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Abstract

In this paper, we develop a six dimensional compartment model to
investigate the impact of super-spreader during an epidemic. Stability
analysis of the model shows that the disease-free equilibrium is globally
asymptotically stable if a certain threshold quantity, the basic reproduc-
tion number (R0), is less than unity. On the other hand, If R0 > 1, then
the endemic equilibrium H∗ is stable, and the disease persists. Sensi-
tivity analysis indicates that the basic reproduction number R0 is most
sensitive to the population recruitment rate Λ, the disease transmission
rate β1 and the disease super transmission rate β2.

Keywords: super-spreader; stability; SEIMQR model; sensitivity anal-
ysis

1 Introduction

The spread of infectious diseases is a serious threat to human life and health,
and the number of deaths due to infectious diseases accounts for a quarter of
the total deaths worldwide every year[1]. When an emerging infections disease
occurs, a vaccine or effective drugs to treat the disease cannot be developed
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in time. This makes it very challenging to control the spread of the disease
in both temporal and spatial dimensions, especially in some low-and middle-
income countries, where medical resources are not fully guaranteed. Therefore,
reducing the rate of disease transmission has become one of the most direct
and effective means of prevention and control.

Reports of super-spreaders first appeared in the 20th century in the case of
”Typhoid Mary” in 1900-1907 [2], when one person caused multiple infections
as well as deaths. In addition, super spreaders have been seen in the trans-
mission of several major infectious diseases (such as, tuberculosis, measles,
Ebola hemorrhagic fever, malaria, SARS-COV, MERS-COV, etc [3–7, 12]).
The presence of super spreaders can rapidly accelerate disease transmission
in a short period of time, leading to mass infections and fatalities. This phe-
nomenon is often linked to high contact rates or highly infectious viral strains
and can help identify more transmissible variants. Studying superspreading
events is essential for understanding the transmission mechanisms of infectious
diseases, providing governments and health authorities with the scientific basis
to develop effective policies and improve outbreak response. In summary, re-
searching super spreaders aids in more effective disease control and mitigates
their societal impact.

Mathematical modelling is a tool that can be used to visually simulate the
impact of super-spreaders on disease, to predict disease trends and to assess
the effectiveness of different prevention and control measures. In order to study
the effect of super-spreaders on the disease, the following two main approaches
have been used: One approach is to introduce a new independent compart-
ment M(t) to represent the disease information level related to super-spreader
[8–10]. Ullah S, Zahir H et al. in [10] added an independent compartment
M(t), and uses common linear incidence βSI

N
to describe the disease transmis-

sion pattern.

The second approach introduces an expression for the transmission rate
as a function of the transmission distance r. In [11], it is assumed that the
normal probability of infection w(r) is a decreasing function of the propagation
distance r with a cut-off value r0. Fujie R and Odagaki T argue that the
probability of infection of a super-spreader w(r) has the same cut-off value
as the normal probability of infection r0, but it is a constant rather than
decreasing function. In [12], Walker D M et al. consider the rate of infection
of an infected person to be constant, but the phenomenon of ”super-spreading”
cannot be ruled out. Mushanyu, J et al. consider different levels of spreaders
in [13], giving the normal rate λn(t) and the super-spreading rate λpi(t) and
classifying the super-spreader rate into two types and the propagation rate
function is defined.

In the studies on superspreaders mentioned above, most of the models did
not take into account the use of precautions by exposed and infected people.
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There is currently no model that takes both factors into account, so we plan
to develop a robust mathematical model to study the phenomenon of super-
spreading that includes both exposed and isolated individuals.

The paper is organised as follows: In section 2 constructs the model and
provides the relevant explanations. In section 3 describes the qualitative prop-
erties of the model including the non-negativity of the solutions, boundedness
and the stability of the equilibrium points. In sections 4 and 5 provide the
numerical results of the analysis of the model. Finally, the main results are
summarised in the discussion section.

