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Abstract 

 

In a recent paper, we advanced a systematic procedure for generating the coefficients 

of the continued fraction expansion of the test function associated with a Schur stable 

polynomial. The procedure we used involves long and elaborate calculations and the 

number of required iterations equal to the degree of the polynomial plus one. In the 

current work, we propose new continued fraction expansions which proceed in terms 

of some bilinear functions. the procedure to generate the coefficients of the new 

expansion is extremely simple. In addition, the number of iterations required to 

generate the coefficients of the new proposed expansion almost equal half the degree 

of the polynomial, which is a significant simplification in testing the stability of such 

polynomials. Illustrative examples are given to highlight the advantages of the new 

procedure compared to the old one. 
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1. Introduction 
 

Polynomials having their zeros in the interior of the unit circle are said to be 

stable in the Schur-Cohn sense. We shall call them Schur stable polynomials. They are  
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essential in a variety of applications, such as stability of discrete-time systems, digital 

signal processing, control theory, spectral analysis, numerical computations, and many 

others.  

Recently, there has been renewed interest in the subject of continued fractions 

and its applications in stability theory [1, 2, 3, 6, 10]. In particular, we mention our 

relatively recent work [7] where we established interesting properties of the poles of 

positive functions which are Routh-Hurwitz related concepts. Symmetric properties 

were also established of the poles of complex discrete reactance functions which are 

the counterparts of positive functions in the Schur-Cohn stability type. The efforts 

initiated in [7] were thoroughly pursued in very recent works [8, and 9] where 

connections between continued fractions and Schur polynomials have been established. 

 

In [9], we introduced a procedure to generate the coefficients of the continued 

fraction expansion of the test function associated with a Schur polynomial. Examples 

were given to illustrate the feasibility of the process but at the expense of very elaborate 

computations. This laborious work is best illustrated in the proofs of Theorems 2 and 

3 in [9] as well as in the example given in Section 4 therein. The formulas given in the 

statements of these two theorems and their application in the given example show that 

the number of required iterations to generate the coefficients of the continued fraction 

expansion is equal to n+1, where n is the degree of the polynomial. 

 

In the current work, we introduce new continued fraction expansions in terms 

of some bilinear functions in which the number of iterations is reduced from n+1 to n/2 

when n is even and to (n+1)/2 when n is odd. More importantly, the burden of 

computations involved to generate the coefficients of the new expansions is highly 

reduced compared with the drudgery involved in the old expansion [9]. Illustrative 

examples are given to highlight the advantages of the new technique. 

This paper is structured as follows. In Section 2, we lay out some definitions 

and notations. In Section 3, we introduce the new continued fraction expansions 

associated with a Schur stable polynomial of degree n and we prove that when n is 

even, we require n/2 iterations to generate the coefficients of the continued fraction. 

When n is odd, (n + 1)/2 iterations are required for the same purpose. Here, we stress 

the overwhelming simplicity to generate the coefficients of the new expansions 

compared with the laborious work of [9]. In section 4, we illustrate those advantages 

and the extreme simplicity in the computations by concrete examples.  

 

2. Definitions and Notations 
 

Throughout the paper, we shall use the same notations as in [9]. Below is a 

reminder of some of the definitions, notations, and results needed for the current work. 
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Definition 1. A linear discrete-time system of difference equations is stable if and only 

if all its eigenvalues lie inside the unit disc. If  

𝑔(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛−1𝑧𝑛−1 + 𝑎𝑛𝑧𝑛          (1) 

is the characteristic polynomial of the system, then the system is stable if all zeros of g 

(z) lie inside the unit disc. Such polynomials are said to be Schur stable. 

Definition 2. The reciprocal of g is defined by )/1()( zgzzg n . Then g can be 

written as n

nnn zazazaazg 0

2

21)(     where ka  denotes the complex 

conjugate of ka  for .,,1,0 nk   

 

Definition 3. 𝑇ℎ𝑒 𝑡𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 − 𝑡𝑖𝑚𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦  

𝛹(𝑧) =
𝑔(𝑧) + 𝑔𝜏(𝑧)

𝑔(𝑧) − 𝑔𝜏(𝑧)
                                                           (2) 

 

We note that in [8], we flipped the numerator and denominator of Ψ(z), but that will 

not make any difference, since the expression of Ψ(z) and 1/Ψ(z) as continued 

fractions are equivalent. 

