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Abstract

In this paper, we study the dynamical properties of a discrete linear
harvesting metapopulation with diffusion. By using Euler iteration al-
gorithm to discretize the space, we obtain the two-dimensional discrete-
time model with diffusion. We survey the existence conditions and
stability of the fixed points, the analysis of transcritical, pitchfork, and
flip bifurcations of nonhyperbolic fixed pointsis provided by using the
center manifold theorem. Numerical simulations and biological expla-
nation analyzes are made to demonstrate the effective of the theoretical
analyzes and to present the relations between these bifurcations.
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1 Introduction

Habitat fragmentation is one of the most damaging ecological processes
of our time and a major reason for global biodiversity loss. As human ac-
tivities like city expansion, farming, and deforestation increase, about 30%
of the world’s land ecosystems have been broken into separate patches [1].
This pushes species extinction rates higher than natural levels [2] and forces
populations to move between isolated habitat fragments to survive. The way
populations change in this patchy landscape can’t be described by older models
that treated them as single, uniform groups like the logistic equation. Because
of this, the concept of metapopulations populations made up of smaller groups
living in separate patches has become essential for understanding how species
survive in fragmented landscapes [3]. Its core idea is that movement between
patches keeps these smaller populations viable.

However, the classic metapopulation approach, best known from Levins’
simple model [4], treats patches as either occupied or empty, focusing on a
balance between colonization and local extinction. This simplification misses
two crucial realities: (1) populations change continuously in size , like density-
dependent growth limited by resources and harvesting; and (2) the movement
process itself is spatial and explicit , like the loss of individuals leaving edge
patches. These gaps limit the model’s ability to deal with human pressures
(like fishing, hunting).

To address these limitations, we developed a two-patch metapopulation
model for isolated habitats. It builds on models of populations with boundaries
and discrete movement over time and space [5]. Using Euler iteration, we

derived a model with discrete-time movement including a harvesting term:

t
Hy
it =1 = ) — h(ph) + dA%py, (1.1)

Here, r is the intrinsic growth rate, K is the carrying capacity, h(u;) is
density-dependent harvest (we consider h(u;) = eu; in this paper), d is the
movement rate, ¢ is time (0, 1, 2,...), and A? is the second-order difference
operator (A?pl | = pt,, —2pt+pt 4, i=1,2,...,n) [6], which measures how
populations spread between neighboring patches.

To focus on the smallest scale of patch interaction, we use fixed boundary
conditions (uf = 0 = p! ;) to represent isolated habitats like islands or forest
fragments. This assumes the area outside the boundaries is unsuitable, causing
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permanent loss when individuals leave [7]. Simplifying the model to just two

patches (letting =, = u', y, = %) gives us this system:

Tpp1 = 12,(1 — F2) — h(zn) + d(—22, + yn),

(1.2)
Yni1 = TYn(l — %) — h(yn) + d(xs — 2yn).

Traditional coupled population models typically assume habitat patches
are directly adjacent and migration occurs losslessly, often using net dispersal
forms like d(y, — ,,) that ignore losses from edge patches [8]. However, real
landscapes frequently feature patches separated by unsuitable matrix habitats.
Our Model (1.2) explicitly quantifies this loss through the term —2dx,: for
the left-edge patch z,,, dispersal occurs both to the adjacent patch dz, and as
irreversible loss to the unsuitable matrix dz,, totaling 2dz,, lost [9]. With only
dy,, arriving from the right patch, the net movement becomes dy,, — 2dz,,. This
formulation aligns with ecological evidence showing reduced survival at edges
due to higher predation risk [10] and failed recolonization [7], while providing
a mechanistic explanation for the 37 precent increased failure rate near edges
reported by Ries et al. [11] and confirmed across classified groups [12].

Proportional harvesting h(z) = ex works together with the migration mech-
anism, serving as a model example of scientific population management. This
model nicely integrates several core concepts in ecology: density-dependent
growth, spatial heterogeneity, dispersal risk, and human-induced disturbance.

This paper is structured as follows. Section 2 establishes the existence of
fixed points in Model (1.2). Section 3 classifies their topological types. Sections
4-6 analyze transcritical bifurcation, pitchfork bifurcation, and flip bifurcation
(with corresponding biological interpretations), alongside stability analysis of
the fixed points. Finally, we perform numerical simulations to validate our
findings.

