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Abstract

Solutions of the Navier-Stokes and Euler equations with initial conditions for
2D and 3D cases were obtained in the form of converging series, by an analytical
iterative method using Fourier and Laplace transforms [28, 29]. In those articles
the solutions are infinitely differentiable functions, and for several combinations of
parameters numerical results are presented.

This article presents a fundamentally new method for solving the Navier-Stokes
equations. The article provides a detailed proof of the existence, uniqueness and
smoothness of the solution of the Cauchy problem for the 3D Navier-Stokes equa-
tions with any smooth initial velocity. A priori estimate of this solution is presented.
When the viscosity tends to zero, this proof applies also to the Euler equations.

Mathematics Subject Classification: 35Q30, 76D05
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1. INTRODUCTION

Many authors have obtained results regarding the Euler and Navier-Stokes
equations. Existence and smoothness of solution for the Navier-Stokes equa-
tions in two dimensions have been known for a long time. Leray (1934) showed
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that the Navier-Stokes equations in three dimensional space have a weak so-
lution. Scheffer (1976, 1993) and Shnirelman (1997) obtained weak solution
of the Euler equations with compact support in space-time. Caffarelli, Kohn
and Nirenberg (1982) improved Scheffer’s results, and Lin (1998) simplified the
proof of the results by Leray. Many problems and conjectures about behavior
of weak solutions of the Euler and Navier-Stokes equations are described in the
books by Ladyzhenskaya (1969), Temam (1977), Constantin (2001), Bertozzi
and Majda (2002), and Lemarié-Rieusset (2002).

The solution of the Cauchy problem for the 3D Navier-Stokes equations is
described in this article. We will consider an initial velocity that is infinitely
differentiable and decreasing rapidly to zero in infinity. The applied force is
assumed to be identically zero. A solution of the problem will be presented in
the following stages:

First stage (section 2). We move the non-linear parts of equations to the
right side. Then in section 4 we solve the system of linear partial differential
equations with constant coefficients.

Second stage (section 3). We introduce perfect spaces of functions and
vector-functions (Gel’fand, Shilov [7]), in which we look for the solution of the
problem. We show the properties of the direct and inverse Fourier transform
for these functions.

Third stage (section 4, 5). We obtaine the solution of this system using
Fourier transforms for the space coordinates and Laplace transform for time.

From theorems about applications of Fourier and Laplace transforms, for
system of linear partial differential equations with constant coefficients, we see
that in this case if initial velocity and applied force are smooth enough func-
tions decreasing in infinity, then the solution of such system is also a smooth
function. Corresponding theorems are presented in Bochner [3], Palamodov
[18], Shilov [23], Hormander [9], Mizohata [17], Treves [27]. The result of this
stage is an integral equation for the vector-function of velocity.

We demonstrate the equivalence of solving the Cauchy problem in differential
form and in the form of an integral equation.

Fourth stage (section 6). The properties of the matrix integral operators
of the integral equation were obtained.

Fifth stage (section 7). A priori estimate of the solution is presented by
using the properties of the matrix integral operators and the direct and inverse
Fourier transform.

Sixth stage (section 8). The existence and uniqueness of the solution of
the Cauchy problem for the 3D Navier-Stokes equations is proved through the
development of the ideas and approaches used to obtain a priori estimate of
the solution.

Seventh stage (section 8). By using a priori estimate of the solution of the
Cauchy problem for the 3D Navier-Stokes equations [13], 12], we show that the
energy of the whole process has a finite value for any ¢ in [0, 00).
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2. MATHEMATICAL SETUP

The Navier-Stokes equations describe the motion of a fluid in RY (N = 3).
We look for a viscous incompressible fluid filling all of RY here. The Navier-
Stokes equations are then given by

) A )
uk—l—Zunﬂ:VAuk——p—i—fk(x,t) zeRY, t>0, 1<k<N,
— ox T

ot . B)
(2.1)
Y u

divi=) ——=0 zeRY, t>0 2.2
v ; o x , >0, (2.2)

with initial conditions
i(z,0) = @’(x) xRN, (2.3)
Here @(z,t) = (ur(z,t)) € RY (1 < k < N) is an unknown velocity vector,

N = 3; p(z,t) is an unknown pressure; @°(z) is a given C*° divergence-free

—

vector field; fi(x,t) are components of a given, externally applied force f(z,t);
v is a positive coefficient of the viscosity (if v = 0 then (2.1)—(2.3) are the
Euler equations); and A = ZnNzl % is the Laplacian in the space variables.

Equation ([2.1) is Newton’s law for a fluid element. Equation (2.2)) says that
the fluid is incompressible. For physically reasonable solutions, we accept

auk
oz,

Hence, we will restrict our attention to initial conditions %° and force f that
satisfy

uk(xat> — Oa

—0 as|z)] 200 1<k<N, 1<n<N. (2.4)

1004°(7)| < Cogxc(1+ |z))™™ on RY for any a and any K. (2.5)
and
10907 f(2,1)| < Copx(1+|z|+8)™% on RY x [0,00) for any «, 5 and any K.
(2.6)
Cuor, Capx — constants.

To start the process of solution let us add — 2521 ungxi: to both sides of the
equations ([2.1). Then we have
N
8uk 8}9 auk N
A ) — e 2 eRN t>0,1<k<N,
o1 VAU 8xk+fk(x ) ;U Oz x 2 S k<

’ (2.7)

Ouy,
divﬁzzau —0 zeRY >0, (2.8)
L
n=1

i(z,0) =@’(x) xRV, (2.9)
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ou
up(z,t) = 0 ak | 00 1<k<N, 1<n<N, (2.10)
10%u° (7)] < Coxc (1 + |z)™* on RY for any @ and any K, (2.11)
10907 (2, 1)| < Copr(1+ |2] + )% on RN x [0, 00) for any a, 8 and any K.
(2.12)
Let us denote

N
fu(z,t) = fo(z,t) — Z —* 1<k<N. (2.13)

We can present it in the vector form as
flzt) = flz,t) — (@-V)i. (2.14)

.
3. SPACES S AND T'S.
FOURIER TRANSFORMS IN SPACE S.

Asin [7,[19], we consider the space S (Schwartz) of all infinitely differentiable
functions ¢(x) defined in N-dimensional space RY (N = 3), such that these
functions tend to 0 as |z| — oo, as well as their derivatives of any order, more
rapidly than any power of 1/|z|.

To define a topology in the space S let us introduce countable system of
norms

loll, = sup {|z"Dlp(2), 0 <k <p, 0<qg<p} p=0,1,2,..., (3.1

where
ot ()

2" D (x)| = |ah .. .x?VNmL
k=(ki,....kn), q=I(q,...,qn), a*=2aM_. x?VN,
DQZM =0,1,2,....
0T op%y Moo IVER LS
lello < llell < -+ < [lellp- - (3.2)

Note that S is a perfect space. The space ﬁ of vector-functions ¢ is a direct
sum of N perfect spaces S (N = 3) [26]:

TS=SaSas.

To define a topology in the space ﬁ let us introduce countable system of
norms

|Gl = §jmwp E:WP“ﬁD%z N, 0<k<p, 0<qg<p}, (3.3)

N=3p=0,1,2,...
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1l < 1@l < -+ < 1Bl - - (3.4)

Let us consider the Fourier transform of the function p(z) € S [1].
We show that the Fourier transform of the function ¢(z)

—— 1

Fle)=v(0) = ¢(0) = oy | € ele)dr,  (n.0) =Y mos

(3.5)

also belongs, as a function of o, to the space S (a function of o), i.e., ¥ (o)

is infinitely differentiable, and each of its derivatives approaches zero more
rapidly than any power of 1/|o| as |o| — oc.

