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Abstract

In this paper, we consider the inverse problem for identifying the
source term of time-fractional diffusion wave equation. We prove that
the inverse problem is ill posed and use the quasi boundary regulariza-
tion method to solve the ill posed nature of the equation solution. Based
on prior bounds, we provide corresponding error estimates to verify the
effectiveness of the method.
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1 Introduction

In this paper, the inverse problem of inversion of source term from time-
fractional diffusion wave equation is considered. The time-fractional telegraph
equation can be expressed as follows: [1]

Pulzd) — kaZgiﬁ’t) + f(x), 0<z<Lt>01<a<2,

u(0,t) = u(L,t) =0, t>0,
u(z,0) =0, 0<z<IL, (1.1)
u(z,0) =0, 0<x< L,

u(z, T) = g(x), 0<z<L,
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where k is a constant, u(z,0) is the initial data, D{u(z,t) is Caputo fractional
derivative. The Caputo fractional derivative of order « is defined as [2]:

o lamdr m—-1l<a<m
th<t>:{rmf?)fow+ mol
datm o )

where T'(+) is a gamma function.

Problem (1.1) is a forward problem when the function f(x) is given appro-
priately. The inverse problem here is to determine the source term f(z) based
on Problem (1.1) and an additional condition

u(z,T)=g(x), 0<z<L, (1.2)

In practical applications, the input data g(z) is given by measurement,
measurement data are often inconsistent with accurate data, so we actually
have the measured data g(z) which satisfies

lg(-) = ")l <6, (1.3)

where || - || is the L?(€2) norm and § > 0 is the measurement error.

The traditional diffusion equation, often described by Fick’s second diffusion
law, is widely used to understand diffusion phenomena [3-7]. However, for
processes with non-local, nonlinear, and non-Markov properties, such as frac-
tional diffusion, the fractional diffusion wave equation is more appropriate.
This equation finds applications in various fields like physics, biology, and
finance [9-11].

This paper focuses on employing the quasi-boundary regularization method
to solve the inverse problem of fractional diffusion wave equations. Chapter
2 presents the lemma and problem solution, while Chapter 3 introduces the
method, providing the regularization solution and error estimation proof for
the source term. Finally, we validate the rationality of the regularized solution
through prior error estimation.

2 The solution of the problem(1.1) and the re-
sult of conditional stability

In this section, we mainly give the proof of ill posedness of problems(1.1) , the
solution of the problem (1 1) and the result of conditional stability. Let A,
k(®)? and X,,(x) = sin®Fx be the Dirichlet eigenvalues and elgenfunctlons of

—% on the domain [0, L], satisfies

{ 3m2Xn( ) _%Xn(l’% 0<z< L,

E0) = x,(1) =0, (2.1)
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where 0 < A} < Ay < -+ < Ay < -+, limy 0 Ay = 400 and y,(z) €
H?[0, L) N Hg[0, L], then {X,,}>°, can be normalized as the orthonormal basis
in space L?[0, L].

For any p > 0, we define the space

HP[0,L] = {¢> c LZ[O,L]‘ i)\ﬁ](gb,Xn)F < oo}, (2.2)

where (-,-) is the inner product in L?[0, L], then HP[0, L] is a Hilbert space
with the norm

ol = (32 Xl(o. Xa) ). (2.3)

Using characteristic function, variable separation method and Laplace trans-
form, the solution of the problem (1.1) is obtained

= B a1 (—Aat®) fu X (@), (2.4)
n=1

where f,, = (f(x), xn(x)) is the Fourier coefficient. Using u(z,T) = g(x), and
according to (1.1) and (1.2), we have:

u(@, T) =Y TEoant(=AT*) o X0(2), go =T Eaas1(—MT) fo, (2.5)
n=1

where g, = (g(x), z,,(x)) is the Fourier coefficient. So we get the exact solution
of the source term from (2.5)

9=3 1

n=1

: 2.6
a a+1 AnTa) ( )

To address the problem more effectively, we introduce the following defini-
tions and lemmas.

