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Abstract

In this paper, we study the dynamical properties of a discrete linear

harvesting metapopulation with diffusion. By using Euler iteration al-

gorithm to discretize the space, we obtain the two-dimensional discrete-

time model with diffusion. We survey the existence conditions and

stability of the fixed points, the analysis of transcritical, pitchfork, and

flip bifurcations of nonhyperbolic fixed pointsis provided by using the

center manifold theorem. Numerical simulations and biological expla-

nation analyzes are made to demonstrate the effective of the theoretical

analyzes and to present the relations between these bifurcations.

Keywords Discrete metapopulation model with harvesting; Stability; Cen-

tre manifold theorem; Bifurcation
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1 Introduction

Habitat fragmentation is one of the most damaging ecological processes

of our time and a major reason for global biodiversity loss. As human ac-

tivities like city expansion, farming, and deforestation increase, about 30%

of the world’s land ecosystems have been broken into separate patches [1].

This pushes species extinction rates higher than natural levels [2] and forces

populations to move between isolated habitat fragments to survive. The way

populations change in this patchy landscape can’t be described by older models

that treated them as single, uniform groups like the logistic equation. Because

of this, the concept of metapopulations populations made up of smaller groups

living in separate patches has become essential for understanding how species

survive in fragmented landscapes [3]. Its core idea is that movement between

patches keeps these smaller populations viable.

However, the classic metapopulation approach, best known from Levins’

simple model [4], treats patches as either occupied or empty, focusing on a

balance between colonization and local extinction. This simplification misses

two crucial realities: (1) populations change continuously in size , like density-

dependent growth limited by resources and harvesting; and (2) the movement

process itself is spatial and explicit , like the loss of individuals leaving edge

patches. These gaps limit the model’s ability to deal with human pressures

(like fishing, hunting).

To address these limitations, we developed a two-patch metapopulation

model for isolated habitats. It builds on models of populations with boundaries

and discrete movement over time and space [5]. Using Euler iteration, we

derived a model with discrete-time movement including a harvesting term:

µt+1
i = rµti(1−

µti
K

)− h(µti) + d∆2µti−1, (1.1)

Here, r is the intrinsic growth rate, K is the carrying capacity, h(ui) is

density-dependent harvest (we consider h(ui) = εui in this paper), d is the

movement rate, t is time (0, 1, 2,...), and ∆2 is the second-order difference

operator (∆2µti−1 = µti+1− 2µti + µti−1, i = 1, 2, . . . , n) [6], which measures how

populations spread between neighboring patches.

To focus on the smallest scale of patch interaction, we use fixed boundary

conditions (µt0 = 0 = µtn+1) to represent isolated habitats like islands or forest

fragments. This assumes the area outside the boundaries is unsuitable, causing
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permanent loss when individuals leave [7]. Simplifying the model to just two

patches (letting xn = µn1 , yn = µn2 ) gives us this system:xn+1 = rxn(1− xn
K

)− h(xn) + d(−2xn + yn),

yn+1 = ryn(1− yn
K

)− h(yn) + d(xn − 2yn).
(1.2)

Traditional coupled population models typically assume habitat patches

are directly adjacent and migration occurs losslessly, often using net dispersal

forms like d(yn − xn) that ignore losses from edge patches [8]. However, real

landscapes frequently feature patches separated by unsuitable matrix habitats.

Our Model (1.2) explicitly quantifies this loss through the term −2dxn: for

the left-edge patch xn, dispersal occurs both to the adjacent patch dxn and as

irreversible loss to the unsuitable matrix dxn, totaling 2dxn lost [9]. With only

dyn arriving from the right patch, the net movement becomes dyn−2dxn. This

formulation aligns with ecological evidence showing reduced survival at edges

due to higher predation risk [10] and failed recolonization [7], while providing

a mechanistic explanation for the 37 precent increased failure rate near edges

reported by Ries et al. [11] and confirmed across classified groups [12].

Proportional harvesting h(x) = εx works together with the migration mech-

anism, serving as a model example of scientific population management. This

model nicely integrates several core concepts in ecology: density-dependent

growth, spatial heterogeneity, dispersal risk, and human-induced disturbance.

This paper is structured as follows. Section 2 establishes the existence of

fixed points in Model (1.2). Section 3 classifies their topological types. Sections

4-6 analyze transcritical bifurcation, pitchfork bifurcation, and flip bifurcation

(with corresponding biological interpretations), alongside stability analysis of

the fixed points. Finally, we perform numerical simulations to validate our

findings.