2 Model construction

Since the outbreak of SARS, the phenomenon of super transmission has
become common in the process of disease transmission. Super carriers have
a greater impact on susceptible individuals than general infected individuals.
So it is necessary to divide infected individuals into general infected indi-
viduals and super infected individuals. As an extension of the basic model
SEIQR, it is necessary to add a super propagator compartment M to obtain
the SEIMQR model.

Then, the total population size at time t isN(t) = S(t)+E(t)+I(t)+M(t)+
Q(t)+R(t). We assume that the spread of the disease follows linear incidence,
and that susceptible individuals can be infected by infected individuals as well
as by super-spreaders. Then we have the model

dS

dt
= Λ− (β1I + β2M)S − dS,

dE

dt
= (β1I + β2M)S − (k1 + k2 + d)E,

dI

dt
= k1E − (ω + γ + ν + d)I,

dM

dt
= k2E − (µ+ δ + ν + d)M,

dQ

dt
= ωI + µM − (d+ ν + ρ)Q,

dR

dt
= γI + δM + ρQ− dR,

(2.1)

for subsequent calculations make ε1 = k1 + k2 + d; ε2 = ω + γ + ν + d; ε3 =
µ+ δ + ν + d; ε4 = ν + ρ+ d.

In the model, all parameters are non-negative, where the recruitment rate
of the susceptible population is Λ; the contact rate of the susceptible popu-
lation with the infected population is β1; the contact rate of the susceptible
population with the super infected population is β2; the proportions of ex-
posed individuals transmitted to the infected and super infected populations
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are the proportions k1, k2, respectively; the proportions of infected and super
infected individuals entering the quarantined population are ω, µ, respectively;
the disease mortality rate of the population is ν; the recovery rate of the super
infected population is δ; the recovery rate of the quarantined population is
ρ; the natural mortality rate of the population is d; the recovery rate of the
infected population is γ. Then initial conditions are defined as follows,

S(0) > 0, E(0) > 0, I(0) > 0, M(0) > 0, Q(0) > 0, R(0) > 0. (2.2)

3 Mathematical analysis

3.1 Non-negativity and Boundedness of solutions

In this section, we prove that every solution of system (2.1) is non-negative
and uniformly bounded with initial conditions (2.2).

Theorem 3.1. Every solution of model (2.1) with initial values (2.2) remains
positive in R6

+ as t > 0.

Proof. From the model system(2.1), we obtain

dS

dt
|S=0,E≥0,I≥0,M≥0,Q≥0,R≥0 = Λ > 0,

dE

dt
|S≥0,E=0,I≥0,M≥0,Q≥0,R≥0 = (β1I + β2M)S ≥ 0,

dI

dt
|S≥0,E≥0,I=0,M≥0,Q≥0R≥0 = k1E ≥ 0,

dM

dt
|S≥0,E≥0,I≥0,M=0,Q≥0.R≥0 = k2E ≥ 0,

dQ

dt
|S≥0,E≥0,I≥0,M≥0,Q=0,R≥0 = ωI + µM ≥ 0,

dR

dt
|S≥0,E≥0,I≥0,M≥0,Q≥0,R=0 = γI + δM + ρQ ≥ 0.

(3.1)

Since the above rate is always non-negative on the boundary of a non-
negative surface of R6

+, this means that the direction of the vector field is
always pointing inwards. Therefore, from the non-negative cone, all solution
trajectories will remain in the positive region and will not cross the boundary.
This proves the correctness of the theorem.

Theorem 3.2. Every solution of model (2.1) initiating in R6
+ is uniformly

bounded in the region
∆ε =

{
(S,E, I,M,Q,R) ∈ R6

+ : 0 ≤ S + E + I +M +Q+R ≤ Λ
d

+ ε
}

for some
ε > 0.
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Proof. According to N = S+E+I+M +Q+R, then the time derivative

dN

dt
= Λ− dN − ν(I +M +Q) ≤ Λ− dN,

⇒ dN

dt
+ dN ≤ Λ,

⇒ 0 ≤ N ≤ Λ

d
+

(
N(0)− Λ

d

)
e−dt.