The integral in admits of differentiation with respect to the parameter

oj, since the integral obtained after formal differentiation remains absolutely

convergent:
9¢(0) 1

— Y e . i(m,o)
o, o) /RN ix; €% p(x)dx

The properties of the function ¢(x) permit this differentiation to be continued
without limit. This means that the function (o) is infinitely differentiable.
Hence, the following formula holds

m /R i P(iz)€" " p(x)dzx = F[P(iz)p(z)]

(3.6)

P(D)Fp(x)] = P(D)y(0) =

for any differential operator P(D):

P(D) = D" = —
(D) Z ak Z b ot .. dokn
similarly
Now, let us consider the Fourier transform of the partial derivative (0p/0x;):
O (x) 1 06() nitz,o0)
F = """ dx.
[ d; } QM2 Jon Oz, ’

Integration by parts, taking into account that ¢(z) tends to zero as |z| — oo,
leads to the expression

8@(96) . 1 i(x,0) .
F[ o, ] = —i0; 22 /RN o(x)C"""dr = —io; Flp(x)].
Repeating this operation we obtain
FIP(D)g(x)] = P(—io;) Flp(x)]. (3.7)
As a Fourier transform of an integrable function, the function P(—io;)F[p(x)]
is bounded. Since P is any polynomial, we see that Flp(z)] = (o) tends to
zero more rapidly than any power of 1/|o| as |o| — oo. The same is true also

for any derivative of (o) since, as we have seen, the expression 0v¢/0c; say,
is the Fourier transform of the function iz;¢(x), which also belongs to S.
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Therefore, any derivative of ¥)(o) tends to zero more rapidly than any power
of 1/]o| as |o| — oo, Q.E.D.

Thus, if a function p(z) belongs to the space S (a function of x), then (o) =
Flp(z)] also belongs to the space S (a function of o).

An analogous statement is proved in exactly the same manner for the inverse
Fourier transform F~!, which, as is known, is defined by the formula

_ __1 ~i(w,0) .

o(a) = P00 = g || €77 bl (35)
if ¥(c) belongs to the space S (a function of o), then p(x) = F~1[i(0)] also
belongs to the space S (a function of x).

Let us note that by applying the operator F~! to and , and replac-
ing F[p] everywhere by ¢, and ¢ by F~1[¢], we obtain the following formulas
for the operator F—:

FHP(D)Y(0)] = P(ix) F~'[¢(0)); (3.9)
P(D)F~'[¢(0)] = F~[P(~io)i(0)]. (3.10)
From the proved assumptions, it follows that the operators F and F~' map
the space S conformally one-to-one into itself. These operators are evidently

linear.
We introduce the infinitely differentiable function:

3
___€
5(71,72,73) = € CFFE0D 0 <e<< 1. (3.11)
For example e = e %, ¢ =2,3,4,... q < o0.
It is evident that
1 e
L€ iR =0 (3.12)

lim
na3=0 (1 + 93 +3)"
for any 0 < n < oo.

4. SOLUTION OF THE SYSTEM ([2.7)—(2.14)
We seek a solution of the system (2.7)—(2.14)):

ﬁ(ajla T2, X3, t) eT ) p(x17_)$27 T3, t) €S,

to(x1, T, x3) € ﬁ and f(a:l,xg,xg,t) € ﬁ also.

Let us assume that all operations below are valid. The validity of these oper-
ations will be proved in the next sections. Taking into account our substitution
(2.13) we see that f are in fact system of linear partial differential
equations with constant coefficients.

The solution of this system will be presented by the following steps:

First step. We use Fourier transform (9.1)) to solve equations (2.7)—(2.14)).
We obtain:

Uk(’Yla’YQ,’YS;t) = F[Uk(ifbﬂfz,ﬂ??wt)],
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Oup (21, 29, 3, 1)
Ox?

Uy (m,72,73) = Flug(a1, 22, 73)],
P(y1,72,73,t) = Flp(w1, 22, 73, 1)],
Fr(, 7273, ) = Flfr(21, 22, 23, 1)],

for k,s =1,2,3. Then

—2Uk(1, 72,73, t) = F ] (use (2.10)),

au V2, V3, )
1(716;/2 s ) - _y(f}/% +’Y§ +7?2))U1(717727’737t) +271P(717727737t)

+ F1<717727737t)a

(4.1)

dU 7 ) 7t )
2<71de2 8:t) _ —v(7 + 75 + 75 U2 (1,72, 98, £) + 192 P (71,72, 73, 1)

+ FQ(’YI; Y2573, t)a
(4.2)

au. » 25 7t ]
3<’71d’:2 = ) - _V(’712 +7§ +7§)U3(717’727’73at) +Z’73P(717727’73at)

+F3(71,72,”Y3775)7

(4.3)
YU (715 72,735 1) + 72 U271, 72,735 1) + 73 Us(71, 72,73, 1) = 0, (4.4)
Ur(71572,73,0) = Ulo('Yla’YQ,’Y?s)a (4.5)
Uz(1: 72,73, 0) = Uz (71,72, 73), (4.6)
Us(1:72, 73, 0) = Us (71,72, 73) - (4.7)

Hence, we have received a system of linear ordinary differential equations
with constant coefficients (4.1)-(4.7]) according to Fourier transforms. At the

same time the initial conditions are set only for Fourier transforms of velocity

components Ui(71,72,73,t), U2(71,72,73, 1), Us(71,72,73,t). Because of that
we can eliminate Fourier transform for pressure P(vq, 72,73, t) from equations

(4.1)—(4.3) on the next step of the solution process.
Second step. From here assuming that v; # 0,792 # 0,773 # 0

(case 71 = 79 = y3 = 0 will be considered later in this article), we eliminate

P(71, 72,73, t) from equations (4.1) — (4.3) and find

d
E[UQ(717727737t) - ﬁ U1(717727737t)]
il
7
= —v(7 + 7 + 1) [0a(71, 72,73, 1) — ,y—le(%, 72,73, t)] (4.8)

+ [FZ(’}/M’YZ’ 73, t) - %Fl(/yh,y%,y&t)] )
1
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d
%[Ug%(f}/la V2573, t) - E Ul(’}/la Y2573, t)]
M

f)/
= —v(7; + 7 +73)[Us (71,72, 73, t) — 7? Ui (71,72, 73, 1))

~ Y3 ~
+ [F3(717727/737 t) - 7_3F1(717727737 t)] ’
1

Y UL (71,725 735 ) + 72 Ua (1,72, 73, 1) + 93 Us (71, 72,73, ) = 0,
Ur(71,72,73,0) = UP (71,72, 73),
Uz (71,72, 73, 0) = U3 (71,72, 73),
Us(71,72,73,0) = U3 (71,72, 73) -

Third step. We use Laplace transform (9.2)), (9.3)) for a system of linear
ordinary differential equations with constant coefficients (4.8)—(4.10) and have
as a result the system of linear algebraic equations with constant coefficients:

UE)(’Ylaf)/?afY?nn) = L[Uk(Pyla’yQa’Y?nt)] k = 172737

EE(1,72,73,m) = LIFx(71, 72,73, 1)] k= 1,2,3;

U3 (1,72, 73:1) — %Uf@(%,%,%ﬂ?)]
= [Ua(m:72:795,0) = 22U (31,72,75,0)

= —v(9f +7 )05 (1,72, 73,m) — %Uf@(%ﬁzﬁsﬂ?)]
+ [FP (1,72, 73,m) — %FF(%,%,’Y&U)],

nlUs (71, 72,73, 1) — %U?(%,%ﬁsan)]
— [Us(71,72,73,0) — %U1<717727’Y370)]

= —v(v + 7% + )05 (1,72, 73,m) — %Uf@(%ﬁzﬁ:aﬂ?)]