2 Exitence of Fixed Points

Put

E0 = (0, 0), E1 = (K(r−d−ε−1)
r

, K(r−d−ε−1)
r

),

E2 = (−K
2r

(1 + ε− r + 2d), K
4dr

(1 + ε− r + 2d)2),

E3 = (−K
2r

(1 + ε− r + 2d+
√

(1 + ε− r)2 − 4d2), K
2dr

(1 + ε− r + 2d)(1 + ε− r)).
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Theorem 2.1. We consider the havesting fuctinon can be h(x) = εx in system

(1.2). Thus the fixed points of system (1.2) can be classifies as follows:

(I) If x = y, system (1.2) has a trival fixed point E0, and a unqique non-

negative fixed point E1. Let ε0 = r − d − 1, as ε varies from left (ε < ε0) to

right (ε > ε0), E1 coalesces with E0 at the origin (ε = ε0) and moves along

y = x, from the fourth quadrant to the first quadrant.

(II) Assuming x 6= y, system (1.2) has four nonnegative fixed points, if the

following conditions holds:

(ii) if 1 + ε− r 6== 2d is satisfied, E2 is obtained.

(iii) if (1 + ε− r)2 > 4d2 is satisfied, E3 is obtained.

3 Topological types of the fixed point

Next we consider the dynamics of system (1.2) in the qualitative properties

of each fixed point. Combining with the existence conditions of the positive

fixed point E0, E1, E2 and the location of these corresponding eigenvalue multi-

pliers relative to the unit circle in the complex plane, we obtain the topological

classifications of the fixed points E0, E1, E2 are given by Table 1,2, 3.

Table 1: Topological Types of the Fixed Point E0

Condition on d Condition on ε Topological Property Case Label

d > 0 ε > r − d+ 1 Unstable node E0−UNF

d < 1 r − d− 1 < ε < r − 3d+ 1 Saddle with flip E0−SF1

d ≥ 1 r − d− 1 < ε < r − d+ 1 Saddle with flip E0−SF2

d ≥ 1 r − 3d− 1 < ε < r − 3d+ 1 Saddle with flip E0−SF3

d 6= 1 ε = r − d− 1 Non-hyperbolic E0−NH1

d 6= −1 ε = r − d+ 1 Non-hyperbolic E0−NH2

d 6= −1 ε = r − 3d− 1 Non-hyperbolic E0−NH3

d 6= 1 ε = r − 3d+ 1 Non-hyperbolic E0−NH4
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Table 2: Topological Types of the Fixed Point E1

Condition on d Condition on ε Topological Property Case Label

d > 0 ε < r + d− 3 or ε > r + d− 1 Unstable node E1−UNF

d > 0 ε0 < ε < r + d− 3 Saddle with flip E1−SF1

d 6= 1 ε = r + d− 3 Non-hyperbolic E1−NH1

d > 0 ε = r + d− 1 Non-hyperbolic E1−NH2

Table 3: Topological Types of the Fixed Point E2

Condition on d Condition on ε Topological Property Case Label

d > 0 ε = r − 2d− 1 Saddle with flip E2−SF1

0 < d < 2
6+
√
37

ε = 2d+ r − 1 Saddle with flip E2−SF2

d > 2
6+
√
37

ε = 2d+ r − 1 Unstable node E2−UNN

d = 2
6+
√
37

ε = 2d+ r − 1 Non-hyperbolic E2−NH1

Remark 3.1 For the degenerate case of the E3 point, refer to Theorem

6.1.

4 Bifurcation at Fixed Point E0,E1

This section presents the bifurcations occurring at E0 and E1, along with

their corresponding biological interpretations.

Remark 4.1. A transcritical bifurcation occurs at E0 when the parameter

ε1 = r − d − 1 − ε crosses zero, corresponding to the non-hyperbolic case

E0−NH1 in Table 1. Assume d 6= 1, and let U ⊂ Rn (resp. V ⊂ R) be a small

neighborhood of E0. Then, in the neighborhood U×V , the following statements

hold:

1. When ε1 > 0 (i.e., ε < r − d − 1, low fishing intensity), E0 is unstable,

and a unique stable fixed point Ẽ0 ∈ U emerges (bifurcates from E0).
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2. When ε1 < 0 (i.e., ε > r − d − 1, high fishing intensity), E0 is locally

asymptotically stable (population collapses to extinction if perturbed).

