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Abstract

This paper presents a systematic truncation method for constructing
Lax pairs and Bécklund transformations of integrable nonlinear differ-
ential equations. By combining the mirror method and the WTC ap-
proach, we establish connections between Painlevé analysis, Riccati lin-
earization, and Lax integrability. Our framework enables the derivation
of symmetric auto-Bécklund transformations and Schlesinger transfor-
mations, offering a unified approach to understanding these systems.
This approach yields a constructive algorithm that links geometric, al-
gebraic, and analytical perspectives of integrability with significant im-
plications for physical applications.

Keywords: Lax pair, Backlund transformation, integrability, WTC trun-
cation, Painlevé analysis, singular manifold

1 Introduction

The study of integrable systems originated with the discovery of solitary wave
solutions to the KdV equation by John Scott Russell in 1834 and their mathe-
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matical formalization by Diederik Korteweg and Gustav de Vries in 1895. The
modern era began with Clifford Gardner, John Greene, Martin Kruskal, and
Robert Miura’s discovery of the inverse scattering transform (IST) in 1967 [4],
which solved the initial value problem for KdV. Peter Lax’s subsequent for-
mulation [8] of the Lax pair (1968) provided the operator-theoretic foundation
for IST, showing that integrable equations arise as compatibility conditions for
linear systems.

Bécklund transformations (BTs), named after the geometric work of Al-
bert Backlund in the 19th century, emerged as algebraic tools for solution
generation in the 1970s. For integrable PDEs, BTs typically include a free pa-
rameter (Béacklund parameter \) relating different solutions, while for Painlevé
equations, Schlesinger transformations connect solutions with shifted param-
eters [2, 9]. The profound connection between these structures was revealed
through singularity analysis. The Painlevé property (movable pole singular-
ities without branching) was recognized as a key integrability indicator by
Ablowitz, Ramani, and Segur [1], leading to the WTC method [13] and later
the Conte-Musette’s method [10], which constructs BTs via singular manifold
truncation.

Hu and Yan’s mirror method [6, 7] advanced this paradigm by introducing
resonance variables that regularize singularities, directly linking singularity
structure to BTs. Despite these advances, a unified constructive approach to
derive Lax pairs and BTs simultaneously has remained elusive. This work
bridges that gap by developing a systematic procedure based on the Riccati
linearization of mirror systems.

Our methodology is based on three foundational pillars: First, the singu-
larity structure of integrable equations, where movable singularities organize
into patterns determined by the equations order and nonlinear nature; pole
orders and resonance positions shape the Laurent expansion. Second, Riccati
linearization reveals that near these singularities, equations reduce to coupled
Riccati systems, reflecting the underlying linear scattering problem rather than
merely serving as a technical step. Third, compatibility as integrability estab-
lishes that the commutativity of space and time evolutions (9,0, — 0,0, = 0)
reproduces the original nonlinear equation, directly linking the construction of
Backlund transformations to Lax integrability.

Our specific contributions include extending the mirror method to sys-
tematically construct both auto- and hetero-Backlund transformations, estab-
lishing an explicit connection between Riccati systems and Lax pairs, resolv-
ing the degeneracy of the Miura transformation through extended expansions,
providing derivations of a symmetric Backlund transformation for mKdV and
Schlesinger transformations for P4, and developing an algorithmic procedure
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applicable to both PDEs and ODEs.

The structure of the paper is organized as follows. Section 2 presents the
mathematical framework with detailed derivations. Sections 3 and 4 contain
comprehensive applications to various integrable equations. Section 5 discusses
implications and future directions.

2 Mathematical Formulation

The Painlevé property indicates that solutions are single-valued near movable
singularities, extending to non-characteristic manifolds ¢(x,t) = 0 for PDEs.
The WTC method tests this by expanding solutions into Laurent series around
these manifolds and analyzing the recursion relations for consistency at res-
onance points. Truncating the series at the resonance level allows derivation
of Backlund transformations and uncovers the integrable structure by linking
local singularity behavior with global properties.

2.1 The Painlevé Property and WTC Method

A differential equation possesses the Painlevé property if all movable singular-
ities are poles. For PDEs, this extends to the requirement that solutions be
single-valued around all non-characteristic manifolds ¢(z,t) = 0. The WTC
method tests this by substituting the Laurent expansion

u(a:',t) = (b(x’t)iazuj(x?t) ¢($7t)j7 (1)

where a > 0 is the leading-order exponent determined by dominant balance.
The recursion relations for coefficients u; must be consistent up to the reso-
nance orders [11].