 

Theorem 1. [8, Theorem 4]) The linear discrete-time system of difference equations 

characterized by (1) is stable if and only if the test function (z) defined by (2) can be 

written in the continued fraction expansion 

𝛹(𝑧) = ℎ0

𝑧 − 1

𝑧 + 1
+ 𝑘0 +

1

ℎ1
𝑧 − 1
𝑧 + 1 + 𝑘1 +

⋮

+
1

ℎ𝑛
𝑧 − 1
𝑧 + 1 + 𝑘𝑛

                          (3) 

 

where ℎ0 ≥ 0, ℎ1 > 0, … , ℎ𝑛 > 0 and 𝑘𝑗 are imaginary or zero for 0 ≤ 𝑗 ≤ 𝑛. 
It is clear from Theorem 1 that the number of iterations required to generate the 

coefficients of (3) is equal to n + 1, one for each pair ℎ𝑖 , 𝑘𝑖 for i  0, 1, …, n. 

 

3. The New Procedure 
 

We now introduce new continued fraction expansions in which the number of 

iterations is reduced from n+1 to n/2 when n is even and to (n+1)/2 when n is odd which 

is a tremendous simplification in stability testing.  

 

Theorem 2. If n is even, the linear discrete-time system of difference equations 

characterized by (1) is stable if and only if the test function  
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𝛹(𝑧) =
𝑔(𝑧) + 𝑔𝜏(𝑧)

𝑔(𝑧) − 𝑔𝜏(𝑧)
 

can be written in the form 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+ 𝛹1(𝑧)                          (4) 

 

where  ℎ1 𝑎𝑛𝑑 𝑘1 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 and  𝛹1(𝑧) ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 − 2 𝑎𝑛𝑑 ℎ𝑎𝑠 1 𝑎𝑛𝑑
− 1 𝑎𝑠 𝑧𝑒𝑟𝑜𝑠. 

 

Proof. By [5, Prop. 2 P.101], 𝛹(𝑧) can always be written as 

𝛹(𝑧) = 𝑘1

𝑧 + 1

𝑧 − 1
+ 𝛹0(𝑧) 

where  𝑘1 is positive and 1/𝛹0(𝑧) has a pole at z  1 . 
 

Now, since n is even z  1 and z  1 are both poles of 𝛹(𝑧), and by [4, Condition 

2a, P. 87] they are both simple, and that leads to the following expansion of 𝛹(𝑧) 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+ 𝛹1(𝑧) 

where  ℎ1, 𝑘1 and 

𝛹1(𝑧) satisfy the requirements of the theorem, and 
1

𝛹1(𝑧)
 has two  

 poles 𝑧 = ±1. 
 

Corollary 1. If n is even, the linear discrete-time system of difference equations 

characterized by (1) is stable if and only if the test function  

𝛹(𝑧) =
𝑔(𝑧) + 𝑔𝜏(𝑧)

𝑔(𝑧) − 𝑔𝜏(𝑧)
 

can be written in the continued fraction expansion form 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+

1

ℎ2
𝑧 − 1
𝑧 + 1 + 𝑘2

𝑧 + 1
𝑧 − 1 +

⋮

+
1

ℎ𝑛/2
𝑧 − 1
𝑧 + 1

+ 𝑘𝑛/2
𝑧 + 1
𝑧 − 1

                          (5) 

 

where  ℎ𝑖  𝑎𝑛𝑑 𝑘𝑖 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 for 1 ≤ 𝑖 ≤ 𝑛/2. 
 

Proof. By Theorem 2, 𝛹(𝑧) can be written in the form 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+ 𝛹1(𝑧) 
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where  ℎ1 and 𝑘1 are positive and 𝛹1(𝑧) has degree 𝑛

− 2 and 
1

𝛹1(𝑧)
 has two poles 𝑧 = ±1. 