3. When ε1 = 0 (i.e., ε = r − d − 1,critical fishing intensity), E0 is right-

semi-asymptotically stable: trajectories starting from the right neighbor-

hood of E0 (small positive populations) converge to E0, while those from

the left (small negative populations, biologically irrelevant) diverge.

Remark 4.2. The fixed point E0 undergoes a supercritical flip bifurcation when

the parameter ε2 = r − d + 1 − ε passes through 0, as identified in the non-

hyperbolic condition E0−NH2 (see Table 1). From a biological perspective, The-

orem 6.1 implies that under constant fishing intensity:

1. When r− d+ 1 > ε (ε2 > 0), the metapopulation exhibits stable period-2

oscillations around the Maximum Sustainable Yield (MSY) level.

2. When r − d + 1 < ε (ε2 < 0), the metapopulation stabilizes at the MSY

level E0 over the long term.

Remark 4.3. System (1.2) undergoes a pitchfork bifurcation at the fixed point

E0 when parameter ε3 = r−3d−1−ε passes through 0, as indicated in E0−NH3

(see Table 1). The pitchfork bifurcation enables metapopulation coexistence at

the critical harvesting intensity ε3 = r − 3d− 1. This represents an ecological

transition from extinction to sustainable coexistence.

Remark 4.4. System (1.2) undergoes a flip bifurcation at E0, E1 when param-

eter ε4 = r− 3d+ 1− ε passes through 0,ε = r+ d− 3, as indicated in E0−NH4

(see Table 1), E1−NH1 in Table 2).

Remark 4.5. When ε = r+d−1, mapping system (1.2) undergoes a pitchfork

bifurcation at fixed point E1, as identified in E1−NH2 (see Table 2).

5 Bifurcation at Fixed Point E2

In this section, we will investigate the bifurcations of the above non-hyperbolic

fixed points by using the central manifold theorem and the normal form E2−NH3

(see Table3).
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5.1 Flip Bifurcation of E2

Theorem 5.1. System(1.2) undergoes a flip bifurcation at fixed point E2 when

d0 = 0 (see E2−NH3 in Table 3), with the following characteristics:

1. Supercritical case: When
2k

r
> 79 + 13

√
37 and ∆ > 0, a stable period-2

orbit bifurcates for d0 > 0 and E2 is unstable.

2. Subcritical case: When
2k

r
< 79+13

√
37 and ∆ < 0, an unstable period-2

orbit bifurcates for d0 < 0 and E2 is asymptotically stable.

The critical diffusion coefficient d∗ =
2

6 +
√

37
determines stability: For

d > d∗, E2 is unstable; For d < d∗, E2 is asymptotically stable.

Proof. Let

µ = x+
k(1 + ε− r + 2d)

2r
, v = y− k(1 + ε− r + 2d)2

4dr
, d0 = d− 2

6 +
√

37
.

The system transforms to:µ

d0
v

 7→
 1 0 2

6+
√
37

0 1 0
2

6+
√
37

0 1


µ

d0
v

+

vd0 − r
k
µ2

0

µd0 − r
k
v2

 . (5.1)

Apply the linear transformation:

µ = ζ + η, d0 = δ, v = −(6 +
√

37)ζ + (
√

37− 6)η

to diagonalize (5.1):ζδ
η

 7→
−1 0 0

0 1 0

0 0 147− 24
√

37


ζδ
η

+

g1(ζ, δ, η)

0

g2(ζ, δ, η)

 , (5.2)

where

g1(ζ, δ, η) = −2ηδ − 2ζδ +
r

k
(79 + 11

√
37)ζ2

+
r

k
(79 + 13

√
37)η2 +

2r

k
(
√

37− 7)ζη,

g2(ζ, δ, η) = (2− 24
√

37)ηδ − (146 + 24
√

37)ζδ

− r

k
(79 + 13

√
37)ζ2 − r

k
(79− 11

√
37)η2

+
2r

k
(
√

37 + 7)ζη.
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The center manifold is given by η = h(ζ, δ) = aζ2 + bζδ +O(3) with:

a =
r(79 + 13

√
37)

k(292
√

37− 1776)
, b =

146 + 24
√

37

2
√

37(148− 24
√

37)
.