~ ”}/3 ~
+ [F (1, %2, 73, 1) — %ng(%,%ﬁs,n)],

MUY (172,73, 1) + 72 Us’ (71,72, ¥3,m) + ¥3 U3 (01, 72,73, 1) = 0,
Ur(71,72,73,0) = Uy (11,72, 73),
Us(71,72,73,0) = U3 (71,72, 73),
Us(71,72,73,0) = U3 (71,72, 73) -

(4.16)

(4.17)
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Let us rewrite the system of equations (4.16)—(4.18) in the form
V2
[+ v (97 + 72+ 8)] P (19273 1)

— [+ v+ + )0 (11,72, 73, M)
Y2 = ~ (422)
= [%ng(%a%ﬁsﬂ?) — FP (71,7273 1)

+ [%Ul(’71772a73a0) - U2(7177277370)]7
1

V3
m+v(vi+7 + 7%)]%11{8(% Yo, Y3, M)

— I+ v +7 +93)US (1,72, 73, 1)
(4.23)

V3 = L
= [%FF(%/YQ;’V&T]) - F??(vl’/}/z’fy&n)]

+ [%Ul(’h,%,%,o) — Us(71, 72,73, 0)],
1

NUE (71,792,738, m) + 2 U5 (71,72, 13 1) + 13 U5 (71,72, 73,m) =0 (4.24)

The determinant of this system is

+v(F+93+312 —[n+v( +95 +3)] 0
A=|n+v(yi+92 +3)% 0 —m+ v+ +73)]
2! 72 3
_ In+v(E 4+ +E)POF 3 +73) 40
71

(4.25)

Consequently the system of equations (4.16|)—(4.18]) and /or (4.22])—(4.24) has a
unique solution. Taking into account formulas (4.19)—(4.21) we can write this

solution in the form

U?(’YL’YQ,’Y&??)
(V3 +73) FE (71,72, 73 1) — M2 5 (1,72, 73, m) — s Fs (71,72, 73, 1)
i+ +%3)m+v(i+3 +3)]
U{)(71772773)
+v(i+13+93)]°

(4.26)

U?(’YL’YQWSJ?)
(3 + D) F5 (71,72, 73 m) — 1293 F5 (01, 72, 73, 1) — Ve Y (1, 72,73, 1)
i+ +%3)+v(i+3+3)]
Ug(71772773)
n+v(i+13+73)]°

(4.27)



126 Arkadiy Tsionskiy and Mikhail Tsionskiy

UZ?(/YD V2,73, T])

[(F + 73 F5 (v, 72, 73, m) — 137 FY (1,72, 73, 1) — 13725 (1,72, 73, 1)
(" 4+ +3) I+ r(7 + 7 +3)]
U??(%,%ﬁg)
m+v(i+s+73)]

(4.28)
Then we use the convolution theorem with the convolution formula ((9.4) and

integral (9.5)) for (4.26))—(4.28) to obtain
Ul (’717 V25735 t)

t
_ / e~ VOB +5)(t-7)
0

« (73 +7§)F1(71,7277377') — 7172F2(71,72,73,T) - 7173F3(71,7277377')] dr
(Vi +73+3)

i e—u(7f+7§+7§)tU{)(")/1, Y2, 73);
(4.29)

U2<717 72,735 t)

t
_ / R R (E-T)
0

" (V2 + ) Bo (1,72, 13, T) — Y23 E5(71, 72,73, ) — Yo 1 B4 (71,72, 3, 7)] ir
(V473 +3)

n e_y(ﬁﬂgw%)t[]g(%, Y2, 73)7
(4.30)

UB(VI? V2573, t)
t
= / e~ VO3 +5)(t-7)
0

% [(7% +7§)F3(71,7277377') - 7371F1(71,72,73a7) - V3V2F2(71,7277377')] d
(Vi +73+3)

T

4 e VOB () yp ).
(4.31)
Multiplying the left and right hand sides of the equalities (4.29)—(4.31)) by

the function §(71,ve,v3) from formula (3.11) and using the Fourier inversion
formula (9.1]) we obtain

1 - ~ > —i(x T T
(271')3/2 /_oo \/—oo /;oo Ul <71’ 72 t)5(ﬁ)/17 72 73)6 (rmtanztesns) d’Yld”de’Y?,

1 0o 0o [e's) t 9 2. o (72 +,y2) _
_ v+ +73)(t-7) 2 3
= (27‘(‘)3/2 /_Oo /_Oo /_Oo [A e 1772718 (ﬁ—l—ryg—i—ﬁ) F1(717727737T)]d7—
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B /t V(B (t=7) 2 Fa (0, 72,78, 7) + 133 F5 (91,92, 73, 7)) ir
0 (v +93 +13)
te v(v? +72+73)tU0(%7 Yo, 73>] 5(%’ Y, Vg)e—i(fcwﬁxzvﬁxs%) dryidryadrys
(4.32)

1 ~ ~ —i(x T T37y:
2%)3/2/ / / Us (71, 72,73, 1) (71, 72, ya) e~ AMF202488%) sy

o 1 /OO /OO /OO /t fu('nyr'ngr'yg)(th) [('73% + Vf)FQ('}/h V2,73, 7—)] d
)3/2 € 2 2. 2 T
(27) (i +7 +73)

_/ —v(3 43 +93) (t—T) V278 Fs (71, 72, 73, )+7271F1(71,’Y2>7377)] dr
0 (/i +72 +73)

+ e_y(ﬁﬂgﬂg)tUg (71572, 73)] O(1, 72, Yg)e CINFEEEI) oy gy
(4.33)

1 o0 o0 )
3/2/ / / Us(71, 72,73, 1) (71, 72, ys) e~ M F#292483%5) sy

_ / / / / V('y%—i—v%—i—'yg)(t—r) [(f}/% + 722>F3<717 V25735 T)] dr
W (v +3 +13)

_/ V(Y2 +13+93)(t—7) s FY (11,92, 98, 7) + Y872 F2 (1,72, 7, 7)) dr

0 (1 +73 +73)

e OEEODUR (3,35, 95) |80, 93, Am)e ) iy iy
(4.34)

Remark 4.1. Right hand sides of the equations (4.32] - 4.34]) have integrands
that contain multipliers
1) fractions x;;(71, V2, 7s) with simple features at 71 =y, =3 =0

(73 +73) (71 - 72) (71 - 73)
M+ +3) (B+%n+7) (F+%+13)]
(72 M) (75 +17) (v2 - 73)
(H+¥+1) P+ +3) (P +)
(73 -7) (73 - 72) (7 +73)

(VM+7vm+73) B+B+1) (H+n+3)

i,j=123.

and
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2) function §(71, y2,v3) is determined by formula (3.11]) with property (3.12)).
Consequently integrands belong to space S.