Rewrite 𝛹(𝑧) as 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+

1

(
1

𝛹1(𝑧)
)

. 

We now operate on 
1

𝛹1(𝑧)
 in the same way as we operated before on 𝛹(𝑧) to get 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+

1

ℎ2
𝑧 − 1
𝑧 + 1 + 𝑘2

𝑧 + 1
𝑧 − 1 + 𝛹2(𝑧)

 

where  ℎ2 and 𝑘2 are positive and 𝛹2(𝑧) has degree 𝑛

− 4 and 
1

𝛹2(𝑧)
 has two poles 𝑧 = ±1. 

We now operate on 
1

𝛹2(𝑧)
 in the same way as we did with 

1

𝛹1(𝑧)
 . 

The process continues in the same way till the end. 

As mentioned above, Theorem 2 applies only when the degree of g(z) in (1) is even. 

According to expansion (5), only n/2 iterations are needed, one for each pair ℎ𝑖 , 𝑘𝑖 for  

i = 1, …, n/2. 

Now, when n is odd, we refer again to Proposition 2 of [5], which states the 

following. 

 

Theorem 3. [5, Proposition 2] The linear discrete-time system of difference equations 

characterized by (1) is stable if and only if the test function  

𝛹(𝑧) =
𝑔(𝑧) + 𝑔𝜏(𝑧)

𝑔(𝑧) − 𝑔𝜏(𝑧)
 

can be written in the form 

𝛹(𝑧) = 𝑠1

𝑧 + 1

𝑧 − 1
+ 𝛹1(𝑧)                          (6) 

where  

1. 𝑠1 𝑖𝑠 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 
2. 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1/𝛹1(𝑧) ℎ𝑎𝑠 𝑎 𝑝𝑜𝑙𝑒 𝑎𝑡 𝑧 = 1. 
 

By [5, P. 101] 𝑠1 can be calculated as 

𝑠1 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙ 𝛹(𝑧)) 

 

The last theorem applies independently of the parity of the degree of g(z). 
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Corollary 2. If n is odd, the linear discrete-time system of difference equations 

characterized by (1) is stable if and only if the test function  

𝛹(𝑧) =
𝑔(𝑧) + 𝑔𝜏(𝑧)

𝑔(𝑧) − 𝑔𝜏(𝑧)
 

can be written in the continued fraction expansion form 

𝛹(𝑧) = 𝑠1

𝑧 + 1

𝑧 − 1
+

1

𝑟2
𝑧 − 1
𝑧 + 1 + 𝑠2

𝑧 + 1
𝑧 − 1 +

⋮

+
1

𝑟(𝑛+1)/2
𝑧 − 1
𝑧 + 1 + 𝑠(𝑛+1)/2

𝑧 + 1
𝑧 − 1

                          (7) 

 

where 𝑠𝑖 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 for 1 ≤ 𝑖 ≤ (𝑛 + 1)/2, 𝑎𝑛𝑑 𝑟𝑖 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 for 2 ≤ 𝑖
≤ (𝑛 + 1)/2. 

Proof. By Theorem 3, 𝛹(𝑧) can be expressed as in (6) 

𝛹(𝑧) = 𝑠1

𝑧 + 1

𝑧 − 1
+ 𝛹1(𝑧) 

After isolating the term 𝑠1

𝑧 + 1

𝑧 − 1
 of 𝛹(𝑧), the characteristic polynomial corresponding to 

test function 𝛹1(𝑧) is now of even degree, and Corollary (1) can now be applied to  
generate the remaining terms of the expansion (7). 
 

As a result of the above argument, 𝑠2 up to 𝑠(𝑛+1)/2 can be calculated in the same 

way as 𝑠1 

 

namely, 

𝑠2 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙

1

𝛹1(𝑧)
) , where 

𝛹1(𝑧) = 𝛹(𝑧) − 𝑠1

𝑧 + 1

𝑧 − 1
 

and so on for 𝑠3 up to 𝑠(𝑛+1)/2. 