Restricting (5.2) to the center manifold yields:

f(ζ, δ) = −ζ − r(79 + 13
√

37)

k(292
√

37− 1776)
ζ2δ − 146 + 24

√
37

74(148− 24
√

37)
ζδ2

− 1√
37
ζδ +

r

2
√

37k
(79 + 11

√
37)ζ2

+
r√
37k

(
√

37− 7)
79 + 13

√
37

292
√

37− 1776
ζ3

+
r√
37k

(
√

37− 7)
146 + 24

√
37

74(148− 24
√

37)
ζ2δ +O(4).

The second iterate f 2(ζ, δ) has the expansion:

f 2(ζ, δ) = ζ +
146 + 24

√
37

74(148− 24
√

37)
ζδ2 +

1√
37

(
1− r

2k
(79 + 13

√
37)
)
ζδ

+
r√
37k

(√
37− 7

)( 79 + 13
√

37

292
√

37− 1776
+ 1

)
ζ3 +O(4).

Evaluating derivatives at (ζ, δ) = (0, 0):

f |(0,0) = 0,
∂f

∂ζ

∣∣∣∣
(0,0)

= −1,
∂f 2

∂δ

∣∣∣∣
(0,0)

= 0,

∂2f 2

∂δ2

∣∣∣∣
(0,0)

= 0,
∂3f 2

∂ζ3

∣∣∣∣
(0,0)

=
6r√
37k

(√
37− 7

)( 79 + 13
√

37

292
√

37− 1776
+ 1

)
,

∂2f 2

∂ζ∂δ

∣∣∣∣
(0,0)

=
1√
37

(
1− r

2k
(79 + 13

√
37)
)
.

The nondegeneracy condition is:

∆ =

(
−∂

3f 2

∂ζ3
,
∂2f 2

∂ζ∂δ

)∣∣∣∣
(0,0)

=
−6r

k
(
√

37− 7)
305
√

37− 1692

(292
√

37− 1776)

(
1− r

2k
(79 + 13

√
37)
)−1

.

By bifurcation theory [14], ∆ > 0 when 2k
r
> 79 + 13

√
37 (supercritical flip),

and ∆ < 0 when 2k
r
< 79 + 13

√
37 (subcritical flip). For d0 = 0, compute the
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Schwarzian derivative of f(ζ, 0):

s(f(0)) =
f ′′′(0)

f ′(0)
− 3

2

(
f ′′(0)

f ′(0)

)2

=
6r√
37k

(7−
√

37)
79 + 13

√
37

292
√

37− 1776
− 3r2

2 · 37k2
(79 + 11

√
37)2.

By [15], E3 is unstable if ∆ < 0 and asymptotically stable if ∆ > 0.

Remark 5.2. From a biological perspective, Theorem 5.1 implies that in the

absence of harvesting, the metapopulation exhibits period-2 fluctuations around

the maximum environmental carrying capacity when the diffusion coefficient

exceeds the critical value d > d∗. Conversely, if the diffusion coefficient is

below d∗, the metapopulation asymptotically approaches the maximum carrying

capacity, indicating a stable equilibrium. This highlights the role of diffusion

in regulating population dynamics: high diffusion leads to oscillatory behavior,

while low diffusion promotes stability.

6 Bifurcation at Fixed Point E3

This section investigates bifurcations at non-hyperbolic fixed points using

central manifold theory and normal forms.

6.1 Flip Bifurcation of E3

Define θ = 1 + ε − r. The flip condition at E3 implies that the solution

curve of

(2− 3θ − 6d)
(

2 +
√
θ2 − 4d2

)
= d2 (6.1)

exists in the domain θ > 0, 0 < d < 2−3θ
6

. Denote the solution of the equation

(6.1) by d̃(θ). When d = d̃(θ), a flip bifurcation occurs at E3.

Apply the coordinate transformation: µ = x+
K(1+ε−r+2d)+K

√
(1+ε−r)2−4d2

2r
,

ν = y − K(1+ε−r+2d)
r

, δ = d− d̃(θ). The system becomes:

(
µ

ν

)
7→

1 +

√
θ2 − 4

(
δ + d̃(θ)

)2
δ + d̃(θ)

δ + d̃(θ) 1− 3θ − 6
(
δ + d̃(θ)

)
(µ

ν

)
+

(
− r
Kµ

2

− r
K ν

2

)
+O(3).