The truncation approach assumes the series terminates at constant term
(0%
u = Zujgbj_o‘. (2)
j=0

Substituting (2) into the PDE determines ¢ and the w;’s, yielding BTs when
consistent [5].
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2.2 Hu and Yan’s Mirror Method

The mirror method enhances the WTC approach by introducing new variables
at resonance positions. For a first-order ODE system in variables (XY, Z),
one first determines the leading behavior: X = Xo(t —to) ™%, Y = Yo(t —to) 7,
Z = Zy(t —ty) ™™, choosing a positive exponent k and introducing the indicial
normalization X = #~*. Subsequently, formal Laurent series expansions are
assumed,

0 = ag+af+af?+---,

Y = gil(bo+b10+b2€2+"'), (3)
Z = 0"™(co+ 10+ co0*+ 1),

where coefficients depend on ¢t. These coefficients are obtained recursively from
the original system after substitution, with the dominant coefficients aq, by, co
derived from dominant balance equations. Unlike the classical Painlevé test,
where the singularity function ¢ depends solely on the singularity and reso-
nance parameters, here ¢ incorporates resonance parameters implicitly. For
example, derivatives such as X' = —k 07710’ = —k =% (ap+a,0+---) must
be computed, along with similar expressions for Y’ and Z’. In autonomous
systems, the coefficients are constants, simplifying calculations. The recursive
relation’s coefficient matrix determinant, a degree-three polynomial, shares
roots (resonances) with the classical Painlevé test, and compatibility requires
that the largest resonance j be satisfied before proceeding. Next, the Laurent
series are truncated at each resonance level by introducing new variables, such
as & at resonance jy,

Y = G*Z(bo+b19+~-+§0ﬁ),
and expressing £ in terms of the resonance parameter rq,
§ =pm+q+byga0+---,

then substituting back into the series for Y and similarly for Z with variable n,
truncated at its resonance ry. The new variables (6, £, n) transform the original
system into a mirror system, which remains regular if the original passes the
Painlevé test. For higher-order systems, derivatives like 8” are expanded using
similar series, involving derivatives of a; and their recursive relations. The
method extends straightforwardly to PDE systems by including derivatives
such as 0,0, with series coefficients depending on multiple variables and deriva-
tives, e.g., 9,Y = 071 (9,bo + (0,b1)0 + - -+ ) + 077 ((=1)bo + - - )(9,0), where
higher derivatives of 8 are incorporated similarly. This comprehensive frame-
work thus generalizes the Painlevé analysis [15], systematically constructing
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mirror systems through Laurent series truncations and variable transforma-
tions that reveal integrability structures.

2.3 Riccati Linearization Framework

The core innovation is to linearize the 6, equation into a Riccati form, which
simplifies the nonlinear problem into a form amenable to direct analysis and
construction of integrability structures [14]. For evolution equations, we pos-
tulate

0. = Ro+ Ri0+ Rof?, (4)

where the coefficients R; are functions depending on the expansion coefficients
ug, the singular manifold ¢, and possibly auxiliary variables introduced during
the process. This quadratic form captures the essential nonlinear relation in a
linearizable structure. The time evolution is similarly linearized as

0r = So+ 516+ Sp0%, (5)

with coefficients S; also depending on w;, and auxiliary functions. The key to
the integrability condition is the compatibility between these two equations,
which requires satisfying the cross-derivative identity

where E(u) = 0 is the original nonlinear PDE. When the Riccati system is
compatible, ensuring u solves the PDE, the relations determine the coefficients
R; and S; and guarantee the spectral problem’s consistency. The Backlund
transformation naturally arises by eliminating 6 between the indicial normal-
ization and the Riccati equations, producing explicit solution relationships.
This approach encapsulates integrability through the linearized Riccati sys-
tem, forming the basis for constructing Lax pairs and BTs from the singularity
structure.

