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Abstract

In this paper, we consider the inverse problem for identifying the
source term of time-fractional diffusion wave equation. We prove that
the inverse problem is ill posed and use the quasi boundary regulariza-
tion method to solve the ill posed nature of the equation solution. Based
on prior bounds, we provide corresponding error estimates to verify the
effectiveness of the method.
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1 Introduction

In this paper, the inverse problem of inversion of source term from time-
fractional diffusion wave equation is considered. The time-fractional telegraph
equation can be expressed as follows: [1]

∂αu(x,t)
∂tα

= k ∂
2u(x,t)
∂x2

+ f(x), 0 6 x 6 L, t > 0, 1 < α < 2,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = 0, 0 6 x 6 L,
ut(x, 0) = 0, 0 6 x 6 L,
u(x, T ) = g(x), 0 6 x 6 L,

(1.1)
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where k is a constant, u(x, 0) is the initial data, Dα
t u(x, t) is Caputo fractional

derivative. The Caputo fractional derivative of order α is defined as [2]:

Dα
t f(t) =

{
1

Γ(m−α)

∫ t
0

fm(τ)
(t−τ)1+α−m

dτ, m− 1 < α < m
dm

dtm
f(t), α = m,

where Γ(·) is a gamma function.
Problem (1.1) is a forward problem when the function f(x) is given appro-

priately. The inverse problem here is to determine the source term f(x) based
on Problem (1.1) and an additional condition

u(x, T ) = g(x), 0 < x < L, (1.2)

In practical applications, the input data g(x) is given by measurement,
measurement data are often inconsistent with accurate data, so we actually
have the measured data g(x) which satisfies

‖g(·)− gδ(·)‖ 6 δ, (1.3)

where ‖ · ‖ is the L2(Ω) norm and δ > 0 is the measurement error.
The traditional diffusion equation, often described by Fick’s second diffusion
law, is widely used to understand diffusion phenomena [3–7]. However, for
processes with non-local, nonlinear, and non-Markov properties, such as frac-
tional diffusion, the fractional diffusion wave equation is more appropriate.
This equation finds applications in various fields like physics, biology, and
finance [9–11].

This paper focuses on employing the quasi-boundary regularization method
to solve the inverse problem of fractional diffusion wave equations. Chapter
2 presents the lemma and problem solution, while Chapter 3 introduces the
method, providing the regularization solution and error estimation proof for
the source term. Finally, we validate the rationality of the regularized solution
through prior error estimation.

2 The solution of the problem(1.1) and the re-

sult of conditional stability

In this section, we mainly give the proof of ill posedness of problems(1.1) , the
solution of the problem (1.1) and the result of conditional stability. Let λn =
k(nπ

L
)2 and Xn(x) = sinnπ

L
x be the Dirichlet eigenvalues and eigenfunctions of

−∂2u
∂x2

on the domain [0, L], satisfies{
∂2u
∂x2
χn(x) = −λn

k
Xn(x), 0 ≤ x ≤ L,

Xn(0) = Xn(L) = 0,
(2.1)
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where 0 < λ1 6 λ2 6 · · · 6 λn 6 · · · , limn→∞ λn = +∞ and χn(x) ∈
H2[0, L]∩H1

0 [0, L], then {Xn}∞n=1 can be normalized as the orthonormal basis
in space L2[0, L].

For any p > 0, we define the space

Hp[0, L] =
{
φ ∈ L2[0, L]

∣∣∣ ∞∑
n=1

λpn|(φ,Xn)|2 <∞
}
, (2.2)

where (·, ·) is the inner product in L2[0, L], then Hp[0, L] is a Hilbert space
with the norm

‖φ‖Hp(Ω) :=
( ∞∑
n=1

λpn|(φ,Xn)|2
) 1

2
. (2.3)

Using characteristic function, variable separation method and Laplace trans-
form, the solution of the problem (1.1) is obtained

u(x, t) =
∞∑
n=1

tαEα,α+1(−λntα)fnXn(x), (2.4)

where fn = (f(x), χn(x)) is the Fourier coefficient. Using u(x, T ) = g(x), and
according to (1.1) and (1.2), we have:

u(x, T ) =
∞∑
n=1

TαEα,α+1(−λnTα)fnXn(x), gn = TαEα,α+1(−λnTα)fn, (2.5)

where gn = (g(x), xn(x)) is the Fourier coefficient. So we get the exact solution
of the source term from (2.5)

f(x) =
∞∑
n=1

gn
TαEα,α+1(−λnTα)

, (2.6)

To address the problem more effectively, we introduce the following defini-
tions and lemmas.

Definition 2.1. [11] Mittag-leffler The function is defined as follows:

Eα,β(z) =
∞∑
n=0

zk

Γ(αk + β)
, z ∈ C (2.7)

where α > 0 and β ∈ R are arbitrary constants.
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Lemma 2.1. [12]If λ > 0, then the following equation holds:∫ ∞
0

e−pttαm+β−1E
(m)
α,β (±atα) dt =

m!pα−β

(pα ∓ a)m+1 ,Re(p) > |a|
1
α , (2.8)

where E
(m)
α,β (y) := dm

dym
Eα,β(y). Lemma 2.1 means that the Laplace transfor-

mation of

tαm+β−1E
(m)
α,β (±atα) is m!pα−β

(pα∓a)m+1 .