(6.2)
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Under the invertible transformation P :

P =

(
1 S2

− δ+d̃(θ)
−1+δ S2

−(δ+d̃(θ))
−1+δ + 1

)
, (6.3)

where

S1 = −d̃(θ)
[
1− 3θ − 6

(
δ + d̃(θ)

)] 1

δ + d̃(θ)
+

[
1− 3θ − 6

(
δ + d̃(θ)

)](
δ + d̃(θ)

)
2− 3θ − 6

(
δ + d̃(θ)

)
+ δ + d̃(θ) + 1− 3θ − 6

(
δ + d̃(θ)

)
,

S2 = − S1

δ − 1
− δ + d̃(θ)

2− 3θ − 6
(
δ + d̃(θ)

) + 1− d̃(θ)

δ + d̃(θ)
,

the system simplifies to the Taylor series form:(
ξ

η

)
7→

(
−1 + δ 0

0 1− 3θ − 6d̃(θ)− d̃(θ)S1

)(
ξ

η

)
+

(
f̃1(ξ, δ, η)

f̃2(ξ, δ, η)

)
+O(4).

(6.4)

The coefficients are defined as:

ϑ = 5d̃(θ) +
d̃(θ)

2− 3θ − 6d̃(θ)
, (6.5)

ρ =
1− 3θ − 6d̃(θ)

d̃(θ)
− 5−

1 + 6d̃(θ)

2−3θ−6d̃(θ)

2− 3θ − 6d̃(θ)
+

1

d̃(θ)
, (6.6)

σ =
3θ + 6d̃(θ)− 1

d̃2(θ)
+ 6

3θ − 2(
2− 3θ − 6d̃(θ)

)3 − 1

d̃2(θ)
. (6.7)

The nonlinear terms are:

f1(ξ, δ, η) = ξ2 − 2ϑη + 2ρδη + 2σδ2η + ϑ2η2 + 2ρσδη2 − 2ϑσδ2η2 + o(4),

(6.8)

f2(ξ, δ, η) = d2ξ2 + 2d(1 + d)δξ2 +
(
ϑ2d2 − 2ϑd+ 2 + 2d

)
η2

+ 2
[
ϑ2d(1 + d)− ϑρd2 + ρd− (1 + d)ϑ

]
δη2

− 2d2ϑξη +
[
2d2ρ− 3d(1 + d)ϑ− 2(1 + d)

]
δξη + o(4). (6.9)
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The reduced mappings are:

f̃1(ξ, δ, η) = − r

K

[
ξ2 − 2ϑη + 2ρδη + 2σδ2η + ϑ2η2 − 2ρβδη2 − 2βσδ2η2

+(1 + d)(ρ− ϑ)
(
ξ2δ − 2βδη + 2ρδ2η + ϑ2δη2

)
+ · · ·

]
+ o(4),

(6.10)

f̃2(ξ, δ, η) = − r

K

[
df1(ξ, δ, η) + (1 + d)

(
ξ2δ − 2ϑδη + 2ρδ2η + ϑ2δη2

)
+2(1 + d)ϑδ2η + f2(ξ, δ, η)

]
+ o(4). (6.11)

The center manifold η = h(ξ, δ) satisfies:

η = h(ξ, δ) = a1ξ
2 + a2ξδ + a3δ

2 +O(3), (6.12)

with coefficients:

a2 =
2r

K

9d

2− 3θ − 6d+ 5d2
, (6.13)

a3 =
2r

K

dϑ

3θ + 6d− 5d2 − 2r
K
ϑ
, (6.14)

a1 =
r

K

[−d− d2 + 2ϑ+ ϑd2 + (1− dϑ)a2]

3θ + 6d− 5d2 − 4r
K
ϑd

. (6.15)

The reduced mapping on the center manifold is:

fδ : ξ 7→ −ξ + δξ + f̃1(ξ, δ, h(ξ, δ)). (6.16)

The flip bifurcation conditions are:

∂2fδ
∂ξ∂δ

= 1, (6.17)

1

2

(
∂2fδ
∂ξ2

)2

+
1

3

(
∂3fδ
∂ξ3

)3

=
1

2

[
2r

K
(1− dϑ)(1− 2ϑ)

]2
+

1

3

(
12

r

K
ϑd2
)3
6= 0.

(6.18)

Theorem 6.1. If 1
2

[
2r
K

(1− dϑ)(1− 2ϑ)
]2

+ 1
3

(
12 r

K
ϑd2
)3 6= 0, then for suffi-

ciently small δ, the mapping (6.16) undergoes a flip bifurcation at E3. The

bifurcation is supercritical (stable period-2 orbit) if the expression is positive,

and subcritical (unstable period-2 orbit) if negative.
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7 Numerical simulations

In this section, we will give bifurcation diagrams to illustrate the bifurcation

phenomenons. The bifurcation parameters are considered as followed.