 

Similar considerations apply on 𝑟2 and we have 

𝑟2 = lim
𝑧→−1

(
𝑧 + 1

𝑧 − 1
∙

1

𝛹1(𝑧)
) , where also 

𝛹1(𝑧) = 𝛹(𝑧) − 𝑠1

𝑧 + 1

𝑧 − 1
 

and so on for 𝑟3 up to 𝑟(𝑛+1)/2. 
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Before we illustrate the above results through concrete examples, we mention that the 

coefficients in the expansion of 𝛹(𝑧) corresponding to n even given by (5), namely 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+

1

ℎ2
𝑧 − 1
𝑧 + 1 + 𝑘2

𝑧 + 1
𝑧 − 1 +

⋮

+
1

ℎ𝑛/2
𝑧 − 1
𝑧 + 1 + 𝑘𝑛/2

𝑧 + 1
𝑧 − 1

 

can also be obtained in the same way. We have 

ℎ1 = lim
𝑧→−1

(
𝑧 + 1

𝑧 − 1
∙ 𝛹(𝑧)) , and 

 

ℎ2 = lim
𝑧→−1

(
𝑧 + 1

𝑧 − 1
∙

1

𝛹1(𝑧)
)  where 

 

𝛹1(𝑧) = 𝛹(𝑧) − ℎ1

𝑧 − 1

𝑧 + 1
− 𝑘1

𝑧 + 1

𝑧 − 1
 

and so on for ℎ3 up to ℎ𝑛/2. 

 

Similarly, 

𝑘1 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙ 𝛹(𝑧)) , and 

𝑘2 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙

1

𝛹1(𝑧)
)  where 

 

𝛹1(𝑧) = 𝛹(𝑧) − ℎ1

𝑧 − 1

𝑧 + 1
− 𝑘1

𝑧 + 1

𝑧 − 1
 

and so on for 𝑘3 up to 𝑘𝑛/2. 

 

4. Feasibility of the New Procedure 
 

We will consider both cases when n is even or odd. For each case, we shall 

compare the old procedure [9] with the new one. 

 

Case 1: n even  

Consider the polynomial with degree n  4, 

𝑔(𝑧) = 8𝑧4 − 8𝑧3 + 2𝑧2 + 2𝑧 − 1 
(a) The old procedure [9]: 

The reciprocal of g is 
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𝑔𝜏(𝑧) = 𝑧𝑛𝑔(1/𝑧̄) = −𝑧4 + 2𝑧3 + 2𝑧2 − 8𝑧 + 8 
Therefore, the test function can be written as 

𝛹(𝑧) =
𝑔(𝑧) + 𝑔𝜏(𝑧)

𝑔(𝑧) − 𝑔𝜏(𝑧)
=

7𝑧4 − 6𝑧3 + 4𝑧2 − 6𝑧 + 7

9𝑧4 − 10𝑧3 + 10𝑧 − 9
 

Now we proceed as in [9, Section 4, P. 6] by applying the transformation 

𝑇(𝑠) =  𝛹(2𝑠 − 1). 
Then, 

𝑇(𝑠) =  𝛹(2𝑠 − 1) =
7(2𝑠 − 1)4 − 6(2𝑠 − 1)3 + 4(2𝑠 − 1)2 − 6(2𝑠 − 1) + 7

9(2𝑠 − 1)4 − 10(2𝑠 − 1)3 + 10(2𝑠 − 1) − 9
. 

𝑇(𝑠) can now be written as 

𝑇(𝑠) =
56𝑠4 − 136𝑠3 + 128𝑠2 − 60𝑠 + 15

8(9𝑠4 − 23𝑠3 + 21𝑠2 − 7𝑠)
. 

 

We would like to expand 𝑇(𝑠) in the form 

𝛹(𝑧) = ℎ0 (
𝑠 − 1

𝑠
) + 𝑘0

+
1

ℎ1 (
𝑠 − 1

𝑠 ) + 𝑘1 +
1

ℎ2 (
𝑠 − 1

𝑠 ) + 𝑘2 +
1

ℎ3 (
𝑠 − 1

𝑠 ) + 𝑘3

            (8) 

We seek the values of ℎ0, 𝑘0, ℎ1, 𝑘1, ℎ2, 𝑘2 𝑎𝑛𝑑 ℎ3, 𝑘3 by the above procedure used in [1]. 
 

