ.
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Let us denote by C a subset of U(W ). If A ≤ B (or B ≤ A) for each
A ∈ C and some B ∈ U(W ), we write C ≤ B (or B ≤ C, respectively) and say
that B is an upper bound (lower bound, respectively) of C. In such a case the
subset C of U(W ) is called upper bounded (or lower bounded, respectively).
Assume that E is a directed (partially) ordered vector space with the Riesz
decomposition property and let us define the following sets

U(E+) := {A ∈ U(E)|a ≥ 0, for each a ∈ A, }, U(E)+ := {A ∈ U(E)|0̌ ≤ A},

then by [4, Proposition 6] it holds that U(E+) = U(E)+. Also, for each x ∈ E
the following elements of U(E) can be defined,

(i) x+ = x̌�0̌ = x̌ ∩ 0̌

(ii) x− = (−x)̌ �0̌ = (−x)̌ ∩ 0̌

(iii) |x| = x̌�(−x)̌ = x̌ ∩ (−x)̌

The following example clarifies that x+, x− are not, necessarily, of the form ǎ
for some a ∈ E.

Example 2.3. Let E = R
2 be ordered by the cone

C = {(x, y) ∈ R
2|x, y > 0} ∪ {0}.

Recall that (E, C) is a partially ordered vector space satisfying the Riesz de-
composition property. Set x = (1,−1).

Then

x+ = {(x, y) ∈ R
2|x > 1, y > 0},

which is not an element of the form ǎ, for some a ∈ R
2, as figure 1 shows.
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Figure 1: Example 2.3
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Proposition 2.4. [7, Propositions 2.2 and 2.4] Let E be a directed, (par-
tially) ordered vector space with the Riesz decomposition property. Then the
following identities hold, in U(E),

(i) (A�B) + C = (A + C)�(B + C), for all A, B, C ∈ U(E).

(ii) λ(A�B) = (λA)�(λB), for all A, B ∈ U(E), λ ∈ R+.

(iii) x̌ + x− = x+, for all x ∈ E.

3 A Kantorovich type theorem

This section deals with mappings between directed wedges with the Riesz
interpolation property. In the following, we shall apply the construction of the
directed wedge U(E) to a directed, (partially) ordered vector space E with the
Riesz decomposition property.

First, we shall discuss some features about a well-known class of vector
spaces and their affect in the validity of the cancellation law in the directed
wedge U(E). Recall that a (partially) ordered vector space E is said to be
Archimedean if nx ≤ y, for all n ∈ N implies x ≤ 0.

One of the least satisfactory features of the directed wedge U(E) is the
extent to which it fails to satisfy the cancellation law (i.e., for each A, B ∈ U(E)
the expression A + B = A + C implies B = C). For example, let us consider
the Archimedean vector space E = R

� of all real-valued functions on R with
the pointwise order (i.e., f ≤ g if and only if f(x) ≤ g(x), for each x ∈ R),
then E is a vector lattice, hence it has the Riesz decomposition property. Also,
consider the the elements A, B of U(E) defined by

A = {f ∈ E+ : f(t) = 0, for at most finitely many values of t},

B = {f ∈ E+ : f(t) = 0, for at most countably many values of t},
then A + B = A = A + A and obviously A �= B.

Also, if E is an arbitrary directed, ordered vector space with the Riesz
decomposition property then, since the following identities hold for all x ∈
E, A ∈ U(E),

1. x̌ + (−x)ˇ= 0̌,

2. A + 0̌ = A

the cancellation law A + B = A + C implies B = C holds if A = x̌, for some
x ∈ E.
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On the other hand, this is not true if A is arbitrary and both B, C are of
this form. For example, let E = R

2 with the lexicographic order (≤) i.e.,

(x1, y1) ≤ (x2, y2) if and only if x1 < x2 or x1 = x2 and y1 ≤ y2,

and consider the directed wedge U(E). Recall, that E with the lexicographic
order is not Archimedean(cf. [3] p.15), and if

A = {(x, y) ∈ R
2|y > 0}

then A + (0, 0)ˇ= A + (1, 0) ,̌ but (0, 0)ˇ �= (1, 0) .̌

The following result for Archimedean vector spaces can be stated.

Proposition 3.1. [7, Theorem 2.10] Let E be an Archimedean, directed,
ordered vector space with the Riesz decomposition property and let x, y ∈
E, A ∈ U(E). Then x̌ + A ≤ y̌ + A implies that x̌ ≤ y̌. Hence x̌ + A =
y̌ + A implies x̌ = y̌.