Lemma 2.2. [12]For any α > 0, γ ∈ R , the following conclusions hold:

Eα,γ(z) = zEα,α+γ(z) +
1

Γ(γ)
, z ∈ C, (2.9)

Lemma 2.3. [13]For 2 > α > 0, t > 0, we have 0 < Eα,1 < 1. More over,
Eα,1(−t) is completely monotonic, that is:

(−1)n
dn

dtn
Eα,1(−t) ≥ 0 (2.10)

Lemma 2.4. [13]For 1 < α < 2 and any λn satisfying λn > λ1 > 0 , there
exists a positive constant C1 such that :

1

λnTα
≤ |Eα,α+1 (−λnTα)| ≤ C1

λnTα
. (2.11)

Lemma 2.5. For any constants p > 0, µ > 0, T > 0, C1 and 0 < λ1 6 s, the
following inequality holds:

A(s) =
µs1− p

2

µs+ 1
6

{
C2µ

p
2 , 0 < p < 2,

C3µ, p > 2,
(2.12)

where C2 :=
( (2−p)

P )
1− p2

2
p

, C3 := λ
1− p

2
1 , s = λn.

Proof: When 0 < p < 2, due to lims→0A(s) = 0 and lims→∞A(s) = 0, then
we obtain

A(s) 6 sup
s>λ1

A(s) 6 A(s∗).

Here s∗ is the root of equation A
′
(s) = 0 and its value is s∗ = (2−p)

pµ
.

so we have

A(s) 6 A (s∗) =
µ
(

(2−p)
Pµ

)1− p
2(

2−p
p

)
+ 1

=: C2(p)µ
p
2 .
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When p > 2,

A(s) =
µs1− p

2

µs+ 1
=

µ

(µs+ 1)s
p
2
−1

6 µλ
1− p

2
1 =: C3 (p, λ1)µ.

Lemma 2.6. For any constants p > 0, µ > 0, C1 and 0 < λ1 6 s, the
following inequality holds:

B(s) =
µ (C1)

1
2

λnµ+ 1
λ

2−p
4

n 6

{
C4µ

p+2
4 , 0 < p < 2,

C5µ, p > 2,
(2.13)

where C4 :=
(C1)

1
2 ( (2−p)

p+2 )
2−p
4

(2−p)
p+2

+1
, C5 := (C1)

1
2

λ
p−2
4

1

.

Proof: When 0 < p < 2, due to lims→0B(s) = 0 and lims→∞B(s) = 0, then
we obtain

B(s) 6 sup
s>λ1

B(s) 6 B(s0).

Here s0 is the root of equation B
′
(s) = 0 and its value is s0 =

(
(2−p)
µ(p+2)

)
.

so we have

G(s) 6 G (s0) =
µ(C1)

1
2

(
(2−p)

(p+2)µ

) 2−p
4

(2−p)
p+2

+ 1
=: C4(p, C1)µ

p+2
4 .

When p > 2,

G(s) =
µ(C1)

1
2 s

2−p
4

sµ+ 1
6
µ(C1)

1
2

λ
p−2
4

1

=: C5 (p, C1, λ1)µ.

Define operator K : f(·) −→ g(·), then problem (1.1) can be transformed into
the following operator equation: Kf(x) = g(x), x ∈ [0, L], where K satisfies
Kf(x) = g(x) =

∑∞
n=1 T

αEα,α+1(−λnTα)fnXn(x). Obviously, K is a linear
self adjoint operator, and its eigenvalues and eigenvectors are respectively:
Kn = TαEα,α+1(−λnTα) and Xn(x). Due to gn = fn · TαEα,α+1(−λnTα), thus
fn = K−1

n · gn. Therefore, we have

f(x) =
∞∑
n=1

gn
TαEα,α+1 (−λnTα)

Xn(x) (2.14)

According to (2.6), a small disturbance of g(x) will cause significant changes
in the source term f(x) Therefore, this is an ill posed problem that cannot be
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solved using classical methods and needs to be solved through regularization
methods. Firstly, we provide a prior bound for the exact solution f(x)

‖f(·)‖Hp(Ω) =

(
∞∑
n=1

λpn |(f, χn)|2
) 1

2

6 E, (2.15)

where E and p are normal numbers.

3 Quasi-Boundary Regularization Method and

Its Convergence Estimation

In this section, we utilize the Quasi-boundary regularization method to solve
problem (1.1) by introducing a penalty term to the final data. This approach
transforms the original problem into finding the solution to a modified equa-
tion. We also provide H”older type error estimates between the exact solution
and the regularization solution.