Further we put (1 -1+ 6(y1,72,73)) instead of §(y1,v2,73) in left hand sides
of the equations (4.32))—(4.34)). Then we move integrals with (-1 + 6(y1,72,73))
from left hand sides to right hand sides of the equations (4.32)—(4.34). And

we have

Uy (.1]1,1'2,1’3,

n_ (m+1)
& 3/2/ / / / v +v3+3) (t— )(yf—iﬁjvg) Fi(v,72,73, 7)]dT

_/ oV (BB (E-T) 192 (15 792,78, 7) + M3 F5 (71,72, 93, 7)) dr
0 (7 +% +13)

+ 6—1/(71 +’yz+'y3)tU0(717 Yo, 73)] 5(71’ Yo, 73)6—2'(96171—&-35272—&-%%) d71d72d73

1 ,
- —3/2/ / / Ur (71,72, 73, ) (1 — 5(71;72773))6_““71”272”373) dyrdryedys

— / / / / (72 "‘27??) . eVt (t-7)
83 (7 +73 +13)

></ / / I EMAT 2 E) £ (3 Ty Fa T) dEydTodTs | 6 (1, 2, Y3)

y €_i(w171 +x2y2+373) d% dny d’73d7'

/ / / / M2 mvlapi ) )
s (T+B+3)

></ / / Gi(ilvﬁiﬂﬁ%%)]%(fl,fz,563,7') dT1dTodZ3|0(V1, Y2, 73)

« e_i($171+x272+x373) d71d72d73d7'

/ / / / QANE —v(y 13 +73) (t—)
s (F+B+73)

X / / / ei(i”ﬁiﬂﬁiﬂ?’)fsﬁh52,503,7') df1d52dfs}5(%ﬁzﬁ3)

w e~ @imtrayatesys) dyrdrysdrysdr

/ / / v(vi+v3+3)t
87T3

/ / / €i(5171+5272+5373)u(1)(f1, Tg, T3) dfilded‘%fﬂ} (7, Y2, 73)

x e {@imtazyztasys) dyrdryadrys
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87r3 / / /

/ / / @Bt E0)y (F Fy Ty t) d:%ld:igdig] (1 —=6(71,72,73))

« e—il@mtazy2tasys) drydyadys

= Si(f1) + Si2(fo) + Si3(f3) + B(u) + E(uy), (4.35)

u2(x17 Za, I?n

_ / / / / vteaede—n 08 TN 2,38 7] )
3/2 (7F +73 +3)

_/ V(43 +73) (t—7) [’72’73F3(”Y1 V2,78, T )""7271]51(%’72’73’7)] dr
0 (71 + 72 + 73)

+ efy('y%+7§+ﬂ/§)tUO(,yl’ Yo, 73)] 5(717 Y, 73)671(1171+x2’y2+xs’¥3) dryydryadrys

1
e 2 ) / / / U2 717 Y2573, )(1 - 5(717 72, 73)> S taaeaas) d’yld’)/Qd'Yg
1

_ / / / / Y271 eV (35 (t-7)
’71 + ’72 + '73)

8_
% / / / ei(:’i1v1+53272+56373)f1 (jh To, T3, 7') d:fldfgdli‘g 6(’717 V25 '73)
e«

—i(@1y1+T2y2+T373) d71d72d73d7-

/ / / / (3 +70)  —strpgead)e—n)
T (i +7 +13)

< / / / NI (3 iy Gy, 7) didiadis | 61, 72, 7)

« e H@mtraatrsys) dy1dyadysdr

/ / / / V273 (¥ 42 492) (t—7)
873 (4 + 73)

< / / / NI (3 . Gy, 7) didiadis | 61, 72, 7)

« e H@mtraatsys) dy1dyadysdr

/ / / V(33
87T3

X
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X [/ / / e Bt E2 830805 7o 7)) di1df2dfs}5(%,%ﬁ3)

% e*i(ﬂﬁl’h +x2v2+x373) d'Yl deQ d’73

NN

/ / / e EMNFE2HEN) ) () Ty Fgt) dﬂhd@d%] (1 —0(v1,72,73))

> efi(x171+x2'72+x373) d%d’)/gd’}/g

= So1(f1) + Saa(f2) + Ses(f3) + B(ul) + E(us), (4.36)

U3($1, To, 13,1t

v(VE+y2+43) (t—T) [(PY% _’_/7;)1513(7177277377—)]
EwmETs 172173 5 5 5 dr
% (f +72 +73)

_/ V(2 +73+93) (t—7) [7371F1(71 72,73, 7) + 1372 Fo (71,72, 73, 7)) dr
0 (1 +73 +13)

+ €7V(’y%+’y%+'y§)tUg(”)/1, Yo, 73)] 5(,}/1’ Y, 73>e*l(z171+12’72+x3’73) dfyldrmd»)/g

1 > > —i(x T T
T W/ / / Us (71,72, 73, ) (1 = 8(71, 72, 7s) )~ 7142272 00398) oy dyy g

- _L/ / / / 3N v+ +93) (E=7)
8 (1 +73 +3)

X/ / / 6i(9}171+5272+j373)f1(5317@,fsﬂ') d1dTodTs|6( V1, V2, 73)

w e~ @mmtaz2yetasys) dyrdryadrysdr

/ / / / 372 —v(yi+v3+3) (t—T)
87T3 71 + 72 + 73)

X/ / / €i(5171+5272+j373)]?2(9731,572,55377') d1dTodT3|6( V1, Y2, 73)

x e H@mAe22+23%) (v, dryy drygdr

/ / / / OF %) sttt —n)
B (7 +% +13)

X/ / / ei(iwlﬁﬂﬁjﬂg)fs(fl,572,53'377') d1dTodT3|6( V1, V2, 73)
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w e~ H@imtzayatesys) dyrdrysdrysdr

/ / / v(vi+73+3)e
87T3

/ / / €i(5171+5272+53373)ug(f1, To,T3) dfilded‘%B} (71,72, 73)

« e H@mtraatrsys) dyrdryadys

NN

/ / / 6i(£171+j272+5373)u3(531, Tg, T3, 1) dfldfzdif?:s] (1 —6(y1,72,73))
X e—i(l’171+w272+90373) d’Yld’de'Y:%
= S51(f1) + Ssa(fo) + Sss(f3) + B(ul) + E(us). (4.37)
Here S11(), S12(), S13(), S21(), S22(), S23(), Ss1(), S32(), Ss3(), B(), E() are

integral operators, and satisfy
S12() = 521(),  S13() = S31(),  S23() = S32() -

Remark 4.2. It should be noted that for t = 0 multiple integrals, containing

integral fot , equal zero and the formulas (4.35)—(4.37)) easily converted to the
form
ui(xla Tg, X3, O) = U?(l‘l, T2, Q?g),’i = 17 27 3.

From the three expressions above for uy, ug, ug (4.35)—(4.37)), it follows that
the vector u can be represented as:

=5 f+B @ +E-i=8-F-5-(@-V)i+B-@+E-q, (438)

where f is determined by formula (2.14)).
Here S, B and E are the matrix integral operators:

511 512 513 B 0 0 FE 0 0
Sy Sy S|, [0 B o), [0 E 0]. (4.39)
S31 S32 533 0 0 B 0 0 E

5. EQUIVALENCE OF THE CAUCHY PROBLEM IN DIFFERENTIAL FORM
(2-1)—(2.3) AND IN INTEGRAL FORM

Let us denote solution of (2.1)—(2.3) as {@(z1, 22, z3,t), p(x1, 22,23, t)}; in
other words let us con51der the mﬁmtely differentiable by t € [0, 00) vector-

function @(xq, xe, x3,t) € ﬁ and 1nﬁn1tely differentiable function p(z1, xe, x3,t) €
S, that turn equations (2.1]) and ([2.2)) into identities. Vector-function u(xy, zo, 3, t)

also satisfies the initial condition 1) (@°(x1, 29, 73) € ﬁ)

(1, To, T3, 1) |imo = @ (71, T2, T3) (5.1)
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Let us put {@(z1, 20, 23,t), p(x1, 22, 3,1)} into equations (2.1, and
apply Fourier and Laplace transforms to the resulting identities considering
initial condition (2.3). After all required operations (as in sections 2 and 4)
we receive that vector-function u(xy, zo, x3,t) satisfies integral equation

i=S-f-S-(@-V)i+B-@®+E-i@ =5 -a (5.2)

Then the vector-function grad p € ﬁ is defined by equations where
vector-function « is defined by .