2.4 Algorithmic Procedure

The algorithmic procedure begins with a leading order analysis to determine
a via dominant balance; for example, in the case of mKdV, u ~ uy¢p~! with
a = 1. Next, resonance positions are identified through linearized recursion
relations, such as resonances at j = —1,1,3,4 for mKdV. The series is then
truncated at the highest resonance, up to j = 4, by including terms like uv =
upf ™! +uy +usf. Subsequently, variables are introduced at resonance positions
via a mirror transformation, for instance, at 7 = 4, incorporating nf. Assuming
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0, in the Riccati form with undetermined coefficients, these are substituted into
the mirror system and solved recursively. Compatibility conditions enforce
that the mixed derivatives (6,); and (6,), are equal, which helps determine
auxiliary functions. Finally, solving the Riccati and normalization relations
yields explicit Backlund transformations, thereby systematically deriving both
the BTs and the associated Lax pair.

3 Illustrative Examples

Here, we showcase specific examples to demonstrate how our mirror system
approach applies to a variety of integrable equations. These include classical
models like the modified KdV equation, which exhibit well-known integrability
properties, as well as more complex systems where the method provides new
insights. In the following, we focus on the modified KdV equation to illustrate
the step-by-step construction of its auto-Backlund transformation.

3.1 Modified KdV Equation

The mKdV equation
U+ (Upe — 207 %0%) = 0 (7)

models nonlinear wave propagation in diverse physical contexts including plasma
physics and nonlinear optics. Its complete integrability was established by Wa-
dati [12] through inverse scattering. We demonstrate our method by rederiving
its auto-BT.

3.1.1 Singularity Analysis

Dominant balance u ~ uyp~! yields u3 = o? (two branches ¢ = +1). Reso-
nances at j = —1,1, 3,4 suggest the expansion

u = eril + up + u29, (8)
and the inclusion of the usf term is crucial; omitting it results in a degenerate

Miura map instead of capturing the full Backlund transformation, highlighting
the importance of resonance terms for a complete integrability structure.
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3.1.2 Mirror Transformation

Introducing ¢ and 7n at resonances 7 = 3 and j = 4 by

u = % + Ul -+ u29,
. _%972  2euquy o1 <0429t _ 2euquy ﬁ) L ep,
o Q 2ug « o

2ul 6uu
0+ #19—2 e f

w =

The mirror system contains equations for 6,,&,, n,. Notably, the equation for
0, has the form

2

0 = (ug—wl®) M [Z0 4 o (e — €)0°) (9)

o

which explicitly demonstrates how £ influences the 6, dynamics through the
resonance term, enabling recursive derivation of Backlund transformations and
illustrating the systematic incorporation of resonance variables within the mir-
ror framework.

3.1.3 Riccati Linearization

Postulate the Riccati form

eu €Uy Ugy eu?  3eus Uiy
0, = S04 (TR 2o (DL IR By )2 (10)
o « Ug QUg (0} U

Comparing with (9) determines £ in terms of §. Substituting into higher equa-
tions yields #; and eventually
2uh

et:_ 2 +...+g02'
(6]

Compatibility (0,): = (6;). requires

2eu,
(0, - (0), =~ ..
e
Setting uy = ea (from leading order), g = 0, and uy = —ea)?, we solve for h
and find that
(5) €Uy
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yielding the compatible system

4
2
0, — 1+ g \2g2,
«

2 2 3

6, = 4N+ 2uy n 2€Uy n (_ 8eA“uy n deuy B 26“1:527)9 (11)
o? o e o3 Qo
2,2 2
n (4)\4 _ 2\ 2u1 n 2e\ u1x>92‘
Q «

\

This Riccati system forms the Lax pair for the mKdV equation, linking the
Riccati form, spectral parameter A, and integrability. It provides a systematic
way to derive solutions, transformations, and conservation laws, highlighting
the deep connection between Riccati equations and the integrable structure of
the system.

3.1.4 Backlund Transformation

When u; satisfies mKdV, the system is compatible. For arbitrary u;, we have
2e
(Hx)t - (Ht)x = EQ -mKdV(u,), (12)

confirming the auto-BT property. Eliminating 0 via u = ead™! + u; — eal?0
gives

n e,
u+u, =
1 8 )
e
u—u; = —eal?f+ —.