For t → +∞, 0 ≤ N ≤ Λ
d
. Therefore, the solution trajectory initiating

inside the region ∆ε confined within the region and if it starts from outside
∆ε then it enters into the region after a finite time and approaches towards Λ

d
.

Hence the theorem.

3.2 Existence of equilibrium

In order to study the properties of the relevant dynamics of model (2.1),
it is first necessary to determine the existence of the model equilibrium point.
The disease-free equilibrium corresponds to the extinct state of the disease,
while the local equilibrium corresponds to the state in which the disease will
eventually persist in the population for a period of time. As mentioned earlier,
model (2.1) has disease-free equilibrium (DFE),H0 = (Λ

d
, 0, 0, 0, 0, 0). Lineariz-

ing model (2.1) at the DFE and using the next generation matrix method, we
find the basic reproduction number R0, is given by

R0 =
Λ(β1k1ε3 + β2k2ε2)

dε1ε2ε3

.

Note, positive equilibrium H∗ = (S∗, E∗, I∗,M∗, Q∗, R∗) is exists and satisfies

Λ− (β1I
∗ + β2M

∗)S∗ − dS∗ = 0,

(β1I
∗ + β2M

∗)S∗ − ε1E
∗ = 0,

k1E
∗ − ε2I

∗ = 0,

k2E
∗ − ε3M

∗ = 0,

ωI∗ + µM∗ − ε4Q
∗ = 0,

γI∗ + δM∗ + ρQ∗ − dR∗ = 0,

(3.2)

which gives 

E∗ = ε2I∗

k1
,

M∗ = k2ε2I∗

k1ε3
,

Q∗ = [ωk1ε3+µk2ε2]I∗

k1ε3ε4
,

R∗ = [γk1ε3ε4+δk2ε2ε4+ρ(ωk1ε3+µk2ε2)]I∗

dk1ε3ε4
,

S∗ = Λ

d+
[(
β1+

β2k2ε2
k1ε3

)]
I∗

= ε1ε2ε3
β1k1ε3+β2k2ε2

.

(3.3)
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From the two expressions of S∗ in equation (3.2), can get

I∗ =
Λk1(β1k1ε3 + β1k2ε2)− dk1ε1ε2ε3

ε1ε2(β1k1ε3 + β1k2ε2)
=

Λk1

ε1ε2

(1− 1

R0

). (3.4)

Now, using the I∗ in equations (3.3), can obtain the positive values of S∗,
E∗, M∗,Q∗ and R∗, respectively. Thus, the model (2.1) consists of a positive
endemic steady state H∗ when R0 > 1.

3.3 Stability of the equilibrium point

In this subsection, the steady-state situation of the equilibrium point will
be discussed.

In determining the local stability of the disease free equilibrium point, the
equations of the system (2.1) is linearized by using Jacobian matrix(J). The
trace-determinant technique as presented by [15], is used to determine local
stability of disease-free equilibrium point.

Theorem 3.3. The DFE H0 is locally asymptotically stable if R0 < 1, and is
unstable if R0 > 1.

Proof. The Jacobian matrix of model (2.1) at H0 is as follow

J(H0) =


−d 0 −β1Λ

d
−β2Λ

d
0 0

0 −ε1
β1Λ
d

β2Λ
d

0 0
0 k1 −ε2 0 0 0
0 k2 0 −ε3 0 0
0 0 ω µ −ε4 0
0 0 γ δ ρ −d

 .

According to the linearized of the Jacobian matrix J(H0), the trace and
determinant are calculated as follows:

1)Trace of the Jacobian matrix J(H0), the TrJ(H0) is given by

TrJ(H0) = −2d− ε1 − ε2 − ε3 − ε4 < 0.