2 Exitence of Fixed Points

Put
Ey=(0,0),E, = (K(r—d—a—l), K(r—d—a—l))’

s T

Ey=(-E(14+e—r+2d), 5 (1+e—r+2d)?),

? 4dr

Ey=(-fE(04+e—r+2d+/(14+e—r)?2—4d?), - (1+e—r+2d)(1+e—r)).
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Theorem 2.1. We consider the havesting fuctinon can be h(x) = ex in system
(1.2). Thus the fized points of system (1.2) can be classifies as follows:

(I) If x =y, system (1.2) has a trival fived point Ey, and a ungique non-
negative fived point Ey. Let eg =1 —d — 1, as € varies from left (¢ < &g) to
right (¢ > o), Ey coalesces with Ey at the origin (¢ = o) and moves along
y = x, from the fourth quadrant to the first quadrant.

(11) Assuming x # vy, system (1.2) has four nonnegative fized points, if the
following conditions holds:

(13) if 1 + e —r #=2d is satisfied, FE is obtained.
(i13) if (1 +¢ —r)? > 4d? is satisfied, F3 is obtained.

3 Topological types of the fixed point

Next we consider the dynamics of system (1.2) in the qualitative properties
of each fixed point. Combining with the existence conditions of the positive
fixed point Ey, F1, F» and the location of these corresponding eigenvalue multi-
pliers relative to the unit circle in the complex plane, we obtain the topological
classifications of the fixed points Ey, E1, E5 are given by Table 1,2, 3.

Table 1: Topological Types of the Fixed Point Ej

Condition on d Condition on & Topological Property Case Label
d>0 e>r—d+1 Unstable node Eo_unF
d<1 r—d—1<e<r—3d+1 Saddle with flip Eo_sm
d>1 r—d—1<e<r—d+1 Saddle with flip Eo_gra
d>1 r—3d—1<e<r—3d+1 Saddle with flip Eo_gsrs3
d#1 e=r—d-1 Non-hyperbolic Eo_nm
d# —1 e=r—d+1 Non-hyperbolic Eo_nmo
d+# —1 e=r—3d—1 Non-hyperbolic Eo_np3

d+#1 e=r—3d+1 Non-hyperbolic Eo_npa




Bifurcation analysis of a metapopulation model 181

Table 2: Topological Types of the Fixed Point Fy

Condition on d  Condition on & Topological Property  Case Label
d>0 e<r+d—3ore>r+d—1 Unstable node E1_uNF
d>0 gg<e<r+d-—3 Saddle with flip FEi_sp
d+#1 e=r+d-—3 Non-hyperbolic E1_nm1
d>0 e=r+d-1 Non-hyperbolic FEi_Nu2

Table 3: Topological Types of the Fixed Point F,

Condition on d  Condition on ¢  Topological Property = Case Label

d>0 e=r—2d—1 Saddle with flip Ey_sr1
0<d< 6+3/§ e=2d+r—1 Saddle with flip Es_gro
d > ﬁ e=2d+r—1 Unstable node Es_unn
d= 6+?/§ e=2d+r—1 Non-hyperbolic Es_Nm1

Remark 3.1 For the degenerate case of the E3 point, refer to Theorem
6.1.

4  Bifurcation at Fixed Point Fy,F;

This section presents the bifurcations occurring at Fy and Ey, along with
their corresponding biological interpretations.

Remark 4.1. A transcritical bifurcation occurs at Ey when the parameter
e = r —d—1— ¢ crosses zero, corresponding to the non-hyperbolic case
Eo_nus in Table 1. Assume d # 1, and let U C R"™ (resp. V C R) be a small
netghborhood of Ey. Then, in the neighborhood U x V' | the following statements
hold:

1. When ey >0 (i.e., e <r —d—1, low fishing intensity), Ey is unstable,
and a unique stable fized point Ey € U emerges (bifurcates from Ey).
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2. When g1 < 0 (i.e., € > 1 —d — 1, high fishing intensity), Ey is locally
asymptotically stable (population collapses to extinction if perturbed).

3. When g1 =0 (i.e., e = r — d — 1,critical fishing intensity), Eq is right-
semi-asymptotically stable: trajectories starting from the right neighbor-
hood of Eqy (small positive populations) converge to Ey, while those from
the left (small negative populations, biologically irrelevant) diverge.

Remark 4.2. The fized point Ey undergoes a supercritical flip bifurcation when
the parameter eo = r —d + 1 — ¢ passes through 0, as identified in the non-
hyperbolic condition Ey_npg2 (see Table 1). From a biological perspective, The-

orem 0.1 implies that under constant fishing intensity:

1. Whenr —d+1> ¢ (g9 > 0), the metapopulation exhibits stable period-2
oscillations around the Mazimum Sustainable Yield (MSY) level.