Here f € TS, @® € TS and S, B, E,SY are matrix integral operators.
Vector-functions S - f, B - @, E -, S - (i - V)i also belong TS since the
Fourier transform maps the Space ﬁ onto the Space ﬁ, and vice versa the
inverse Fourier transform maps the Space ﬁ onto the Space T'S.

Going from the other side, let us assume that u(xy, z2,x3,t) € T'S is con-
tinuous for ¢ € [0,00) solution of integral equation (5.2). Integral-operators
Sy - (@ - V)U [see (4.35)—(4.37)] are continuous for ¢ € [0,00). From here we
obtain that according to (5.2)),

ﬁ(xla XTo, T3, 0) = ﬁo(x17 T, 1'3)

also that @(xq, z9, x3,t) is differentiable by t € [0,00). As described before,
the Fourier transform maps the Space ﬁ onto the Space ﬁ, and vice versa

the inverse Fourier transform maps the Space ﬁ onto the Space ﬁ . Hence,
{t(xy, z9,3,t) and  p(z1,x9,x3,t)} is the solution of the Cauchy problem
(2.1)—(2.3). From here we see that solving the Cauchy problem ({2.1)—(2.3)

is equivalent to finding continuous in ¢ € [0, 00) solution of integral equation

62.

6. THE PROPERTIES OF THE MATRIX INTEGRAL OPERATORS B, E, S.

Further we have f = 0. Let us rewrite integral equation (5.2)) with this
condition as

Qi
eyl
wall

i=-S (i -Vi+E-i+B-u (6.1)
710(1’1,I2,l’3> S ﬁ

The integral equation (6.1)) shows that as the Fourier transform maps the
Space ﬁ onto the Space T'S, and vice versa the inverse Fourier transform maps
the Space ﬁ onto the Space T'S then the solution of this integral equation

(6.1) we will seek as a vector-function of the Space T'S.
To solve the integral equation (6.1)) we will use the null norm.

[ 1=l de. p=0 (6.2)

In other words we use for functions ¢ the norm from formula (3.1]) with p =0
and for vector-functions ¢ the norm from formula (3.3)) with p = 0.
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Let us describe in details the properties of the matrix integral operator B.

(B 0 0
B=|0 B 0 (6.3)
0 0 B

Here the components B of the matrix integral operator B have the following
representation:

B(u) = b /OO /Oo /OO e 0TI
83
/ / / e PN I I (T, Ty, T) dxldmdx?’]

X (11,72, yg)e I oy, (6.4)
i=1,2,3.
Equation (6.4)) is received from the formulas (4.35)—([4.37) and u? € S, B(u?) €
S, where S is the Schwartz space.
To make reading easier we copy the formula (3.11)) at this place:
3
___€

§(v1,72,73) =€ 0139 | 0<e<<1, e#0. (6.5)
The integral operator B maps the space S into itself. It follows from the

basic properties of the Fourier transforms of the functions of the space S (e.g.
[7] and/or section 3).

Lemma 6.1. The integral operator B is a linear operator.

Proof. 1) The Schwartz space S is a linear space (obviously).
2) B()\luil + )\Quig) = AlB(Uzl) + )\2B<u22)
for any wu;1, u;p € S and any scalars Aq, As.
Proposition 2) follows from the properties of the integration operation.
Q.E.D. O

Theorem 6.1. The linear integral operator B is defined everywhere in the
space S, with values in the space S. The operator B is bounded for functions
of the space S.

Proof. Rewrite operator B from formula (6.4]) in the form
B(uj) = F7A- Flu)] (6.6)
i=1,2,3.

Here F and F~! are a Fourier transform and a inverse Fourier transform,
respectively, u) € S, B(ul) € S.

A=e —vOt 3Rt ’71 ’72;’73) (6~7)

F[uz 27T S / / / P w171+$2’¥2+x3’73)><
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Xug(i’l,i‘g,fg) dii’ldi'deg
The function A of the formula (6.7) is a continuous, even function of the
coordinates 71, v9, 73, that is

A(=y) = A(y), Vvrye[-I,T]

and what is more

0<A<1. (6.8)

In case if A =1, from formula (6.6)), we have a known result

B(uo) = u?

)

If0<A<1 ,A- const., it is evident from the formula that
| B(u?)] < |uf

As known the function F[u?]- e #(#171+22724373) can be represented as the sum
of the even and odd functions

F[uo] . e~ H@mteeya o) (F[uo] . e*i(1171+$2’y2+1373))6ven+

7 A

+ (F[UO] . 6_1'(90171+x2'¥2+r373))0dd (69)

)

Here (F[u)]-e~i(@mmtz2yztass)) o is the even function in all three coordinates
, (F[u?] - em@mte2n2+2393)) 0 is the sum of seven functions, each of which at
least one coordinate is an odd.

As known

1. The product of two even functions is even.

2. The product of the even and odd functions is odd.

3. The integral of an odd function by symmetric within is equal zero. The
Fourier transform and inverse Fourier transform are the integrals over sym-
metrical areas.

From the formula using the function A we have
AF[UQ] . e~ H@mteey2tasys) A(F[UQ] .e—i(w171+x272+x373))even+
+ A(F[u?] . 6—i(11’71+z2"12+z373))0dd (6.10)

Since A is the even function, we have
A(F[uf] - em@mteayztasyn)) s the even function (Rule 1)
A(F[uf] - emlemtearztasns)) o ois the odd function (Rule 2)
The inverse Fourier transform F~! is the integral over symmetrical areas.

Then from formula in accordance with Rule 3 we have
B(u}) = F'A- Flu]]] =
= / / / A- (F['LL?] . eii(xl’yl+m2’y2+x3’y3))even dﬁhd’hd’}%
(6.11)

i=1,2,3.
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In case if A =1, from formula (6.11]), we have

B(uf) = u} (6.12)
IfO<A<1,A-const., it is evident from the formula (6.11)) that
|B(ui)] <[] (6.13)

From formula (6.7]) we have
0< A=e"OITBEHRE Gy 7, 73) < 1. (6.14)

The function A of the formula is a continuous, even function of the
coordinates 7y, Y2, V3.

We use the formulas , and take the function A from formula
6.14). Then in accordance with the rules of integration we obtain from formula
6.11

|B(u)] < |uj]
(6.15)
1=1,2,3.
i.e. the operator B is bounded for functions of the space S.
Q.E.D. O

Thus, the Theorem 6.1 implies that the linear integral operator B is bounded
for functions of the space S and therefore the matrix integral operator B is
bounded for vector-functions of the space ﬁ and

1B - < |@, (6.16)

where ¥ € ﬁ and B - i € ﬁ -
Let us describe in detalls the properties of the matrix integral operator E.