2)By computing the determinant DetJ(H0) and the result is given by

DetJ(H0) = −d(Λβ1k1ε3ε4 − dε1ε2ε3ε4 + Λβ2k2ε2ε4),

simplified, become

DetJ(H0) = d2ε1ε2ε3ε4

(
1− Λ(β1k1ε3 + β2k2ε2)

dε1ε2ε3

)
= d2ε1ε2ε3ε4(1−R0).

When R0 < 1, the DetJ(H0) > 0, the DFE is locally asymptotically stable
by the trace determinant technique. Hence the theorem.
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Theorem 3.4. The DFE H0 is globally asymptotically stable if R0 < 1, oth-
erwise, it’s unstable when R0 > 1.

Proof. Constructing a suitable Lyapunov function L : R4
+ → R, defined

as

L(t) = E +
β1S0

ε2

I +
β2S0

ε3

M, (3.5)

suppose that: S(t) ≤ S0, then take the derivative of L(t) along the solution
path of model (2.1), and get

dL(t)

dt
≤ β1IS0 + β2MS0 − ε1E +

β1S0

ε2

(k1E − ε2I) +
β2S0

ε3

(k2E − ε3M)

=
β1S0k1

ε2

E +
β2S0k2

ε3

E − ε1E

= ε1E

(
β1S0k1

ε1ε2

+
β2S0k2

ε1ε3

− 1

)
= ε1E (R0 − 1) .

(3.6)

So, when R0 < 1, dL(t)
dt
≤ 0, dL(t)

dt
= 0 if and only if E = I = M = 0. Therefore,

the {(S,E, I.M,Q,R) ∈ ∆} maximal invariant set is {H0}. By the LaSalle’s
invariant set principle, the DFE H0 is globally asymptotically stable if R0 < 1.
This concludes the proof of the Theorem 3.4.

Theorem 3.5. When R0 > 1, the endemic equilibrium H∗ of the model (2.1)
is locally asymptotically stable provided that the following conditions hold si-
multaneously

A1 > 0, A2 > 0, A1A2 > A3, A4 > 0, A1A2A3 − A2
1A4 > A2

3.

Proof. The Jacobian matrix of model (2.1) atH∗ = (S∗, E∗, I∗,M∗, Q∗, R∗)
is as follow

J(H∗) =


−d− β1I

∗ − β2M
∗ 0 −β1S

∗ −β1S
∗ 0 0

β1I
∗ + β2M

∗ −ε1 β1S
∗ β2S

∗ 0 0
0 k1 −ε2 0 0 0
0 k2 0 −ε3 0 0
0 0 ω µ −ε4 0
0 0 γ δ ρ −d

 .

Using the determinant expansion of algebra to obtain the characteristic
polynomial of the matrix, can get

g1(λ) = (λ+ d)(λ+ ε4)


λ+ β1I

∗ + β2M
∗ + d 0 β1S

∗ β2S
∗

−β1I
∗ − β2M

∗ λ+ ε1 −β1S
∗ −β2S

∗

0 −k1 λ+ ε2 0
0 −k2 0 λ+ ε3


= (λ+ d)(λ+ ε4)g2(λ).
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The g2(λ) can be expressed as follows

g2(λ) = (λ+ β1I
∗ + β2M

∗ + d)

λ+ ε1 −β1S∗ −β2S∗

−k1 λ+ ε2 0
−k2 0 λ+ ε3

+ (β1I
∗ + β2M

∗)

 0 β1S∗ β2S∗

k1 λ+ ε2 0
k2 0 λ+ ε3

 .