2. Whenr —d+1<e (g9 <0), the metapopulation stabilizes at the MSY
level Ey over the long term.

Remark 4.3. System (1.2) undergoes a pitchfork bifurcation at the fized point
Ey when parameter e3 = r—3d—1—¢ passes through 0, as indicated in Ey_ngs3
(see Table 1). The pitchfork bifurcation enables metapopulation coexistence at
the critical harvesting intensity e3 = r — 3d — 1. This represents an ecological
transition from extinction to sustainable coexistence.

Remark 4.4. System (1.2) undergoes a flip bifurcation at Ey, Ey when param-
eter ey =1 —3d+1—¢ passes through 0,e =r+d — 3, as indicated in Ey_npa
(see Table 1), E1_nm1 in Table 2).

Remark 4.5. When e = r+d—1, mapping system (1.2) undergoes a pitchfork
bifurcation at fized point E,, as identified in Ey_ypo (see Table 2).

5 Bifurcation at Fixed Point FE5

In this section, we will investigate the bifurcations of the above non-hyperbolic
fixed points by using the central manifold theorem and the normal form Es_yg3
(see Table3).
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5.1 Flip Bifurcation of Ej

Theorem 5.1. System(1.2) undergoes a flip bifurcation at fized point Ey when
do =0 (see Ey_nps in Table 3), with the following characteristics:

2k
1. Supercritical case: When — > 79+ 1337 and A > 0, a stable period-2
r
orbit bifurcates for dy > 0 and Es is unstable.

2k
2. Subcritical case: When — < T9+13v/37 and A < 0, an unstable period-2
r
orbit bifurcates for dy < 0 and Es is asymptotically stable.

2
The critical diffusion coefficient d* = T T determines stability: For
d > d*, Fy is unstable; For d < d*, Es is asymptotically stable.
Proof. Let
k(1+e—r+2d) k(14+¢—r+2d)? 2
H T+ 2 I Yy Adr ) 0 6+ \/ﬁ
The system transforms to:
H 10 6+?/ﬁ K vd — 7p°
2 r
o 01 v pdy — v

Apply the linear transformation:
p=C+n, do=6, v=—(6+V30)(+(V37-6)n

to diagonalize (5.1):

sl—10 1 0 5|+ 0 , (5.2)
Ui 0 0 147-24V37) \n 92(C, 6, m)

where

G1(C,6,m) = —206 — 2¢6 + %(79 +11V37)¢?

2
+ %(79 + 13V + %(V:T? — )¢,

92(¢,8,1) = (2 — 24V/37)nd — (146 + 24V/37)(6

r

L(79+13V37)¢? - %(79 —11V3T)?

+ 2—;(@ + 7)(n.
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The center manifold is given by n = h((,d) = a¢? + b(d + O(3) with:

(79 4 13+/37) p_ 16+ 24+/37
k(292v/37 — 1776)’ 2v/37(148 — 24+/37)

Restricting (5.2) to the center manifold yields:

_ o r(9+13V3T) oo 146 +24V/37
f(¢,90) =—C k(2924/37 — 1776)C ’ 74(148 — 24+/37)
r 2
\/_Q; n mk(w +11V37)¢
79 4+ 13/37

-
+—(V37-7 3
ﬁk( )292ﬁ— 1776C

r o 1642437
" \/ﬁk(ﬁ ") 74(148 — 24\/%4 o+ 0.

The second iterate f2(¢,d) has the expansion:

) B 1464+24v37 1
f(C,é)—C+74(148_24\/3—7)C(5 +\/§(1 2k(79+13\/_)>

¢o”

r B 79 +13V/37 3
t o (v37-7) (292\/§— et 1) ¢* +O(4).

Evaluating derivatives at (¢,9) = (0,0):
or or

f‘ = 07 ) = 07
©.0) ¢ (0,0) 95 (0,0)
0 f2 03 f2 67 79 4+ 1337
=0, —= = — (V37T-—T7 +1],
002 (0,0 o¢? 00 V 37k < > (292\/ 37— 1776
02 f2 1
~J . 794 13v3
0C0o (0.0) \/37 ( Qk( )>

The nondegeneracy condition is:

— 83f2 82f2
8= (‘ o5 ac%)

_ —6r 305v/37 — 1692
_T(ﬁ_n(zgzﬁ—m@( 2k(79+13¢_))

By bifurcation theory [14], A > 0 when 2 > 79 + 131/37 (supercritical flip),
and A < 0 when 2 < 79 + 13+/37 (subcritical flip). For dy = 0, compute the
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Schwarzian derivative of f(¢,0):

_ o) 3 (f”(O))2
f10) 2\ f(0)
_ 6r 79 + 13v/37 3r?
- mw N \/%292\/% “1r6 23R

By [15], Es is unstable if A < 0 and asymptotically stable if A > 0. O]

s(f(0))

79 + 11V/37)2.