Now, we shall be concerned for mappings between directed wedges. In
particular, we assume that E, F are directed, ordered vector spaces with the
Riesz decomposition property and we prove the existence of linear extensions
S : U(E) → U(F ) of additive mappings T : U(E)+ → U(F )+, as described
in theorem 15 of [4]. The key,in order to do that, is the assumption of the
directedness of the initial space E, that allow us the expression of each element
x ∈ E as a difference of two elements x1, x2 ∈ E+.

We shall start with the definition of an important class, for our study, of
mappings those that carries elements of the form x̌, x ∈ E of U(E) to elements
of the same form of U(F ).

Definition 3.2. Let E, F be directed, ordered vector spaces with the Riesz
decomposition property. A mapping T : U(E) → U(F ) is called ∨-preserving
if it carries subsets of the form x̌ of U(E) to subsets of the same form of
U(F )(i.e., for each T (x̌) ∈ U(F ), x̌ ∈ U(E) there exists an element a ∈ F such
that T (x̌) = ǎ).

According to the well-known Kantorovich theorem (cf. [1] Theorem 1.15)
for ordered spaces, if X is a directed, ordered vector space and Y is an
Archimedean, ordered vector space then every additive mapping T : X+ → Y +

can be extended to a linear mapping from X to Y. The Kantorovich theorem is
an important tool for the proof of the Riesz-Kantorovich theorem (cf., [3] The-
orem 2.6.1). So we prove an analogue of the Kantorovich theorem for mappings
between directed wedges in order to prove, in section 4, a Riesz-Kantorovich
type theorem.
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Proposition 3.3. [4, Theorem 5] Let E, F be directed, ordered vector spaces
with the Riesz decomposition property with F be an Archimedean space. Sup-
pose that T : U(E)+ → U(F )+ is a ∨-preserving mapping and for all A, B ∈
U(E)+ it holds T (A + B) = T (A) + T (B). Then if S : U(E) → U(F ) is
∨-preserving mapping and for each x̌ ∈ U(E), S is given by the formula

S(x̌) + T (x−) = T (x+)

then the following statements hold,

(i) S(x̌ + y̌) = S(x̌) + S(y̌), for all x̌, y̌ ∈ U(E),

(ii) if x̌ ∈ U(E) then there exists y̌, ž ∈ U(E)+ such that S(x̌)+T (y̌) = T (ž),

(iii) S(λx̌) = λS(x̌), for all λ ∈ R
+, x̌ ∈ U(E),

(iv) S(x̌) = T (x̌), for all x̌ ∈ U(E)+.

In view of Proposition 3.3, it is only left to show that such a mapping S
exists. Under the notations of the above theorem, we prove the existence of
a mapping S that satisfies (i) − (iv) of Proposition 3.3. In other words we
provide a solution of the equation S(x̌) + T (x−) = T (x+).

Theorem 3.4. Let E, F be directed, ordered, vector spaces satisfying the
Riesz decomposition property with F be an Archimedean space. Suppose that
T : U(E)+ → U(F )+ is a ∨-preserving mapping and for all A, B ∈ U(E)+ it

holds T (A + B) = T (A) + T (B). For each x ∈ E, we consider the mapping S̃
which is defined by the formula

S̃(x̌) = (b − a) ,̌

where x = x1 − x2, x1, x2 ∈ E+ and b̌ = T (x̌1), ǎ = T (x̌2), a, b ∈ F. Then, the
following statements hold

(i) S̃ is well defined, ∨-preserving and it satisfies the equation

S̃(x̌) + T (x̌2) = T (x̌1),

(ii) the mapping S̃ satisfies the equation S̃(x̌) + T (x−) = T (x+),

(iii) S̃(x̌) = S(x̌), where S is the mapping of Proposition 3.3.