_ [(E 0 0
E=|0 E 0 (6.17)
0 0 E

Here the components E of the matrix integral operator E have the following
representation:

L[ ==
73
/ / / @M+ T2724+2373) i(T1, T, T3, 1) dajld:vgdxg]

— 871,72, 7s) e PIMFERHE) g dryadyg (6.18)
i=1,2,3.
Equation (/6.18]) is received from the formulas (4.35)—(4.37) and u; € S, E(u;) €

S, where S is the Schwartz space.
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To make reading easier we copy the formula (3.11)) at this place:
3
___€
§(v1,72,73) =€ 01309 | 0<e<<1, e#0. (6.19)
The integral operator £ maps the space S into itself. It follows from the

basic properties of the Fourier transforms of the functions of the space S (e.g.
[7] and/or section 3).

Lemma 6.2. The integral operator E is a linear operator.

Proof. 1) The Schwartz space S is a linear space (obviously).
2) E()\luz‘l + /\zuiQ) = )\1E(U21> + )\QE(UZQ)
for any wu;1, u;p € S and any scalars Aq, As.
Proposition 2) follows from the properties of the integration operation.
Q.E.D. O

Theorem 6.2. The linear integral operator E is defined everywhere in the
space S, with values in the space S. The operator E is bounded for functions
of the space S.

Proof. Rewrite operator F from formula (6.18]) in the form
E(u;) = F7'[A - Fluy] (6.20)
i=1,2,3.

Here F and F~! are a Fourier transform and a inverse Fourier transform,
respectively, u; € S, E(u;) € S.

- 717’72773 (621)

=1
Flu] = o 3/2/ / / @1V +E272+E373) o

Xui(ZEl, T, (L’g) dl’ldl’gd,fg
The function A of the formula (6.21) is a continuous, even function of the
coordinates 7, 72, 73, that is

A(=y) = A(y), Vvye[-I,T]

and what is more

0<A<LI. (6.22)
In case if A =1, from formula , we have a known result
E(u;) =
If0O<A<1 ,A-const., it is evident from the formula that
| E(ui)| < Ju]

As known the function F[u;] - e~@1714227243%3) can be represented as the sum
of the even and odd functions

F[Ul] . e*i(36171+96272+96373) — (F['LLZ] X e*i(ﬂc1’71+x2’72+x3’}’3))even+
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+ (F[uz] . e*i(fvwﬁxﬂﬁxsw))odd (6.23)

Here (F[u;] - e #@mteantesis)) s the even function in all three coordinates
, (Fluy] - em@mtazy2t23%)) 0 is the sum of seven functions, each of which at
least one coordinate is an odd.

As known

1. The product of two even functions is even.

2. The product of the even and odd functions is odd.

3. The integral of an odd function by symmetric within is equal zero. The
Fourier transform and inverse Fourier transform are the integrals over sym-

metrical areas.
From the formula (6.23]) using the function A we have

AF[u;] - et @mtzay2tEays) A(F[uy] .e—i(r171+x272+rﬂ3))8ven+
+ A(F[u] -e’i($171+$272+x373))0dd (6.24)

Since A is the even function, we have
A(Fuy] - e7?mntazytasn)) s the even function (Rule 1)
A(Fuy] - e7?emtaaytasi)) oo is the odd function (Rule 2)
The inverse Fourier transform F~! is the integral over symmetrical areas.

Then from formula (6.20)) in accordance with Rule 3 we have
) =F A Flu]] =

E(u;
= / / / A- (F[Ul] : e_i(x171+x272+x373))5ven d71d72d73

(6.25)
i=1,23
In case if A =1, from formula ([6.25) we have
E(u;) = (6.26)
If0<A<1 ,A- const., it is evident from the formula that
[ E(us)| < fuil (6.27)

We use formula ([6.19)) for ¢ and receive an estimate of the function A from

formula (6.21)):
0<A<e (6.28)

for (7 +73 +73) > €® and
0<<A<1 (6.29)

for (77 +73 +73) < €.
Then we have from formula ((6.25) using an estimate of function A ((6.28)])

and (5:29)

E(u;) = F'A- Flu)] =
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A —Z(m%-&-mﬂz-&-wsw))even dy =

/ Z(331’Y1JrfL“z"/erl‘S’Ys))even dfy_i_
/ Flugle —i(w171+96272+x3“/3))wen dy =
3—(2¢)3

=1

)3 + Ips_ (2¢)3
(6.30)

Here we have u; € S and Flu;] € S as well as |u;| < 0o and ]F[ul]] < o0 (see
formula (3.2))). Using estimates for the function A ([6.28 - , we have from

the formula-

Tiops ~ (2€)%, Ips_(ep ~ € (6.31)
We use the formulas , and take estimate of € :
0<e<< 1
Then in accordance with the rules of integration we obtain from formula
|E(u;)| < €|u] (6.32)
i=1,2,3.
i.e. the operator E is bounded for functions of the space S.
Q.E.D. O

Thus, the Theorem 6.2 implies that the linear integral operator £ is bounded
for functions of the space S and therefore the matrix integral operator E is

bounded for vector-functions of the space ﬁ and
B - < €|i], (6.33)

Whereﬁeﬁandé-ﬁeﬁ. _
Let us describe in details the properties of the matrix integral operator S.

_ St Sz Sis
S = 521 822 523 (634)
531 532 SSS

Here the components S;; of the matrix integral operator S have the following
representation:

1 t [e%¢] ) ') 2 9 N
Sulli) = @/0 / / / [Xij(%a%,vg)e (42 +73) (=)
x / / / e TMATR RIS £ () Ty, Ty, T) di"ld:%gdfég]

X 0(71, 72, 3)e EIFERI) g dryg T (6.35)
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Equation (6.35)) is received from the formulas (4.35))—(4.37)).

Xij(’Vly’Y%’YS) :

(75 +13) (71 - 72) (71 - 7s)
VF+v+1) i+ +3) P+ +)
(72 - m) (73 +77) (72 + 73)
M+ +23) (B+rn+7) (F+%+13)]
(73 1) (73 - 72) (7% +13)

M+ +71) B+%+7) (E+3+3)

Xij = Xjis i # 7, 1,7 =1,2,3.
(6.36)
3 ou;
_ J F_ (= -
Ji = Zu% f=(@- V) (6.37)

U, €9, ggj es. un8 € S then f; € S, S;;(f;) € S, where S is the Schwartz

space.

To make reading easier we copy the formula at this place:

&3
§(71,72,7y3) =€ i3 0 <e<<1, €#0. (6.38)

The integral operator S;; maps the space S into itself. It follows from the
basic properties of the Fourier transforms of the functions of the space S (e.g.
[7] and/or section 3).

We solve the equation for ¢ € [0, 0t] with condition for dt :

0 < At < 6t << 1. Therefore t << 1.

0t is a very small time increment. At is a very small pre-fixed time increment.

For example 0t = e %, g3 =2,3,4,... ¢3 < 00.

We have the integral operator components S;; of the matrix integral operator
S in this case [see formula ([6.35)]:

l](f] 3/2/ / / Xl] /717’)/27’)/3) (71+72+73)(t t)

x F (’71,72,73,75 )0 (71, 72, V3)€ —i@m+e2n2+23%) gy, dryydrys
= 154(/,) (639

O<t, <t

Finy72, 79,8 (2 3/2/ / / el (E1 e+ 8573)

Xf](xl,LCQ,.’L'g, )dﬂfld.’ll'Qdeg

Here
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Let us describe in details the properties of the matrix integral operator St
_ Sty Siy Sis
St = 5’51 552 553 (6.40)
Sy Sg Sz
Here the components Sj; of the matrix integral operator S have the following
representation:

St< 3/2/ / / XZ] 71’72,7?’) (71+'YQ+’Y3)(t ty)

X Fj(717727737 £)6(1, 72, 3 ) EIIFERRAE) oy g (6.41)
0<t, <t

1 o0 oo po0 . )
F‘J'(’717’727'73a t*) = W/ / / 62(55171-&-56272-&-1:373)

X fi(Z1, To, T3, ) da:lded:Eg

Equation (6.41) is received from the formulas (6.39).