Remark 5.2. From a biological perspective, Theorem 5.1 implies that in the
absence of harvesting, the metapopulation exhibits period-2 fluctuations around
the mazimum environmental carrying capacity when the diffusion coefficient
exceeds the critical value d > d*. Conversely, if the diffusion coefficient is
below d*, the metapopulation asymptotically approaches the maximum carrying
capacity, indicating a stable equilibrium. This highlights the role of diffusion
i requlating population dynamics: high diffusion leads to oscillatory behavior,

while low diffusion promotes stability.

6 Bifurcation at Fixed Point Fj;

This section investigates bifurcations at non-hyperbolic fixed points using

central manifold theory and normal forms.

6.1 Flip Bifurcation of Fj

Define 8§ = 1 + ¢ — r. The flip condition at F3 implies that the solution

curve of

(2 — 30 — 6d) (2 Vo 4d2) = (6.1)

exists in the domain 6 > 0, 0 < d < 2;_*39' Denote the solution of the equation

(6.1) by d(6). When d = d(0), a flip bifurcation occurs at Ej.

(14e—r+2d)+ K/ (1+e—r)%—4d?

Apply the coordinate transformation: y = x + K o ,

V=1 — w, § = d — d(f). The system becomes:

<“>H “\/92‘4(“5(“)2 5+ () ) (“)+<‘%“§>+o<3>.

v ~ ~

5+ d(9) 1—30—6<5+d<9)
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Under the invertible transformation P:

1 S
P= ( o+d(0) g 7(5+J?9)) 1) g (6.3)
ST e

where

[1 ~30-6 (5 + J(e))} (5 + J(e))

Sy = —d(6) [1 ~30-6 (5 + J(e))} - +1~

d(6) 2_39—6(6+c7(9))
b6 d0) +1-30—6 (5 +d0).
s, 5+ d(6) d(0)
S - — B _ 1— ———
0—1 2—39—6<6+d(9)>+ 0 +d(0)

the system simplifies to the Taylor series form:

5 —1—|—(5 0 § ]71(5,(5,7])
(n) ~ ( 0 1-30—6d(0) —J(@)Sl> (?7) + (J?é(fa(in)) +0(4).

(6.4)
The coeflicients are defined as:
9 = 5d(6) + dio) _ : (6.5)
2 — 30 — 6d(6)
- 6d(0)
- 1-30-6d(0) 1+ s eaw L (66)
d(6) 2—30—6d(0) d(§) '
30 + 6d(0) — 1 30 — 2 1
o WO 2L e (6.7)
d*(6) (z — 30— 6d(9)> a*(0)

The nonlinear terms are:

f1(&,8,m) = € — 200 + 2p6n + 200°n + 9*n* + 2podn® — 2008 n* + o(4),
(6.8)
f2(&,6,n) = & +2d(1 + d)6&* + (V*d* — 20d + 2+ 2d) n°
+ 2 [9%d(1 + d) — Ipd® + pd — (1 + d)9] on
— 2d*9¢én + [2d°p — 3d(1 + d)9 — 2(1 + d)] 6&n +o(4).  (6.9)
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The reduced mappings are:

A& 0,m) = —% (€% — 200 + 2p0n + 206%n + 9*n* — 2pBn° — 208y
+(1L+d)(p— V) (§20 — 2860 + 2p6%n + 9*0n%) + - - -] + o(4),
(6.10)
~ r
F2(&:0:m) = =32 [dfi(€,0,m) + (1 + d) (€20 = 200n + 2p5°n + 9*0n”)
+2(1 4+ d)96%n + fo(&,6,m)] + o(4). (6.11)
The center manifold n = h(¢, ) satisfies:
n="h(06) =ar&® + as&d + az6®> + O(3), (6.12)
with coefficients:
2r 9d
2= K230 —6d+5d2’ (6.13)
2r dv
= — 6.14
T K301 6d— 5 — 20’ (6:-14)
r[—d—d*+ 29 +9d* + (1 — di)ay]
= — . 6.15
“TK 30+ 6d — 5% — £id (6.15)
The reduced mapping on the center manifold is:
f5: €= =€+ 66 + [i(€, 8, (€, 0)). (6.16)
The flip bifurcation conditions are:
0 fs
=1 1
1/26\° 1 /03/\° 1 [2r S| ro\3
5 (052 ) 3 (aTs) =2 {?(1 — )1 —219)} +3 (12?1%1 ) £ 0.
(6.18)

Theorem 6.1. If 5 [2(1 — d¥)(1 — 219)]2 + 3 (12%19(12)3 # 0, then for suffi-
ciently small 0, the mapping (6.16) undergoes a flip bifurcation at E3. The
bifurcation is supercritical (stable period-2 orbit) if the expression is positive,

and subcritical (unstable period-2 orbit) if negative.
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7 Numerical simulations

In this section, we will give bifurcation diagrams to illustrate the bifurcation

phenomenons. The bifurcation parameters are considered as followed.

y
%”’l‘cx .