Proof. (i) First we shall prove that the mapping S̃ is well defined. Indeed,
let x, y ∈ E with x̌ = y̌ then x = y and there exist x1, x2, y1, y2 ∈ E+ such
that x1 − x2 = x = y = y1 − y2 hence (x1 + y2)ˇ= (y1 + x2)ˇ and since the
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mapping ˇ: x �→ x̌ is an order isomorphism we have that x̌1 + y̌2 = y̌1 + x̌2.
The additivity property holds for T in U(E)+ thus we have

T (x̌1) + T (y̌2) = T (y̌1) + T (x̌2). (1)

Assume that ǎ = T (x̌1), ď = T (y̌2), č = T (y̌1), b̌ = T (x̌2) where a, b, c, d ∈
F. From (1) it follows that

ǎ + ď = č + b̌,

thus
ǎ + ď + (−a)ˇ+ (−c)ˇ= č + b̌ + (−c)ˇ+ (−a) ,̌

therefore
b̌ + (−a)ˇ= ď + (−c) ,̌

and since the mapping ˇ: x �→ x̌ is an order isomorphism, it easily follows that
(d−c)̌ = (b−a)̌ . It is evident from the last equality that S̃(x̌) = S̃(y̌). Finally,
it holds that

S̃(x̌) + T (x̌2) = (b − a)ˇ+ T (x̌2) = (b− a)ˇ+ ǎ = b̌ = T (x̌1),

and it is easy to see that S̃ is ∨-preserving.
(ii) For each x ∈ E the following relations are valid :

x̌ + x− = x+ and x̌ + x̌2 = x̌1.

So we have

x̌ + x− + x̌2 = x− + x̌1 and x+ + x̌2 = x− + x̌1.

Since x+, x−, x̌1, x̌2 ∈ U(E)+ and T is additive in U(E)+, it is implied that

T (x+) + T (x̌2) = T (x−) + T (x̌1),

hence
T (x+) + S̃(x̌) + T (x̌2) = S̃(x̌) + T (x−) + T (x̌1)

and from (i) it follows that

T (x+) + T (x̌1) = S̃(x̌) + T (x−) + T (x̌1).

It is evident, from b̌ = T (x̌1), that

T (x+) + b̌ + (−b)̌ = S̃(x̌) + T (x−) + b̌ + (−b)̌

and then
T (x+) + 0̌ = S̃(x̌) + T (x−) + 0̌.
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But 0̌ is the neutral element of the directed wedge U(F ), and thus we have the
proof of (ii).

(iii) Since S(x̌) + T (x−) = T (x+) and S̃(x̌) + T (x−) = T (x+), it follows
that

S(x̌) + T (x−) = S̃(x̌) + T (x−)

and
č + T (x−) = (b− a)ˇ+ T (x−), where S(x̌) = č, c ∈ F.

From Proposition 3.1 it is implied that č = (b− a) ,̌ thus S(x̌) = S̃(x̌).

We shall discuss a notion of disjointness as in [5, Definition 8]. Let E be a
partially ordered vector space, the set [x, y] = {z ∈ E|x ≤ z ≤ y} is the order
interval in E which is defined by the elements x, y ∈ E.

We say that two positive elements x, y ∈ E, x, y �= 0 are disjoint if

[0, x] ∩ [0, y] = {0}.

According to [7, Proposition 2.3(iii)] it is evident that x, y are disjoint in E
(in the above sense) if and only if x̌ ∨ y̌ = x̌ + y̌. Consider the notations
of Theorem 3.4, then the following corollary inform us that for each pair of
disjoint elements x, y ∈ E we are able to determine the extension mapping S,
of T , at the element x̌∨ y̌ ∈ U(E) by its action on the elements x̌, y̌. Note that
x̌ ∨ y̌ ∈ U(E)+ does not necessarily imply that x̌ or y̌ or both of them belong
to U(E)+.

Corollary 3.5. Let E, F be directed, ordered, vector spaces satisfying the
Riesz decomposition property with F be an Archimedean space. Assume that,
T : U(E)+ → U(F )+ is a ∨-preserving mapping and for all A, B ∈ U(E)+

it holds T (A + B) = T (A) + T (B). If x, y are disjoint elements of E, then it
holds S(x̌∨ y̌) = S(x̌) + S(y̌) and for each x, y ∈ E+ with x, y disjoint it holds
S(x̌ ∨ y̌) = T (x̌ ∨ y̌).

Proof. Suppose that x, y are disjoint elements of E, then by Proposition 3.3 (i)
we have S(x̌∨ y̌) = S(x̌ + y̌) = S(x̌) + S(y̌). Also, if x, y are disjoint elements
of E+ then S(x̌ ∨ y̌) = S((x + y)ˇ) = T ((x + y)ˇ) = T (x̌ ∨ y̌).