The corresponding characteristic polynomial equation of JH∗ is given by

g2(λ) = λ4 + A1λ
3 + A2λ

2 + A3λ+ A4, (3.7)

the four parameters in equation (3.7) are as follows:

A1 = β1I
∗ + β2M

∗ + d+ ε1 + ε2 + ε3,

A2 = (β1I
∗ + β2M

∗ + d)(ε1 + ε2 + ε3) + ε1ε2 + ε2ε3 + ε1ε3 − (k1β1S
∗ + k2β2S

∗),

A3 = ε1ε2ε3 − (ε3 + d)β1k1S
∗ − (ε2 + d)β2k2S

∗ + (d+ β1I
∗ + β2M

∗)(ε1ε2 + ε2ε3 + ε1ε3),

A4 = (β1I
∗ + β2M

∗)ε1ε2ε3 + d
(
ε1ε2ε3 − (ε3β1k1S

∗ − ε2β2k2S∗)
)
.

Hence, according to the Routh-Hurwitz criterion, the necessary and suffi-
cient conditions for H∗ to be locally asymptotically stable are A1 > 0, A2 >
0, A1A2 > A3, A4 > 0, and A1A2A3 − A2

1A4 > A2
3.

The above is an analysis of the local stability of the endemic equilibrium
point, and the following content is a discussion of the global stability of the
endemic equilibrium point. We consider the global asymptotically stability of
the model (2.1) in the absence of equation Q,R, as it is independent on the
rest of the equation of the model (2.1). We first give endemic equilibrium in
the following at a steady-state at ∆ε, for system (2.1)

Λ = (β1I
∗ + β2M

∗)S∗ + dS∗,

ε1E
∗ = (β1I

∗ + β2M
∗)S∗,

ε2I
∗ = k1E

∗,

ε3M
∗ = k2E

∗.

(3.8)

The expression shown in (3.8) will be used later in the proof of the globally
asymptotically stable of endemic equilibrium point.

Theorem 3.6. The endemic equilibrium H∗ of the model (2.1) is globally
asymptotically stable when R0 > 1.

Proof. Constructing a suitable Lyapunov function V : R4
+ → R, defined

as

V (t) = S − S∗ − S∗ ln
S

S∗
+ E − E∗ − E∗ ln

E

E∗
+
β1I

∗S∗

k1E∗

(
I − I∗ − I∗ ln

I

I∗

)
+
β2M

∗S∗

k2E∗

(
M −M∗ −M∗ ln

M

M∗

)
.

(3.9)
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The time differentiation of equation (3.9) gives

V (t)′ =
(

1− S
∗

S

)
S ′+

(
1−E

∗

E

)
E ′+

β1I
∗S∗

k1E∗

(
1− I

∗

I

)
I ′+

β2M
∗S∗

k2E∗

(
1−M

∗

M

)
M ′.

(3.10)
The expressions on the right hand side of equation (3.10) are obtained using

the equations from the model (2.1) as follows(
1− S∗

S

)
S′ =

(
1− S∗

S

)(
Λ−

(
β1I + β2M

)
S − dS

)
=
(

1− S∗

S

)((
β1I
∗ + β2M

∗
)
S∗ + dS∗ −

(
β1I + β2M

)
S − dS

)
≤ β1I

∗S∗
(

1− S∗

S
− SI

S∗I∗
+

I

I∗

)
+ β2M

∗S∗
(

1− S∗

S
− SM

S∗M∗
+

M

M∗

)
,

(3.11)(
1− E∗

E

)
E′ =

(
1− E∗

E

)((
β1I + β2M

)
S − ε1E

)
=
(

1− E∗

E

)((
β1I + β2M

)
S −

(
β1I
∗ + β2M

∗
)
S∗

E

E∗

)
= β1I

∗S∗
(

1− E

E∗
+

SI

S∗I∗
− SIE∗

S∗I∗E

)
+ β2M

∗S∗
(

1− E

E∗
+

SM

S∗M∗
− MSE∗

M∗S∗E

)
,

(3.12)

β1I
∗S∗

k1E∗

(
1− I∗

I

)
I ′ =

β1I
∗S∗

k1E∗

(
1− I∗

I

)(
k1E − ε2I

)
=
β1I

∗S∗

k1E∗

(
1− I∗

I

)(
k1E −

k1E
∗I

I∗

)
= β1I

∗S∗
(

1 +
E

E∗
− I

I∗
− I∗E

IE∗

)
,

(3.13)

β2M
∗S∗

k2E∗

(
1− M∗

M

)
M ′ =

β2M
∗S∗

k2E∗

(
1− M∗

M

)(
k2E − ε3M

)
=
β2M

∗S∗

k2E∗

(
1− M∗

M

)(
k2E −

k2E
∗M

M∗

)
= β2M

∗S∗
(

1 +
E

E∗
− M

M∗ −
M∗E

ME∗

)
.