By [9, Formula (5)], we have 𝑇𝑗(𝑠) =
∑ 𝑎𝑗,𝑗+𝑙𝑠𝑙𝑛−𝑗

𝑙=0

∑ 𝑏𝑗,𝑗+𝑙𝑠𝑙𝑛−𝑗
𝑙=1

,  

 

and By [9, Formula (4)], 𝑇(𝑠) = 𝑇0(𝑠), so 
 

𝑇(𝑠) = 𝑇0(𝑠) =
∑ 𝑎0,𝑙𝑠

𝑙4
𝑙=0

∑ 𝑏0,𝑙𝑠𝑙4
𝑙=1

=
𝑎0,0 + 𝑎0,1𝑠 + 𝑎0,2𝑠2 + 𝑎0,3𝑠3 + 𝑎0,4𝑠4

𝑏0,1𝑠 + 𝑏0,2𝑠2 + 𝑏0,3𝑠3 + 𝑏0,4𝑠4
, 

 

which compared with 𝑇(𝑠) =
56𝑠4 − 136𝑠3 + 128𝑠2 − 60𝑠 + 15

72𝑠4 − 184𝑠3 + 168𝑠2 − 56𝑠
 leads to 

 

𝑎0,0 = 15,   𝑎0,1 = −60,   𝑎0,2 = 128,   𝑎0,3 = −136,   𝑎0,4 = 56  
𝑏0,1 = −56,   𝑏0,2 = 168,   𝑏0,3 = −184,   𝑏0,4 = 72. 

𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 ℎ0 𝐚𝐧𝐝 𝑘0: 

By [9, Theorem 1], ℎ0 = −
𝑎0,0

𝑏0,1
= −

15

−56
=

15

56
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By [9, Theorem 2], 𝑘0 =
𝑎0,1 − ℎ0(𝑏0,1 − 𝑏0,2)

𝑏0,1
=

−60 −
15
56

(−56 − 168)

−56
= 0 

 

𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 ℎ1 𝐚𝐧𝐝 𝑘1: 

Again by [9, Theorem 1], ℎ1 = −
𝑎1,1

𝑏1,2
. 

By the formulas of [1, Theorem 3], namely 

 𝑎𝑗+1,𝑗+𝑙 = 𝑏𝑗,𝑗+𝑙 , 

and 

𝑏𝑗+1,𝑗+𝑙 = 𝑎𝑗,𝑗+𝑙 − ℎ𝑗(𝑏𝑗,𝑗+𝑙−𝑏𝑗,𝑗+𝑙+1) − 𝑘𝑗𝑏𝑗,𝑗+𝑙, 
 

We get, 𝑎1,1 = 𝑏0,1 = −56. 

𝑏1,2 = 𝑎0,2 − ℎ0(𝑏0,2−𝑏0,3) − 𝑘0𝑏0,2 = 128 −
15

56
(168 + 184) − 0 =

236

7
. 

Then, 

ℎ1 = −
𝑎1,1

𝑏1,2
=

56

236
7

=
98

59
. 

Also by [9, Theorem 2], 𝑘1 =
𝑎1,2 − ℎ1(𝑏1,2 − 𝑏1,3)

𝑏1,2
. 

𝑏1,2 =
236

7
, already calculated. 

𝑎𝑗+1,𝑗+𝑙 = 𝑏𝑗,𝑗+𝑙 leads to 𝑎1,2 = 𝑏0,2 = 168. 

𝑏𝑗+1,𝑗+𝑙 = 𝑎𝑗,𝑗+𝑙 − ℎ𝑗(𝑏𝑗,𝑗+𝑙−𝑏𝑗,𝑗+𝑙+1) − 𝑘𝑗𝑏𝑗,𝑗+𝑙 leads to 𝑏1,3

= 𝑎0,3 − ℎ0(𝑏0,3−𝑏0,4) − 𝑘0𝑏0,3 

𝑏1,3 = −136 −
15

56
(−184 − 72) − 0 ∙ 𝑏0,3 = −

472

7
. 