Definition 2.1. [11] Mittag-leffler The function is defined as follows:

;FQHB zeC (2.7)

where a > 0 and 5 € R are arbitrary constants.
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Lemma 2.1. [12/If A > 0, then the following equation holds:

mlp*h

> —ptpam—+p— m « 1
/0 e Pem BT B (£at®) dt = Re(p) > |a|=, (2.8)

(p* F )™

where Eg’g(y) = jy—mmEa’g(y). Lemma 2.1 means that the Laplace transfor-
mation of

am+8—1 fp(m) AN mlp®—8

t E, 5 (Fat®) is e

Lemma 2.2. [12/For any a > 0,y € R, the following conclusions hold:

L
I'(y)’

Lemma 2.3. [13/For2 > a >0, t > 0, we have 0 < E,; < 1. More over,
E,1(—t) is completely monotonic, that is:

Eo(2) = 2Eq 04~(2) + z € C, (2.9)

d’rL
(—1)" = Ea1(~t) > 0 (2.10)

dtm
Lemma 2.4. [13/For 1 < a < 2 and any X\, satisfying A\, > A\ > 0 , there
exists a positive constant C such that :
1 Ch
< |Fgas1 (AT < .
e = [Faar <3
Lemma 2.5. For any constants p >0, un >0, T >0, C; and 0 < A\; < s, the

following inequality holds:

(2.11)

1—

M|

s
A(s) = <
(s) 51

C’g,ug O<p<2
< ’ ’ 2.12
{ C3lua p=2 ( )

(22! 1
where Cy := 54—, C3:=\] ?,5s = \,.

Proof: When 0 < p < 2, due to lim,_,q A(s) = 0 and lim,_,, A(s) = 0, then
we obtain

A(s) < sup Als) < A(s").

s>\

Here s* is the root of equation A'(s) = 0 and its value is s* = (2p;p).

so we have

(M|

VS|

-\~
As) S A(s%) = “<<_P—>H —: Cy(p)it.
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When p > 2,

1-2
pus' u
A(s) = =

( ) ns + 1 (Ius + 1),9%_1 =

Lemma 2.6. For any constants p > 0, p > 0, C} and 0 < A\ < s, the
following inequality holds:

[

B(s) = 1 (Cr)2 )\z% < Cyp’i, 0<p<2, (2.13)
>\mu +1 OSH’) p = 27
. (Cl)%<(z2a:r§>) v C- (C1)?
where C4 = T, 5 = )\pZQ .

Proof: When 0 < p < 2, due to lim,_,o B(s) = 0 and lim,_,», B(s) = 0, then
we obtain

B(s) < sup B(s) < B(so).

s>\

Here s is the root of equation B'(s) = 0 and its value is sy = (M)

w(p+2)
so we have
L(ep) )
n(Ch)z o
G(s) < G lso) = (2_<p§p+2)#> = Cy(p, CO)p" ™
+1
2
When p > 2,
C s )z
G(s) = #) wG): _, Cs (p, C1, A1)

Define operator K : f(-) — ¢(-), then problem (1.1) can be transformed into
the following operator equation: K f(x) = g(z),z € [0, L], where K satisfies
Kf(z) = g(x) = Y0 T"Eu a1 (—AT) [, X, (z). Obviously, K is a linear
self adjoint operator, and its eigenvalues and eigenvectors are respectively:
K, =T"Eq 011(—\T?) and X,,(2). Due to g, = f, - T*Epat1(— A1), thus
fn =K1 g,. Therefore, we have

fla) = ; T"‘Ea,ajn(—)\nTa)X”(x) (2.14)

According to (2.6), a small disturbance of g(x) will cause significant changes
in the source term f(x) Therefore, this is an ill posed problem that cannot be
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solved using classical methods and needs to be solved through regularization
methods. Firstly, we provide a prior bound for the exact solution f(x)

(ol (ZA” (f. xn)] ) <E, (2.15)

where E/ and p are normal numbers.