(3.14)

Substituting equation (3.11) to (3.14) into equation (3.10) and after simplifi-
cations, we get

V ′ = β1I
∗S∗
(

3− S
∗

S
− I

∗E

IE∗
− ISE∗

I∗S∗E

)
+β2M

∗S∗
(

3− S
∗

S
−M

∗E

ME∗
− MSE∗

M∗S∗E

)
.

(3.15)
Here, we using the properties of arithmetic geometric averages, we have

3− S∗

S
− I∗E

IE∗
− ISE∗

I∗S∗E
≤ 0; 3− S∗

S
− M∗E

ME∗
− MSE∗

M∗S∗E
≤ 0. (3.16)
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From equations (3.15) and (3.16), it is clear that, Lyapunov asymptotic

stability theorem satisfied as dL(t)
dt
≤ 0 is strictly a Lyapunov function which

implies that, the endemic equilibrium point H∗ is globally asymptotically sta-
ble contained in the region ∆ε. From a biological perspective, this means that
the disease is stable and will persist in the population for a long time.

Therefore, dV
dt

is a Lyapunov function converging in the positive region
∆ such that S → S∗, E → E∗, I → I∗,M → M∗, Q → Q∗ and R → R∗ as
t→∞. Hence, this concludes the proof of Theorem 3.6.

4 Sensitivity analysis

Considering the importance of the basic regeneration number in the trans-
mission dynamics of infectious diseases. It is important to study how the
parameters in the model affect R0. Sensitivity analysis was performed for
R0 according to the method described in [16].

Definition 4.1. The normalized forward sensitivity index of a variable R0 to
a parameter σ is defined as

ΥR0
σ :=

∂R0

∂σ
× σ

R0

.

We summarize the computed sensitivity indices of R0 to several important
model parameters in Table 1 and present them in Figure 1.

Table 1: Sensitivity indexes of R0

Parameter Value Sensitivity index Source of the data
Λ 0.01138 1 [17]
β1 0.2944 0.499493 [18]
β2 0.45 0.500507 [19]
k1 0.117 0.00582248 Assume
k2 0.1 0.0785657 Assume
ω 0.2944 -0.365374 Assume
γ 1

15
-0.0827387 [20]

µ 0.45 -0.429224 Assume
δ 1

30
-0.0317943 [20]

ν 0.0214 -0.0469711 [21]
d 0.02 -1.12829 [22]

For example, we calculate ΥR0
β2

= 0.500507, it indicates if β2 is increased
by 10% then the basic reproduction number R0 also increased by 5.00507%.
Further, ΥR0

µ = −0.429224, signifies that 10% increment in µ will decrease R0
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Figure 1: Sensitivity plot for the basic reproduction number R0

by 4.29224%. Table 1 also shows that Λ, β1, β2, µ and d have strong correlation
with the basic reproduction number R0. In practice, control measures should
therefore focus on reducing the disease transmission rate β2.

5 Numerical simulations

5.1 The influence of the parameters contained in R0 on
the spread of infectious diseases

According to the expression of the basic reproduction number, we analyze
the change of R0 when some parameters change.
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Figure 2: Contour plots of R0 affected by parameters β1 vs β2, β2 vs µ, ω vs µ.