4 A Riesz-kantorovich type theorem

In the present section we shall discuss a generalization of the Riesz-Kantorovich
theorem (cf., [3] Theorem 2.6.1) for order bounded mappings between directed
wedges. In particular, it will be proved that the validity of the Riesz decom-
position property on U(E) is a sufficient condition for the existence of the
positive part f+ of an order bounded mapping between directed wedges.
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In what follows, E, F shall denote directed, ordered vector spaces satisfying
the Riesz decomposition property and U(E), U(F ) shall denote the directed
wedges that come from E, F , respectively. A mapping P : X → U(E) between
a vector space X and U(E) is called subadditive if P (x + y) ≤ P (x) + P (y),
for each x, y ∈ X and positive homogeneous if P (rx) = rP (x), for each r ≥ 0
and each x ∈ X. We shall say that a mapping from X to U(E) is sublinear, if
it is subadditive and positive homogeneous. Let x, y ∈ E, then the set

[x̌, y̌] = {A ∈ U(E)|x̌ ≤ A ≤ y̌}
is the corresponding order interval in U(E), of the order interval [x, y] which
is defined by the elements x, y.

For each u, v ∈ E+ we define the sublinear mapping P : R
2 → U(E) with

P (t, s) =
1

2
((|t| + t)ǔ + (|s| + s)v̌). (2)

Also, for each C ∈ [0̌, (u + v)ˇ] we define a mapping T : R
+ → U(E) with

T (λ) = λC, for each λ ≥ 0. (3)

Definition 4.1. The directed wedge U(E) has the (E)-property (with re-
spect to (P, T )) if there exists an additive mapping A : R

2 → U(E) such that
0̌ ≤ A(1, 0), A(0, 1) and

A(t, s) ≤ P (t, s), for each t, s ∈ R, and A(z, z) = T (z), for each z ∈ R
+.

Example 4.2. Assume that E = R and consider the generalized wedge
U(E). An easy argument shows that the generalized wedge U(E) consists
of those intervals of R which have one of the forms (x, +∞) or [x, +∞), for
some x ∈ R. Let u, v ∈ R

+ and P : R
2 → U(E) is the sublinear mapping

defined in (2), and for each C ∈ [0̌, (u + v)ˇ] let us consider the mapping
T : R

+ → U(E) as defined in (3). Since C ∈ [0̌, (u + v)ˇ] it follows that
T (z) = z · C ≤ z(u + v)ˇ= P (z, z), for each z ≥ 0.

Case 1: Suppose that C = (a, +∞), then since C ∈ [0̌, (u + v)ˇ] we have
that 0 ≤ a ≤ u + v, we can also assume that u ≤ a. We define the mapping
A : R

2 → U(E) such that

A(t, s) =

{
(tu + (a − u)s, +∞) , s ≥ 0
(tu + (a + u)s, +∞) , s < 0

for each t ∈ R. It easily follows that 0̌ ≤ A(1, 0), A(0, 1). Also, A is additive
and it holds

A(z, z) = (zu + (a − u)z, +∞) = z(a, +∞) = T (z), for each z ≥ 0.
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Suppose that s ≥ 0, then

P (t, s) = [
|t| + t

2
u + sv, +∞)

and since a ≤ u + v it holds tu + (a − u)s ≤ |t|+t
2

u + sv which implies that
A(t, s) ≤ P (t, s) for each s ≥ 0 and t ∈ R. On the other hand, if s < 0 then

P (t, s) = [
|t|+ t

2
u, +∞)

and it easily follows that tu + (a + u)s ≤ |t|+t
2

u, for each s < 0 and t ∈ R.
Thus, it holds A(t, s) ≤ P (t, s).
Case 2: Suppose that C = [a, +∞), then we perform the analysis as in the
previous.
Therefore, the generalized wedge U(R) has the (E)-property.

We say that a partially ordered generalized wedge W possesses the Riesz
decomposition property if, whenever 0 ≤ v, w1, w2 in W and v ≤ w1 + w2, then
there exist v1, v2 ∈ W such that v = v1 + v2 where 0 ≤ vi ≤ wi(i = 1, 2).
This is equivalent (cf. [7] p.2) to requiring that the order intervals [0, v] in W
should be additive: that is, that

[0, v + w] = [0, v] + [0, w], for each v, w ≥ 0 in W.

Proposition 4.3. If U(E) has the (E)-property, then U(E) possesses the
Riesz decomposition property.

Proof. Let v, v′ ∈ E+ and consider the following mapping P : R
2 → U(E) :

P (t, s) =
1

2
((|t| + t)v̌ + (|s| + s)(v′)ˇ).