Therefore, 𝑘1 =
𝑎1,2 − ℎ1(𝑏1,2 − 𝑏1,3)

𝑏1,2
=

168 −
98
59

(
236

7 +
472

7 )

236
7

= 0. 

𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 ℎ2 𝐚𝐧𝐝 𝑘2: 

Now, ℎ2 = −
𝑎2,2

𝑏2,3
, where 

𝑎2,2 = 𝑏1,2 =
236

7
 , already calculated. 

𝑏𝑗+1,𝑗+𝑙 = 𝑎𝑗,𝑗+𝑙 − ℎ𝑗(𝑏𝑗,𝑗+𝑙−𝑏𝑗,𝑗+𝑙+1) − 𝑘𝑗𝑏𝑗,𝑗+𝑙 leads to 𝑏2,3

= 𝑎1,3 − ℎ1(𝑏1,3−𝑏1,4) − 𝑘1𝑏1,3 

𝑎1,3 = 𝑏0,3 = −184. 
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𝑏1,3 = −
472

7
 already calculated. 

𝑏𝑗+1,𝑗+𝑙 = 𝑎𝑗,𝑗+𝑙 − ℎ𝑗(𝑏𝑗,𝑗+𝑙−𝑏𝑗,𝑗+𝑙+1) − 𝑘𝑗𝑏𝑗,𝑗+𝑙 implies 𝑏1,4

= 𝑎0,4 − ℎ0(𝑏0,4−𝑏0,5) − 0 ∙ 𝑏1,3 

𝑏1,4 = 56 −
15

56
(72 − 0) =

257

7
. 

Then, 𝑏2,3 = 𝑎1,3 − ℎ1(𝑏1,3−𝑏1,4) − 𝑘1𝑏1,3 = −184 −
98

59
(−

472

7
−

257

7
) − 0 ∙ 𝑏1,3

= −
650

59
 

Therefore, ℎ2 = −
𝑎2,2

𝑏2,3
= −

236
7

−
650
59

=
6962

2275
. 

𝑘2 =
𝑎2,3 − ℎ2(𝑏2,3 − 𝑏2,4)

𝑏2,3
. 

𝑎𝑗+1,𝑗+𝑙 = 𝑏𝑗,𝑗+𝑙 leads to 𝑎2,3 = 𝑏1,3 = −
472

7
 

We know that, 𝑏2,3 = −
650

59
. 

𝑏𝑗+1,𝑗+𝑙 = 𝑎𝑗,𝑗+𝑙 − ℎ𝑗(𝑏𝑗,𝑗+𝑙−𝑏𝑗,𝑗+𝑙+1) − 𝑘𝑗𝑏𝑗,𝑗+𝑙 implies 𝑏2,4

= 𝑎1,4 − ℎ1(𝑏1,4−𝑏1,5) − 𝑘1𝑏1,4. 

By the formula 𝑎𝑗+1,𝑗+𝑙 = 𝑏𝑗,𝑗+𝑙, we get 𝑎1,4 = 𝑏0,4 = 72 

𝑏1,4 =
257

7
 already calculated. 

𝑏𝑗+1,𝑗+𝑙 = 𝑎𝑗,𝑗+𝑙 − ℎ𝑗(𝑏𝑗,𝑗+𝑙−𝑏𝑗,𝑗+𝑙+1) − 𝑘𝑗𝑏𝑗,𝑗+𝑙 leads to 𝑏1,5

= 𝑎0,5 − ℎ0(𝑏0,5−𝑏0,6) − 𝑘0𝑏0,5 

So, 𝑏1,5 = 0 −
15

56
(0 − 0) − 0 ∙ 𝑏0,5 = 0. 

So, 𝑏2,4 = 𝑎1,4 − ℎ1(𝑏1,4−𝑏1,5) − 𝑘1𝑏1,4 = 72 −
98

59
(

257

7
− 0) − 0 ∙ 𝑏1,4 =

4550

413
. 