The contour plots of the basic reproduction number R0 with respect to
parameters β1 vs β2, β2 vs µ, ω vs µ are presented in Figure 2. As can be
seen from Figure 2 that when other parameters related to R0 are fixed, R0

increases with the increase of β1 and β2. When µ increases or β2 decreases,
R0 decreases. µ and ω have similar effects on R0. This is consistent with the
sensitivity analysis presented in Table 1.
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5.2 Stability of the equilibrium point

Our system (2.1) possess a disease free equilibrium pointH0(0.569, 0, 0, 0, 0, 0)
for ρ = 0.02 and other parameters are as specified in Table 1. We find the corre-
sponding eigenvalues of the jacobian matrix JH0 as−0.02,−0.02,−0.0614,−0.1087,
− 0.6145,−0.4409. All the eigenvalues are negative and hence H0 is locally
asymptotically stable. In Figure 3, we plot the solution trajectories of system
(2.1) with initial value (1.3951.0141.0391.0090.091.31) which converges to the
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Figure 3: A numerical solution of model (2.1) with R0 < 1.

infection free steady state H0. Further, we note that the corresponding basic
reproduction number R0 = 0.4114 < 1. Therefore, disease can be eradicated
for R0 < 1 but it depends on initial size of the population.

Further, we increase the recruitment rate of the susceptible Λ and set it as
0.1138, ρ = 0.02 and other parameters are as specified in Table 1. Then
our system (2.1) possess two equilibria: (i) disease free equilibrium point
H0(0.569, 0, 0, 0, 0, 0) and (ii) endemic equilibrium H∗(1.3832, 0.3634, 0.1057,
0.0693, 1.0142, 1.4818). The corresponding basic reproduction number is cal-
culated as R0 = 4.1137 > 1. The corresponding eigenvalues of the jacobian
matrix J evaluated at H0 and H∗ are respectively 0.3301, -0.02, -0.02, -0.0614, -
0.4537, -1.0406 and -0.02, -0.0614, -0.7206, -0.4533, −0.0363±0.0607i. Clearly,
H0 is unstable as one of the eigenvalues of JH0 is positive. All the eigenvalues
of JH∗ are negative or have negative real part. Hence, H∗ is locally asymp-
totically stable. We plot the solution trajectories in Figure 4, with initial
data (1.3951.0141.0391.0090.091.31). The trajectories converges to an endemic
equilibrium point H∗ Figure 5.
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Figure 4: A numerical solution of model (2.1) with R0 > 1.

6 Discussion

In this article, we study an SEIMQR infectious disease model affected
by super-spreaders, which divides the total population into six compartments:
susceptible S(t), exposed E(t), infected I(t), super-spreaders M(t), quarantine
Q(t) and recovered R(t). The threshold quantity, known as the basic repro-
duction number R0, is obtained through the next-generation matrix method.
Numerically, the sensitivity index of the associated parameters are in shown
in Table 1, in order to determine the robustness of R0. In addition, the lo-
cal asymptotic stability of the disease-free equilibrium point verified by the
trace-determinant technique for R0 < 1; the local asymptotic stability of the
endemic equilibrium point verified by the Routh-Hurwitz discriminant method
for R0 > 1. The global asymptotic stability of equilibrium points is also dis-
cussed by constructing an appropriate Lyapunov function and combining them
with Lasalle’s invariant set principle. Finally, the conditions for the global sta-
bility of the equilibrium point are obtained.

We also performed sensitivity analysis on parameters related to R0 and we
found that parameters Λ, β1, β2, k1 and k2 have positive effects on R0, while
other parameters ω, γ, ν, µ, δ, d all have negative effects on R0. Among all rel-
evant parameters, Λ, β1, β2, µ and d have a strong correlation with the basic
reproduction numberR0. However, under actual control conditions, we cannot
change the recruitment rate of the susceptible Λ and natural mortality rate
d through external measures, which leads us to focus on reducing the disease
transmission rates β1, β2 and increasing the isolation rate ω, µ.
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Figure 5: Numerical trajectories of model (2.1) showing that the endemic
equilibrium H∗ is globally asymptotically stable.
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