Fig. 1: transcritical bifurcation diagram in x− y plan in (0.3, 0), (0.7, 0)

Case 1: If set r = 2; ε = 0.02; d = 0.08; k = 5 , we obtain system sys-

tem (1.2) has a fixed point E0. The fixed point E0 is a transcritical bifur-

cation point. From Fig. 1, when the initial value is (0.3, 0), E0 is unsta-

ble for x ∈ (0, 0.1), and becomes asymptotically stable at y ∈ (0.06, 0.08)

when x ∈ (0.1, 0.3). Similarly, for the initial value (0.7, 0), E0 is unstable for

x ∈ (0, 0.2), and begins to stabilize asymptotically at y ∈ (0.1, 0.12) when

x ∈ (0.2, 0.7).

Fig. 2: pitchfork bifurcation in r − x plan in (0.1, 0.1)

Case 2: For system (1.2) with parameters d = 0.2, K = 1, ε = 0.1, bi-

furcation parameter r ∈ (0.5, 2.5) and the initial value (0.1,0.1), the pitchfork

bifurcation at E1 unfolds as follows: when r < 1.3, x = 0 is the only stable

equilibrium, so trajectories converge to x = 0; at r = 1.3, x = 0 loses stability

; and for r > 1.3, x = 0, becomes unstable while two new stable equilibria
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emerge, with the initial (0.1, 0.1) now converging to one of these new stable

points.

Case 3: Consider system (1.2) with parameters d = 0.2, K = 10, ε = 0.1,

and bifurcation parameter r ∈ (0, 4), a supercritical flip bifurcation at r ≈ 3.4

occuers. Figure 2(a) displays the resulting dynamics in the r-x plane near E1

with the initial conditions (x0, y0) = (0.1, 0.1) , where increasing r beyond 3.4

initiates a cascade of period-doubling bifurcations leading to chaotic behavior.

The Maximum Lyapunov Exponents (MLE) in Fig.3(b) quantitatively con-

firm the bifurcation dynamics observed in Fig.3(a). At r ≈ 3.4, the MLE

transition from negative to positive values signifies the onset of chaos near

equilibrium E1, consistent with the supercritical flip bifurcation. Throughout

the chaotic regime ( r ∈ [3.4, 3.5] ), the negative MLE values correspond to

periodic windows embedded within the chaotic attractor. As r increases be-

yond 3.5, the systematic return to negative MLE values demonstrates stability

restoration via inverse period-doubling bifurcations.

Fig. 3: (a) flip bifurcaton diagram in x−r plan in (0.1, 0.1),(b) Maximum Lyapunov

exponents corresponding to (a)

Case 4: Let d = 0.012, ε = 0.1, k = 0.4574, and r ≈ 0.01091; then

θ = 0.6426, which satisfies the condition (2 − 3θ − 6d)
(
2 +
√
θ2 − 4d2

)
= d2.

The supcritical flip bifurcation originates from E3. Fig.4 depicts the two -

dimensional supcritical flip bifurcation diagram in the d − x plane near the

fixed point E3 as d ranges from 0.01 to 0.1.



190 Yongxin Cen, Jingli Xie, Qing Shu

Fig. 4: Flip bifurcation diagram in the x-d plane when d = 0.012, ε = 0.1, k =

0.4574, and r ≈ 0.01091

Conclusion

This paper analyzes the dynamics of a discrete-time diffusion model with

linear harvesting. Through spatial discretization, a two-dimensional map is de-

rived. The study focuses on the bifurcations near nonhyperbolic fixed points.

For boundary points E0 and E1, the existence of transcritical, pitchfork, and

flip bifurcations is established and verified numerically (Figs. 1-3). Further-

more, a flip bifurcation is proven to occur at interior points E3 and E5 via

center manifold theory, with complex dynamics like chaos also observed (Fig.

4).

The analysis provides biological insights: the metapopulation stabilizes at

its maximum sustainable yield ( Figs. 2, 3), or by restricting the harvesting rate

below a critical value (Fig. 1). Stability is also achievable without harvesting

by controlling the diffusion coefficient (Theorems 5.1, 6.1), underscoring its

key role in maintaining stability under a constrained harvest.
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