0
Solving for # and substituting into the time component yields the symmetric
auto-BT

(U—=U1), = —2a)sinh[a (U +Uy)],

(U—=U1): = 2X(Upg + Urag) cosha™ (U + Uy)] (13)
—2a7 '\ (U2 + UZ,) sinh[a~ (U + Uy)],

where U, = u, Uy, = u; satisfy the potential mKdV equation. This elegant
form reveals the BT as a relation between sum and difference potentials. The
parameter A controls soliton velocity. For A = 0, we recover the stationary
solution. The sinh or cosh terms describe nonlinear superposition of solitons,
with the spatial part governing phase shift and the temporal part governing
amplitude modulation during interaction.
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3.2 Fourth Painlevé Equation

The fourth Painlevé equation

2
3
u’ = (Zi + Eug +4tu® 4+ 2(t* — a)u + g (14)

arises in quantum gravity and nonlinear optics. Its Schlesinger transformations
connect solutions with shifted parameters.

3.2.1 Singularity Analysis

Leading order u ~ uof~"! yields u? = 1 (¢ = +1). Resonances at j = —1,4
suggest that
u = uph t +uy, (15)

and analyzing these resonances helps determine the conditions under which
the Painlevé property and integrability are satisfied, guiding the construction
of its Béacklund transformation.

3.2.2 Mirror Transformation

Introducing & at j = 4 by

u = %—i_ul?
2
euy  2eugu; €t 9 (1 + 26&) 9
= —— = — = - 0+ £0°.
0 a2 Ty, )OS

The mirror system derived from the truncation contains the 6’ equation

! 2—2 2t !
0/ — €U0+ <2€(u1+t>+@)9+( e + Eul(ul + ) + u1>82_£93' (16)
Ug Ug U

This system shows how ¢ affects 6’ at resonance j = 4, enabling Béacklund
construction and capturing key integrability features.

3.2.3 Riccati Linearization

Postulate the Riccati form

!/

0 = eug+ (26(u1 +t) + @)9+ <

Uo

2 — 206 + euq (ug + 2t) 4+ uf
Ug

+-h)92.(17)
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Compatibility with the mirror system yields an algebraic equation for 6, which
is By+ E10+ E20% = 0. Setting ug = € and h = s—eug 'ul/a—3euy /o —ug
the compatibility condition becomes a polynomial in u;. Equating the highest
coefficient to zero gives s = (2/3)(A — a) and parameter relations such as

20A—a)(A+a—2¢) = 3(— B), (18)
98 + 2(a+2A — 3¢)* = 0. (19)

The Riccati form leads to key parameter relations and constraints, shaping the
conditions for integrability and the structure of the solutions.

3.2.4 Schlesinger Transformation

Solving the system yields

4<Oé — A) Uy
e — 20
CTUT (3u, 1 6) + 3uZ + 6tuy — 2A — da” (20)

where u satisfies P4 with parameters (a, §), u; with (A, B). This agrees with
known results [3] but is derived systematically. In random matrix theory, P4
describes the distribution of eigenvalues. The parameter shifts correspond to
changing the size of the matrix ensemble, with the transformation generating
scaled solutions.

The examples underscore several key aspects: first, completeness, as demon-
strated by the mKdV case where including the us6 term is essential for de-
riving the full Backlund transformation; omitting it only produces the Miura
map to KdV. Second, parameter control is highlighted by the emergence of
the Backlund parameter A as an integration constant from the compatibility
conditions. Third, unification is evident, since both PDE and ODE systems
are treated within the same Riccati linearization framework. Lastly, the ap-
proach’s algorithmic nature allows for step-by-step implementation, making
it straightforward to apply to other integrable equations using computational
tools.

4 Systematic Construction of Lax Pairs

Understanding the intricate structure of singularities inherent in nonlinear in-
tegrable equations is crucial for uncovering their underlying properties. The
Weiss-Tabor-Carnevale (WTC) singular manifold method provides a powerful,
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constructive framework to analyze these singularities systematically. By ex-
amining solutions near movable singularities and employing series expansions,
this method links the local behavior of solutions to the global algebraic and
geometric structures characteristic of integrable systems. It enables the deriva-
tion of Bécklund transformations and Lax pairs directly from the singularity
structure, establishing a profound connection between the analytical proper-
ties of solutions and the integrability of the equation. This approach not only
deepens our understanding of the nature of singularities but also offers practi-
cal tools for generating explicit solutions and associated integrability features.

4.1 Theoretical Framework of the Singular Manifold Trun-
cation Method

The Weiss-Tabor-Carnevale (WTC) singular manifold method [13] represents
a fundamental advancement in Painlevé analysis, extending its application to
partial differential equations while providing a constructive approach to inte-
grability. This method establishes a profound connection between the singu-
larity structure of solutions and the algebraic properties of integrable systems.