3 Quasi-Boundary Regularization Method and
Its Convergence Estimation

In this section, we utilize the Quasi-boundary regularization method to solve
problem (1.1) by introducing a penalty term to the final data. This approach
transforms the original problem into finding the solution to a modified equa-
tion. We also provide H”older type error estimates between the exact solution
and the regularization solution.

it = D | ) 0< e < Lt>0,1<a<2,

(0 t) = uS(L,t) =0, t >0,

(3: 0) =0, 0<r <L, (3.1)
( 2)i(x,0) =0, 0<z <L,
\ (wT)+Mf5()=95(x>, O0<z< L,

where p > 0 is the regularization parameter. Similarly, the separation of vari-
ables method and the Laplace transform can be used to obtain solution qu of
formula (3.1)

= 1 Ba it (At ()X (), (3.2)

Thus

1 gn
n — y 3.3
<fu) TaEa’a_‘_l (_/\nToz> +u ( )

where © > 0 is the regularization parameter.
Therefore, the regular solution expressions with and without errors can be
written in the following form:

Z ToF,

Xn ,
@ a+1 )\ Ta) (ZL') ,u Z TaEa a+1 )\ TO‘)

6
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To invert the source term f(z), the following integral equation needs to be
solved:

(Kf)(x> = /Qk(xag)f<§)d£ = g(x)7 k‘(l’,f) = ZTaEa,oH-l (_)\nTa) Xn(x)Xn(f)
n=1

(3.5)

3.1 The convergent error estimate with an a priori pa-
rameter choice rule

Theorem 3.1. Assuming a priori bound (2.15) and a noise assumption (1.3)
hold, then we have

2
(1)If 0 < p < 2 and the regularization parameter u = (%)m 15 selected, then
there 1is

1F3C) = FOI < (1 + Co) EFz v (3.6)

(2)If p > 2 and the regularization parameter p = (%)% is selected, then there
18

1.1
1£2() = FO) < (1+ C3)Ez262, (3.7)
Proof: By means of a triangular inequality, we have

1£20) = FON <N = LN+ £ ) = FOI- (3.8)

Let us first give an estimate of the first term of (3.8). Through (3.4), (1.3)
, we obtain

gg_gn

Xy
Tanc,oz—l—l (_)‘nTa) + H (x>

NE

1725C) = £.C)7 =

1

S
Il

5 2
Tanz,a—l—l (_)\nTa) + H

)2.

[
NE

Il
—

n

(

/AN
= | >

Then

1£2() = fu()Il < (3.9)

=l
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Now let us estimate the second term of equation (3.8). Using (2.13), and
Lemma 2.5, we can deduce

M8

() = FOI* =

1

3
Il

9n - 9n
X, (x) — X, (x
T*Ey at1 (= T%) 4+ 1 ( ) nz::l TEq a1 (= A\ T) ( )

3

2 2
Y rmrtonmm) ()
1 T*Eq a1 (=AT) "\T*Ea,a+1 (=AT*) + 1 "

-2\ 2
gn 2)\1) /’l’>\n 2
N\ TEa a1 (—3T9)) "\ T,

N\
WK

3
Il

< B2 sup(A(n))?,
n>1
(3.10)
Applying Lemma 2.5, we obtain
172 p P

UAn 2 pstTa Copz, 0<p<2
A(n) = = < ’ ’ 3.11
(n) X, +1  pus+1 { Csp, p=2. (3.11)

CoFEpz, 0<p<?2,
I, - son < { Gepes 050 (3.12)

Combining (3.9) with (3.12), we obtain
o CyEpz, 0<p<?2
O(\ . < — 2 Lu 2, b ) )
I - f01 < S+ { s 058 (3.13)

By choosing the regularization parameters p = (%)P%(O <p<2)and p =

(%)%(p > 2), we have the following results.

2 p_
50— ) < (14 Cy)Errzdrez, 0<p <2, 314
1750 = £O { HLcomss | ash (3.14)
The proof of Theorem 3.1 is completed. a

3.2 Conclusion

The Theorem 3.1 indicates that the quasi boundary method successfully im-
proves the stability of the solution, therefore the quasi boundary regularization
method is very effective for the inverse source problem of fractional diffusion
wave equations.
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