Here

(6.42)
Xz‘j(’7’1772773) :
(V3 +73) (71 72) (71 73)
M+ +73) (i+n+1) i+ +3)]
(72 -m) (V3 +~3) (72 - 73)
i+vuB+1) (F+%+7) (i+1B+3)
(73 71) (73 - 72) (v +13)
(V+7vm+73) (B+hB+1) (F+n+3)
3 ou;
fi= ;ung—xi f=(i- V)i, (6.43)

U, € S, S;LJ es. unai“ € S then f; € S, Sj;(f;) € S, where S is the Schwartz
space.
To make reading easier we copy the formula (3.11)) at this place:

63

5(*}/1772773) — e_(v%+v§+w§) , 0<e<< 17 € # 0. (644)

The integral operator Sfj maps the space S into itself. It follows from the
basic properties of the Fourier transforms of the functions of the space S (e.g.
[7] and/or section 3).

Lemma 6.3. The integral operator Sfj 1S a linear operator.



3D Navier-Stokes equations 141

Proof. 1) The Schwartz space S is a linear space (obviously).
2) S5 (Aufin + Aafin) = ASi;(fin) + X253 (fj2)
for any fj1, fj2 € S and any scalars Aq, As.
Proposition 2) follows from the properties of the integration operation.

Q.E.D. O

Theorem 6.3. The linear integral operator Sfj 15 defined everywhere in the
space S, with values in the space S. The operator Sfj is bounded for functions
of the space S.

Proof. Rewrite operator Sj; from formula (6.41)
Sy(fi) = F~ Ay - FIf5]] (6.45)

Here F and F~! are a Fourier transform and a inverse Fourier transform,
respectively, f; € S, S;;(fi) € S.
(22 LN 2) (E—t*
Aij = Xij (0, 72, vs) e TR 5y vy, ) (6.46)
0<t,<t
= Fj(m, 02,73, t) =

27T 3/2 / / / el x1’71+w2’y2+x3’73)f (xl, o, Tg, ) A7, dTodis

In case if A;; = 1, from formula ((6.45]), we have a known result
Sfj(fj ) = f
If0<A;; <1 ,A; - const., it is evident from the formula (6.45)) that
|5 (£l < 1]
Let @ = j. The function A;; of the formula ((6.46]) is a continuous, even function
of the coordinates v1, 2,73, that is
Ai(=7) = Auly), Vye[-T.T]
(see formula (6.42)) for x;; )

And what is more
0<A; <1, i=1,23. (6.47)
Now consider the function A;; from the formula ((6.46|) such that i # j.
In this case (i # j) we have obviously from formula (6.42)):

(%i - 5) (7 +73) 3
Xij = < = Xij = Xkk (6.48)
T+ R+ E Y
(k#1i,k#j)

Then we get from the formula ([6.46))
Aij = Xig (71,72, 78)e TR (3, 9) <

< >~(z'j(71a72,73)671/(7%7%73)@7“) ) 5(71#2:’73) =
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= Ay =Aw.  ((#jk#ik#))
(6.49)

The function flij = Ay, of the formula (6.49) is a continuous, even function of
the coordinates ~;,v;, v that is

Aer(=7) = Awe(v), vy € [-T.T]
(see formula (6.42)) for xu )

And what is more

Without loss of generality, we write further that k = 7.
In this case we have from formula (6.45))

Sii(fi) = F7'[Ai - F[fil] (6.51)
1=1,2,3.
As known the function F[f;] - e #(#171#2272423%) can be represented as the sum

of the even and odd functions

[fz] —i(z11+T2y2+T373) (F[fz] 'e_i(xlvl+x272+x373))6ven+

+ (F[fz] . e—i(x171+m2~/2+rs*r3))odd (6.52)

Here (F[f;] - e~ #@mmteztass)) o is the even function in all three coordinates

, (F[|fi] - emi@mmzentzsn)) o is the sum of seven functions, each of which at
least one coordinate is an odd.

As known

1. The product of two even functions is even.

2. The product of the even and odd functions is odd.

3. The integral of an odd function by symmetric within is equal zero. The
Fourier transform and inverse Fourier transform are the integrals over sym-
metrical areas.

From the formula 2)) using the function A;; we have
AzzF[fz] —i(z1y1+T2y2+T37Y3) ( [fz] —1i x171+:c272+x373))even+
+ Aii( [fz] ,efz(acwﬁxzwrxsws))odd (6.53)

Since Aj;; is the even function, we have
Ai(F[fi] - e™ x171+x272+1373))w6n is the even function (Rule 1)
Ay (F[f;] - emi@mmteanztasn)) s the odd function (Rule 2)
The inverse Fourier transform F~! is the integral over symmetrical areas.

Then from formula (6.51)) in accordance with Rule 3 we have
t‘(fi) = _1[Au‘ FIfi]] =

/ / / i l —i(z1m +x272+a:373))w€n dry1dyadys

(6.54)
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i=1,2,3.
In case if A;; = 1, from formula (6.54) we have
Su(fi) = fi (6.55)
If0< A; <1, Ay - const., it is evident from the formula (6.54]) that
|95 (fi)l < Ifil (6.56)
From formula (6.46)) we have
0< Ay = Xz'z’(%ﬂz,73)€_V(7%+7§+7§)(t_t*) (v, 72,73) < 1 (6.57)
0<t, <t

The function A;; of the formula is a continuous, even function of the
coordinates 71, Y2, V3.

We use the formulas , and take the function A;; from formula
6.57)). Then in accordance with the rules of integration we obtain from formula
6.54

1S5 (fo)l < | fil
(6.58)
i=1,23.

i.e. the operator S is bounded for functions of the space S and the operator
S}; is bounded for functions of the space S also.

Q.E.D. OJ
Thus, the Theorem 6.3 implies that the linear integral operators S, and
S}; are bounded for functions of the space S and therefore the matrix integral

operator St is bounded for vector-functions of the space ﬁ and, using formula
(6.43), we have

|S*- (- V)| < |(@- V)i, (6.59)
where (@ - V) € T3.

7. A PRIORI ESTIMATE OF THE SOLUTION

Now we estimate the dependence of the velocity 4 & ﬁ from time t.
Let t = 0. Then we have from the equation ((6.1)) by using the properties of

the integral operators B, E and S (see formulas (6.4)), (6.18)),(6.39)) :

S—0, a=a, @eTS (7.1)
Let t = 0t > 0. 6t is a very small time increment.
0 <At <t <<1 (7.2)

Here At is a very small pre-fixed time increment.
For example 6t = e %, ¢3=2,3,4,... ¢3 < 00.
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Then we may take:

i=i+6d, osieTS

0| << |@°] (73)
For example |67] = e #|d°|, ¢4 =2,3,4,... q4 < 00.
(@~ V)i = (@ V)i’ + §(d - V)i,
(@ V)yzeTs, (@ V)y@eTS, oa VygeTs.  (74)

160 - V)it << |(@ - V)|

For example [0(4 - V)u| = e ®|(@° - V)d°|, ¢5=2,3,4,... g5 < 0.
Obtain an estimate of the velocity @ at the moment ¢t = 6t > 0 with condi-

tions - ([7.4).