For a nonlinear evolution equation
= K(u, g, Ugg, ), (21)

the WTC method examines solutions near a singular manifold ¢(x,t) = 0
where solutions exhibit movable singularities. The approach begins with the
Laurent expansion

u(z,t) = ¢° Zuxx,t) o (22)

where « is a positive integer found through dominant balance analysis. The
Painlevé property requires that ¢(z,t) be analytic in both variables, the ex-
pansion be single-valued, and the recurrence relations for the coefficients u;
be self-consistent. Importantly, ¢, # 0 and ¢; # 0 on ¢ = 0 to ensure the
manifold is non-characteristic, which is crucial for the validity of the method.

The method truncates the series at j = «,

u = iujcbj_“, (23)
j=0
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where ¢ becomes the singular manifold itself. This ansatz leads to the intro-
duction of fundamental differential invariants such as

_ _ 5 =10, — 11}2. (24)

w=-—, U= ,
Pq Gz 2

These satisfy compatibility conditions from ¢, = ¢a,

vy = (wg + wo),, (25)
Sy = Wypy + 25W, + WS,. (26)

Under the homographic transformation ¢ — (a¢+b)/(c¢+d), w and s remain
invariant while v transforms covariantly. This geometric property reflects the
intrinsic structure of singularities.

The truncation (23) serves multiple purposes. It generates an auto-Bécklund
transformation where u, represents a new solution; the coefficients u; become
functions of the invariants w, v, s and their derivatives; and these invariants
capture how singularity manifolds deform under nonlinear evolution. This
framework effectively shifts the focus of integrability analysis to understand-
ing how singularities propagate and interact, linking the local behavior near
singularities to the global properties of the solutions.

4.2 Constructing Lax Pairs: Step-by-Step Algorithm

The singular manifold method offers a systematic way to construct Lax pairs
through six core steps. Step I: leading order analysis determines the exponent
a by balancing dominant terms, such as a = 2 for KdV (balancing u,,, and
6uu,) or @ = 1 for mKdV (balancing v,,, and 6v?v,). Step 2: truncated
expansion involves substituting the ansatz v = Z?:o u;¢~* into the PDE and
solving recursively for the coefficients u;. Step 3: resonance conditions identify
points where arbitrary functions arise, which are then interpreted as spectral
parameters. Step 4: wavefunction introduction sets ¢, = 9", typically with
n = 2 for second-order Lax pairs, guided by the singularity structure. Step 5:
Lax pair extraction involves deriving linear equations from the vanishing of
coefficients: L = \ip and 1, = Av. Step 6: compatibility verification confirms
that the Lax pair’s compatibility condition L; = [A, L] reproduces the original
PDE, ensuring the validity of the generated spectral problem.

The key transformation ¢, = 12 reveals a deep duality between the sin-
gularity space and the spectral space: movable poles correspond to discrete
eigenvalues, the singular manifold ¢ relates to the wavefunction v, and in-
variants w, v, s match spectral parameters. This correspondence clarifies why
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integrable systems preserve spectral data during nonlinear evolution, linking
local singularity structure to global spectral properties.

4.3 KdV Equation: A Paradigm of Integrability

The Korteweg-de Vries equation
Uy + 6Uly 4+ Uppy = 0 (27)

serves as the prototypical example for Lax pair construction via singular man-
ifolds. Leading order analysis yields & = 2 and u2 = —2¢2. Resonance at
7 =4 gives u; = 2¢,,. The truncated expansion becomes
82
u = 2—=Ino+ us. 28
o2 ¢ 2 (28)

Substituting into (27) yields

4 2

¢2

where we set ¢, = 12, Vanishing coefficients produce the linear system

Voo + (U2 + MY = 0, (30)

The operator formulation is
L = —0%—u, (32)
A = —40° — 6ud, — 3u,. (33)

The commutator identity [L, A] = 6uu, + Uz, confirms that L, = [A, L]
is equivalent to KdV. The spatial equation (30) corresponds to the time-
independent Schrodinger equation, where u(z, t) acts as a quantum potential, A
represents the energy eigenvalues conserved over time, and solitons are viewed
as reflectionless potentials in inverse scattering theory. This interpretation ex-
plains the remarkable stability of KdV solitons during interactions, as their
reflectionless nature ensures they retain their shape and speed after collisions,
highlighting the deep connection between integrability, quantum mechanics,
and wave propagation.