Then, it holds P (1, 1) = (v + v′)ˇand P (0, 0) = 0̌ hence

[0̌, (v + v′)ˇ] = [P (0, 0), P (1, 1)].

It easily follows that P is positive homogeneous. Also, the mapping ˇ: x �→ x̌
is an order isomorphism and for each ti, si ∈ R, i = 1, 2 it holds |t1+t2|v+(t1+
t2)v+|s1+s2|v′+(s1 +s2)v

′ ≤ |t1|v+|t2|v+(t1+t2)v+|s1|v+|s2|v′+(s1 +s2)v
′

therefore P is subadditive. Let

C ∈ [0̌, (v + v′)ˇ] = [P (0, 0), P (1, 1)]

then C ≤ P (1, 1) and for each λ ∈ R
+ we have λC ≤ λP (1, 1) = P (λ, λ). Let

T : R
+ → U(E) with T (λ) = λC. It easily follows that T is additive, thus by
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the (E)-property there exists an additive mapping A : R
2 → U(E) such that

A(t, s) ≤ P (t, s), for each t, s ∈ R and A(x, x) = T (x), for each x ∈ R
+. It

follows that A(1, 1) = T (1) = C so, if we set Q = A(1, 0), Q′ = A(0, 1) we have

Q = A(1, 0) ≤ P (1, 0) = v̌ and Q′ = A(0, 1) ≤ P (0, 1) = (v′) .̌

But 0̌ ≤ A(1, 0), A(0, 1) and the additivity of A implies that Q+Q′ = A(1, 1) =
C. Thus U(E) possesses the Riesz decomposition property.

We shall denote by L(U(E), U(F )) the set of all linear mappings from U(E)
to U(F ), that is

L(U(E), U(F )) = {T : U(E) → U(F )|T linear mapping }.
The set L(U(E), U(F )) equipped with the pointwise operations of addition
and scalar multiplication i.e.,

(T + S)(A) = T (A) + S(A), (λT )(A) = λT (A), A ∈ U(E), λ ∈ R
+

is a generalized wedge since for two mappings S, T ∈ L(U(E), U(F )) the sum
T + S and λT, λ ∈ R

+ are also elements of L(U(E), U(F )).
The generalized wedge L(U(E), U(F )) with the partial order (≤L) defined

by

f ≤L g if and only if f(A) ≤ g(A) in U(F ), for each A ∈ U(E),

becomes a partially ordered generalized wedge, since U(F ) is a partial or-
dered generalized wedge. Also, we shall denote by 0 the zero element of
L(U(E), U(F )).

Definition 4.4. A mapping T ∈ L(U(E), U(F )) is called order bounded if
for each x, y ∈ E, x ≤ y it maps the corresponding order interval [x̌, y̌] of U(E)
into an order interval [ǎ, b̌] of U(F ) for some a, b ∈ F.

We shall denote by Lb(U(E), U(F )) the set of all linear, order bounded
mappings from U(E) to U(F ). In order to give a generalized version of the
Riesz-Kantorovich theorem for the generalized wedge Lb(U(E), U(F )) we shall
need a notion of order completeness.

Definition 4.5. The directed wedge U(E) is called order complete if each
upper bounded subset of U(E) has a least upper bound ǔ, for some u ∈ E.

Consider a mapping T : U(E) → U(F ) and a subset C of U(E), then we
shall denote by T (C) the subset of U(F ) that contains all those elements T (K)
of U(F ) where K ∈ C. Also, if C,K are subsets of U(E) then we define an
operation of addition between subsets of U(E) by

C + K = {A + B|A ∈ C, B ∈ K}.
Now we are ready to provide a Riesz-Kantorovich type theorem for the gener-
alized wedge Lb(U(E), U(F )). We start with an easy Lemma.



24 V. N. Katsikis

Lemma 4.6. Let T be an additive mapping from U(E) to U(F ). Then for
each x, y ∈ E it holds

T ([0̌, x̌] + [0̌, y̌]) = T ([0̌, x̌]) + T ([0̌, y̌]).