We rewrite the equation (6.1)) at the moment t = 6t > 0.

i =—6t5% (i-V)i+E-i+B-ad (7.5)
and use the norm (6.2)) for both sides of the equation ([7.5). Then we have:
i = | —6tS% (@ V)i +E-d+B-d| <

< |6tS% - (@ -V)i| +|E - d| + |B - @
(7.6)
Using inequalities (6.59)) for operator 5% (6.33) for operator E and (6.16)) for
operator B, we obtain:
|i| < |6t5° -

(@-V)i|+|E-@|+|B- @ <
< otf(a - V)a| +

eldl + ||
(7.7)
We substitute @ and (4 - V)@ from formulas ([7.3]) and (7.4) in equation (7.7)).

Then we have:
@] < ot| (@ - V)| + e|a] + |a@¥] <
< tf(@® - V)a@®| + dt|o(a - V)i|+
+ €@ + e|ou| + |a°|
(7.8)

As it << 1, e << 1l and |[§(d - V)| << (@ - V)@®| (see formula (7.4)),
|61 << |u®] (see formula ([7.3])) we neglect small terms of the second order
0t|o(u - V)i| and €|di| and obtain:

@] < 6t|(@® - V)| + e|d®] + |@°|
(7.9)

Since ° Eﬁand )a® € TS then 0 < |@°] < C° < 0o and
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0< (@ V)i <CV° < o0o. C°CV are consts.
We can introduce 0t << 1

and we have from formula ([7.9):
@] < Ot|i| + e|i| + || =
= (6t + e+ 1)
(7.10)
As 6t << 1 and € << 1, we neglect terms of the order of smallness gt|ﬁ°|

and terms of the order of smallness €|t°| as compared with |@°]. We have the
evaluation for velocity @ at time dt from the equation ([7.10]):

@l < |2 (7.11)

Remark 7.1. Further, repeating the arguments of evaluation of the Cauchy
problem solution for the Navier Stokes equations - with initial time
t = 6t instead t = 0 and the initial velocity @ instead @", we again obtain a
decrease of rate of velocity @ for the next small interval of time dt. These
arguments and equations - can be repeated arbitrarily long. Thus,
assessing the nature of the behavior of velocity @ over time, we see that the
rate of velocity @ decreases monotonically over time.

It should be noted that this estimate is obtained under the conditions ([7.2])

- (7).

8. THE SOLUTION FOR 3D NAVIER-STOKES EQUATIONS WITH ANY
SMOOTH INITIAL VELOCITY.

Let us rewrite the integral equation (6.1)) for ¢ € [0, dt].

i=—tS"(@-V)i+E-i+B- . (8.1)
0 < At < 6t << 1. Therefore t << 1.
For example 6t = e™®, ¢3=2,3,4,... ¢3 < 00.
Here @ € TS, (i-V)ieTS, §t-(i-V)ieTS, E-ieTS, @ eTs,
B-i®eTS.
Operators §t, E and B are bounded for vector-functions of the space ﬁ .

Theorem 8.1. There exists the solution U of the equation (8.1)) in the space
ﬁ for any time t € [0, 6t].

Proof. We rewrite the integral equation (8.1)) for ¢ € [0, dt].
i=—t5" - (i-V)i+E-i+B-@. (8.2)
0 < At <t << 1. Therefore t << 1.
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We have i@® € T'S. Then B-i® € TS due to the properties of the operator B
(see formulas - and the basic properties of the Fourier transforms
of the functions of the space S (section 3)).

Let us assume that @ € ﬁ Thereat (- V)i € ﬁ due to the properties
of the space ﬁ :

Then S - (- V)u € ﬁ, due to the properties of the operator St (see
formulas (6.34) - (6.59)) and the basic properties of the Fourier transforms of
the functions of the space S (section 3)).

Furthermore F - @ € TS, due to the properties of the operator E (see
formulas (6.17) - (6.33)) and the basic properties of the Fourier transforms of
the functions of the space S (section 3)).

Owing to all this it is evident that a solution of the equation (8.1)) for any
time t € [0,0t] is w € TS,

Q.E.D. O
Theorem 8.2. There exists the unique solution @ of the equation (8.1)) in the
space T3 for any time t € [0, 0t] .

Proof. We rewrite the integral equation (8.1)) for ¢ € [0, dt].
i=—t5 . (i-V)i+E-i+B-@. (8.3)

0 < At < 0t << 1. Therefore t << 1.

Let us assume that the opposite is true. Then there exist @, 4 € ﬁ are
different solutions of the equation (8.3]).

We introduce

At =1u—1u

where AZ € TS. Obviously Aw® = 0. Here A is an initial velocity for this
case.

Further we repeat the calculation - (7.11) in this case for any time
t € [0,0t] and receive an inequality, analogous ([7.11]).

|A#| < |A@Y| = 0. (8.4)

Therefore
|Ad] = 0. (8.5)
Thus, there exists a unique solution u € ﬁ of the equation (8.1)) for ¢ € [0, dt].
Q.E.D. OJ

Then vector-function Vp € ﬁ is defined by where vector-function  is
received from equation . Function p is defined up to an arbitrary constant.

Further, repeating the arguments of the Cauchy problem solution for the
Navier Stokes equations - with initial time ¢ = dt instead of ¢ = 0
and the initial velocity |,—s; instead of 4", we again obtain an estimate of
velocity @ for the next small interval of time 6t (For example 6t = e %, g3 =
2,3,4,... g3 < oo.) and then the solution u for this interval of time dt.
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These arguments and equations (([7.1]) - (8.5])) can be repeated arbitrarily long.
Availability At leads to the fact that the process described by equations (([7.1)
- (8.5))) continue for ¢t — oo.

Remark 8.3. From the above statements, it follows that there exists the
unique set of smooth functions e (, t), peo(z,t) (i =1,2,3) R3 x [0, 00) that

satisfies , , and

Usois Poo € O (R? x [0, 00)), (8.6)

Then, using the inequality |||z, < [|u]|z, from [13], [12], we have

|G (2, 8)[2da < C, Vit > 0. (8.7)

R3
Let us consider v — 0. Then we see that inequalities (6.7]), (6.46|) are correct
also in case of Euler equations; i.e., there exists unique smooth solution in all
time range for this case.

Hence, we can see that when velocity @ € ﬁ the fluid flow is laminar.
Turbulent flow may occur when velocity @° ¢ T'S.

9. APPENDIX
The Fourier integral can be stated in the forms:

U(v1,72,73) = Flu( wl,xz,xs

_ 1’1, T3, :L'g Z(W1m1+vzmz+73w3 drydzodas
Qﬂ- 3/2

w2, 23) 27r (27)3/2 / / / (Y1, Y2, 73) €~ e H122249333) oy, vy drys

(9.1)
The Laplace integral is usually stated in the form

U®(n) = Lu(t)] = /Ooou( Ye Tdt u(t) = %m/c}m U®(n)e™dn ¢ > cp.
- 9.2)
Then
Llu/(t)] = nU®(n) — u(0). (9:3)

The convolution theorem [0, B0] is stated as: If integrals

UE () = / Twemdt UP(n) = / T ws(t)emdt

converge absolutely for Ren > a4, then U®(n) = UP(n)Us (n) is Laplace
transform of

u(t) = /0 ur(t — 1) us(r)dT (9.4)
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A useful Laplace integral is

0

(n — )
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