164 Tat Leung Yee

4.4 Modified KdV Equation: Dual Integrable Structure
The modified KdV equation
vy — 60%0; + Vgge = 0 (34)

exhibits a profound connection to KdV through singularity analysis. With
a =1 and v? = ¢2, the truncated expansion is

v = Ul¢_1 + vo. (35)
Substituting ¢, = v? into (7) yields

12¢50, 1
B, 2

Vanishing coefficients give

2
Uy — OV Uy + Vg =

20+ At G0+ 302s)] - (36)

Voo + ('02 + )\) Y =0, (37)
wt + 4wzx:p + 6U2wm + 3U2:p¢ 0. (38)

Remarkably, this is identical to the KdV Lax pair. The Miura transforma-
tion u = v, — v? emerges as a gauge equivalence between spectral problems,
explaining the hierarchical relationship between these equations.

For the mKdV soliton solution
v = rsech(kx — K3t), (39)

the Lax pair captures key features such as phase shifts occurring during soliton
collisions, the amplitude-dependent velocity characteristic of the solution, and
the overall complete integrability of the system through the inverse scattering
method.

4.5 Significance and Theoretical Implications

The singular manifold method offers deep insights into integrability and has
wide-ranging applications: it provides a unified framework for testing integra-
bility by simultaneously confirming the Painlevé property, constructing Lax
pairs, and generating Backlund transformations, thus streamlining the analysis
of nonlinear systems. Its geometric foundation is rooted in differential invari-
ants w, v, s, which characterize key features such as the manifold’s curvature
(s), the propagation of singularities (w), and nonlinear dispersion (v), linking
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geometric properties directly to the system’s integrable structure. Addition-
ally, the transformation ¢, = 1)? establishes a profound physical interpretation
by connecting the local singularity structure to the quantum scattering prob-
lem, highlighting how spectral data are encoded in the singular manifold and
providing a bridge between nonlinear wave theory and quantum mechanics.
This synergy underscores the methods importance in understanding both the
mathematical and physical aspects of integrability.

Theoretical advances of the singular manifold method include the concept
of singularity-spectral duality, which establishes a correspondence between the
two spaces: pole order « relates to asymptotic decay, resonance positions cor-
respond to the discrete spectrum, and the ¢-expansion aligns with spectral
decomposition. This duality links local singularity features to global spectral
properties, providing a powerful framework for understanding integrability.
Additionally, the method uncovers fundamental aspects of algebraic integra-
bility, showing that Lax pairs can be viewed as the linearization of singularity
manifolds, Backlund transformations emerge naturally from the residual terms
of truncation, and conservation laws are directly connected to invariants gov-
erning the singularity structure. These insights solidify the approach as a uni-
fying tool that bridges geometric, algebraic, and spectral facets of integrable
systems.

Applications and extensions of the singular manifold method encompass the
classification of novel integrable systems through singularity analysis, the ex-
ploration of nonlocal equations such as PT-symmetric systems, the discretiza-
tion of integrable equations via lattice Lax pairs derived from discrete singu-
larities, and the extension to multidimensional systems like the KP hierarchy
using jet bundle frameworks. These diverse applications highlight the method’s
versatility in uncovering integrability across various contexts. Ultimately, the
singular manifold approach remains an indispensable tool for decoding the al-
gebraic and geometric structures underpinning integrability, as the nature of
singularities fundamentally dictates the behavior and evolution of solutions.

5 Conclusion

We have developed a comprehensive framework for constructing Bécklund
transformations and Lax pairs using a truncation method. This method inte-
grates singularity analysis with extended expansions to resolve degeneracies,
allowing for explicit derivations across a wide range of integrable systems.
The approach uncovers a fundamental equivalence between Riccati systems
and Lax pairs, with physical interpretations such as the Backlund parameter
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representing soliton velocities, the Riccati structure embodying the linear scat-
tering problem, and Schlesinger transformations corresponding to parameter
shifts in associated models. While currently focused on second-order equa-
tions, future work aims to extend the methodology to higher-order, nonlocal,
and discrete systems, along with the development of computational tools for
automation. Ultimately, this work highlights that the core of integrability is
encoded in the algebraic and geometric structures of singularities, which serve
as the foundation for exploring and understanding nonlinear equations across
diverse scientific fields.
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