Proof. Let W ∈ T ([0̌, x̌] + [0̌, y̌]) then W = T (A + B) for some A ∈ [0̌, x̌], B ∈
[0̌, y̌]. Since T is additive it follows that W = T (A) + T (B) while T (A) ∈
T ([0̌, x̌]), T (B) ∈ T ([0̌, y̌]), thus we have the inclusion T ([0̌, x̌] + [0̌, y̌]) ⊆
T ([0̌, x̌]) + T ([0̌, y̌]). For the converse inclusion, consider W ∈ T ([0̌, x̌]) +
T ([0̌, y̌]). Then, W = C + D where C ∈ T ([0̌, x̌]), D ∈ T ([0̌, y̌]). Thus, C =
T (Q), D = T (P ) for some Q ∈ [0̌, x̌] and P ∈ [0̌, y̌] which implies that
W = T (Q) + T (P ) = T (Q + P ). Therefore W ∈ T ([0̌, x̌] + [0̌, y̌]) and the
converse inclusion is proved.

We shall denote by f ∨b g the supremum (if it exists) of two elements
f, g ∈ Lb(U(E), U(F )).

Theorem 4.7. Let U(E) has the (E)-property and U(F ) is an order com-
plete, directed wedge. Then, for each f ∈ Lb(U(E), U(F )) and each x ∈ E+

we have

(i) f+(x̌) = sup f([0̌, x̌]).

(ii) (f ∨b g)(x̌) = sup{f(ǔ) + g((x − u)ˇ)|0̌ ≤ ǔ ≤ x̌}.
Proof. (i) Let f ∈ Lb(U(E), U(F )) be given; for each x ∈ E+, we define a
mapping g with

g(x̌) = sup f([0̌, x̌]).

The sup f([0̌, x̌]) exists in U(F ) since f is order bounded and U(F ) is order
complete.

We shall extend g to a mapping g̃ where for each x = x1 − x2, x1, x2 ∈ E+

it holds
g̃(x̌) = (b − a) ,̌ b̌ = g(x̌1), ǎ = g(x̌2).

In view of the proof of Theorem 3.4(i), it is enough to show that g is a ∨-
preserving mapping and for each u, v ∈ E+ it holds g(ǔ + v̌) = g(ǔ) + g(v̌).
Indeed, g is a ∨-preserving mapping since, f is an order bounded mapping and
U(F ) is an order complete directed wedge. In order to prove that g(ǔ + v̌) =
g(ǔ) + g(v̌), we start by pointing out that according to Proposition 4.3 the
assumption of the (E)-property in U(E) implies that [0̌, ǔ+v̌] = [0̌, ǔ]+[0̌, v̌], so
using Lemma 4.6 it holds g(ǔ+v̌) = sup f([0̌, ǔ+v̌]) = sup(f([0̌, ǔ])+f([0̌, v̌])).
Then, we set g(ǔ + v̌) = b̌, g(ǔ) = ď, g(v̌) = č, b, d, c ∈ F, therefore A ≤ ď,
for each A ∈ f([0̌, ǔ]) and B ≤ č, for each B ∈ f([0̌, v̌]). Thus, A + B ≤ ď + č,
for all A ∈ f([0̌, ǔ]), B ∈ f([0̌, v̌]) which implies that b̌ ≤ ď + č. Suppose that
A + B ≤ x̌, for each A ∈ f([0̌, ǔ]) and B ∈ f([0̌, v̌]). Then, A + b̌ ≤ x̌, for each
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b̌ ∈ f([0̌, v̌]) so A ≤ (x− b)̌ , for each A ∈ f([0̌, ǔ]). It follows that ď ≤ (x− b)̌
hence b̌ + ď ≤ x̌. Thus, for each u, v ∈ E+ it holds g(ǔ + v̌) = g(ǔ) + g(v̌).

We show that f+(x̌) = g̃(x̌) for each x ∈ E; indeed, f+(x̌) ≤ g̃(x̌) for each
x ∈ E+, and if 0 ≤L h is an order bounded mapping on U(E) such that x ∈ E+

it is implied that f(x̌) ≤ h(x̌), then f(y̌) ≤ h(y̌) ≤ h(x̌) for all y̌ ∈ [0̌, x̌], which
shows that g̃(x̌) = sup f([0̌, x̌]) ≤ h(x̌) whenever x ∈ E+. Finally, it is easy to
see that by the definition of g̃ we have that g̃ is order bounded.

(ii) Define k : U(E)+ → U(F )+ by k(x̌) = sup{f(ǔ) + g((x− u)̌ )|0̌ ≤ ǔ ≤
x̌}. Similar arguments, as in the proof of (i), can be used in order to prove that

the mapping k can be extended to an order bounded mapping k̃ from U(E)

to U(F ) such that k̃(x̌) = (f ∨b g)(x̌), for each x ∈ E.
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