Fig. 1: transcritical bifurcation diagram in x — y plan in (0.3,0), (0.7,0)

Case 1: If set r = 2;¢ = 0.02;d = 0.08;k = 5 , we obtain system sys-
tem (1.2) has a fixed point Ey. The fixed point Ey is a transcritical bifur-
cation point. From Fig. 1, when the initial value is (0.3,0), Ey is unsta-
ble for x € (0,0.1), and becomes asymptotically stable at y € (0.06,0.08)
when z € (0.1,0.3). Similarly, for the initial value (0.7,0), Ey is unstable for
x € (0,0.2), and begins to stabilize asymptotically at y € (0.1,0.12) when
z € (0.2,0.7).

Stable Points

- - - - Critical r =13

Stable z

Fig. 2: pitchfork bifurcation in r — z plan in (0.1,0.1)

Case 2: For system (1.2) with parameters d = 0.2, K = 1,¢ = 0.1, bi-
furcation parameter r € (0.5,2.5) and the initial value (0.1,0.1), the pitchfork
bifurcation at E; unfolds as follows: when r < 1.3, x = 0 is the only stable
equilibrium, so trajectories converge to x = 0; at » = 1.3,z = 0 loses stability
; and for r > 1.3,z = 0, becomes unstable while two new stable equilibria
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emerge, with the initial (0.1,0.1) now converging to one of these new stable

points.

Case 3: Consider system (1.2) with parameters d = 0.2, K = 10,¢ = 0.1,
and bifurcation parameter r € (0,4), a supercritical flip bifurcation at r ~ 3.4
occuers. Figure 2(a) displays the resulting dynamics in the r-x plane near E;
with the initial conditions (zg,yo) = (0.1,0.1) , where increasing r beyond 3.4
initiates a cascade of period-doubling bifurcations leading to chaotic behavior.

The Maximum Lyapunov Exponents (MLE) in Fig.3(b) quantitatively con-
firm the bifurcation dynamics observed in Fig.3(a). At r =~ 3.4, the MLE
transition from negative to positive values signifies the onset of chaos near
equilibrium Eq, consistent with the supercritical flip bifurcation. Throughout
the chaotic regime ( r € [3.4,3.5] ), the negative MLE values correspond to
periodic windows embedded within the chaotic attractor. As r increases be-
yond 3.5, the systematic return to negative MLE values demonstrates stability

restoration via inverse period-doubling bifurcations.

Fig. 3: (a) flip bifurcaton diagram in z —r plan in (0.1,0.1),(b) Maximum Lyapunov
exponents corresponding to (a)

Case 4: Let d = 0.012, ¢ = 0.1, k = 04574, and r = 0.01091; then
6 = 0.6426, which satisfies the condition (2 — 30 — 6d) (2 + 6% — 4d?) = d?.
The supcritical flip bifurcation originates from FEj3. Fig.4 depicts the two -
dimensional supcritical flip bifurcation diagram in the d — = plane near the
fixed point E3 as d ranges from 0.01 to 0.1.
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Fig. 4: Flip bifurcation diagram in the z-d plane when d = 0.012, ¢ = 0.1, k =
0.4574, and r ~ 0.01091

Conclusion

This paper analyzes the dynamics of a discrete-time diffusion model with
linear harvesting. Through spatial discretization, a two-dimensional map is de-
rived. The study focuses on the bifurcations near nonhyperbolic fixed points.
For boundary points F, and Fy, the existence of transcritical, pitchfork, and
flip bifurcations is established and verified numerically (Figs. 1-3). Further-
more, a flip bifurcation is proven to occur at interior points F3 and Fs5 via
center manifold theory, with complex dynamics like chaos also observed (Fig.
4).

The analysis provides biological insights: the metapopulation stabilizes at
its maximum sustainable yield ( Figs. 2, 3), or by restricting the harvesting rate
below a critical value (Fig. 1). Stability is also achievable without harvesting
by controlling the diffusion coefficient (Theorems 5.1, 6.1), underscoring its

key role in maintaining stability under a constrained harvest.
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