∂αuδµ(x,t)

∂tα
= k

∂2uδµ(x,t)

∂x2
+ f δµ(x), 0 6 x 6 L, t > 0, 1 < α < 2,

uδµ(0, t) = uδµ(L, t) = 0, t > 0,
uδµ(x, 0) = 0, 0 6 x 6 L,
(uδµ)t(x, 0) = 0, 0 6 x 6 L,
uδµ(x, T ) + µf δµ(x) = gδ(x), 0 6 x 6 L,

(3.1)

where µ > 0 is the regularization parameter. Similarly, the separation of vari-
ables method and the Laplace transform can be used to obtain solution uδµ of
formula (3.1)

uδµ(x, t) =
∞∑
n=1

tαEα,α+1(−λntα)(f δµ)nXn(x), (3.2)

Thus

(f δµ)n =
gn

TαEα,α+1 (−λnTα) + µ
, (3.3)

where µ > 0 is the regularization parameter.
Therefore, the regular solution expressions with and without errors can be
written in the following form:

fδµ(x) =

∞∑
n=1

gδn
TαEα,α+1 (−λnTα) + µ

Xn(x) , fµ(x) =

∞∑
n=1

gn
TαEα,α+1 (−λnTα) + µ

Xn(x)

(3.4)
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To invert the source term f(x), the following integral equation needs to be
solved:

(Kf)(x) :=

∫
Ω
k(x, ξ)f(ξ)dξ = g(x), k(x, ξ) =

∞∑
n=1

TαEα,α+1 (−λnTα)Xn(x)Xn(ξ)

(3.5)

3.1 The convergent error estimate with an a priori pa-
rameter choice rule

Theorem 3.1. Assuming a priori bound (2.15) and a noise assumption (1.3)
hold, then we have

(1)If 0 < p < 2 and the regularization parameter µ = ( δ
E

)
2
p+2 is selected, then

there is

‖f δµ(·)− f(·)‖ 6 (1 + C2)E
2
p+2 δ

p
p+2 ; (3.6)

(2)If p > 2 and the regularization parameter µ = ( δ
E

)
1
2 is selected, then there

is

‖f δµ(·)− f(·)‖ 6 (1 + C3)E
1
2 δ

1
2 , (3.7)

Proof: By means of a triangular inequality, we have

‖f δµ(·)− f(·)‖ 6 ‖f δµ(·)− fµ(·)‖+ ‖fµ(·)− f(·)‖. (3.8)

Let us first give an estimate of the first term of (3.8). Through (3.4), (1.3)
, we obtain

∥∥f δµ(·)− fµ(·)
∥∥2

=

∥∥∥∥∥
∞∑
n=1

gδn − gn
TαEα,α+1 (−λnTα) + µ

Xn(x)

∥∥∥∥∥
2

=
∞∑
n=1

(
gδn − gn

TαEα,α+1 (−λnTα) + µ

)2

6

(
δ

µ

)2

.

Then

‖f δµ(·)− fµ(·)‖ 6 δ

µ
. (3.9)
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Now let us estimate the second term of equation (3.8). Using (2.13), and
Lemma 2.5, we can deduce

‖fµ(·)− f(·)‖2 =

∥∥∥∥∥
∞∑
n=1

gn
TαEα,α+1 (−λnTα) + µ

Xn(x)−
∞∑
n=1

gn
TαEα,α+1 (−λnTα)

Xn(x)

∥∥∥∥∥
2

=

∞∑
n=1

(
gn

TαEα,α+1 (−λnTα)

)2

λpn

(
µ

TαEα,α+1 (−λnTα) + µ

)2

λ−pn

6
∞∑
n=1

(
gn

TαEα,α+1 (−λnTα)

)2

λpn

(
µλ

1− p
2

n

1 + µλn

)2

6 E2 sup
n>1

(A(n))2,

(3.10)

Applying Lemma 2.5, we obtain

A(n) =
µλ

1− p
2

n

µλn + 1
=
µs1− p

2

µs+ 1
6

{
C2µ

p
2 , 0 < p < 2,

C3µ, p > 2.
(3.11)

Therefore, we have

‖fµ(·)− f(·)‖ 6
{
C2Eµ

p
2 , 0 < p < 2,

C3Eµ, p > 2.
(3.12)

Combining (3.9) with (3.12), we obtain

‖f δµ(·)− f(·)‖ 6 δ

µ
+

{
C2Eµ

p
2 , 0 < p < 2,

C3Eµ, p > 2.
(3.13)

By choosing the regularization parameters µ = ( δ
E

)
2
p+2 (0 < p < 2) and µ =

( δ
E

)
1
2 (p > 2), we have the following results.

‖f δµ(·)− f(·)‖ 6

{
(1 + C2)E

2
p+2 δ

p
p+2 , 0 < p < 2,

(1 + C3)E
1
2 δ

1
2 , p > 2.

(3.14)

The proof of Theorem 3.1 is completed. 2

3.2 Conclusion

The Theorem 3.1 indicates that the quasi boundary method successfully im-
proves the stability of the solution, therefore the quasi boundary regularization
method is very effective for the inverse source problem of fractional diffusion
wave equations.
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