𝑘2 =
𝑎2,3 − ℎ2(𝑏2,3 − 𝑏2,4)

𝑏2,3
=

−
472

7 −
6962
2275

(−
650
59

−
4550
413 )

−
650
59

= 0. 

𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 ℎ3 𝐚𝐧𝐝 𝑘3: 
By repeatedly applying the formulas in [9, theorems 3 and 4] as we did in the 

previous calculations above, we get: 

ℎ3 =
650

177
 and 𝑘3 = 0. 
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Substituting ℎ1, 𝑘1,, ℎ2, 𝑘2,, and ℎ3, 𝑘3 in expansion (8), we get 

𝛹(𝑧) =
15

56
(

𝑠 − 1

𝑠
) +

1

98
59

(
𝑠 − 1

𝑠 ) +
1

6962
2275

(
𝑠 − 1

𝑠 ) +
1

650
177 (

𝑠 − 1
𝑠 )

 

Replacing 
𝑠 − 1

𝑠
 by  

𝑧 − 1

𝑧 + 1
 we get: 

 

𝛹(𝑧) =
15

56
(

𝑧 − 1

𝑧 + 1
) +

1

98
59

(
𝑧 − 1
𝑧 + 1) +

1
6962
2275

(
𝑧 − 1
𝑧 + 1) +

1
650
177 (

𝑧 − 1
𝑧 + 1)

 

 

Since ℎ𝑖 > 0 and 𝑘𝑖 = 0 for 0 ≤ 𝑖
≤ 3, the conditions of [8, Theorem 1] are satisfied, 

and the polynomial 𝑔(𝑧) = 8𝑧4 − 8𝑧3 + 2𝑧2 + 2𝑧 − 1 is Shur stable. 

In fact the zeros of 𝑔(𝑧) are 
1

2
, −

1

2
,
1

2
+

1

2
𝑖,

1

2
−

1

2
𝑖 all lying inside theunit circle. 

At the end of this example, two things should be noted. 

1. In this expansion, we needed 4 iterations:  

first for ℎ1 =
15

56
 and 𝑘1 = 0, second for ℎ2 =

98

59
 and 𝑘2 = 0, 

third for ℎ3 =
6962

2275
 and 𝑘3 = 0, and fourth for ℎ4 =

650

177
 and 𝑘4 = 0. 

 

2. More importantly, one should note the elaborate calculations to generates the 

coefficients 

ℎ𝑖  and 𝑘𝑖  for 0 ≤ 𝑖 ≤ 3.  
 

(b) The new procedure: 

 

Now, let us expand 𝛹(𝑧) using the new procedure illustrated in expansion (5). 

By Corollary 1, 𝛹(𝑧) can be expanded as: 

 

𝛹(𝑧) = ℎ1

𝑧 − 1

𝑧 + 1
+ 𝑘1

𝑧 + 1

𝑧 − 1
+

1

ℎ2
𝑧 − 1
𝑧 + 1 + 𝑘2

𝑧 + 1
𝑧 − 1

 

 
The coefficients ℎ1,  𝑘1,  ℎ2 and 𝑘2 are now easily calculated using the new procedure. 
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ℎ1 = lim
𝑧→−1

(
𝑧 + 1

𝑧 − 1
∙ 𝛹(𝑧)) =

15

56
 

𝑘1 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙ 𝛹(𝑧)) =

3

16
 

Easy to verify that the function  

𝛹1(𝑧) = 𝛹(𝑧) −
15

56
(

𝑧 − 1

𝑧 + 1
) −

3

16
(

𝑧 + 1

𝑧 − 1
) 

can be written as: 

𝛹1(𝑧) =
325

112
(

𝑧2 − 1

9𝑧2 − 10𝑧 + 9
). 

 

The coefficients ℎ2 and 𝑘2 can now be calculated as 

ℎ2 = lim
𝑧→−1

(
𝑧 + 1

𝑧 − 1
∙

1

𝛹1(𝑧)
) =

784

325
 

 

𝑘2 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙

1

𝛹1(𝑧)
) =

224

325
 

Finally, 

𝛹(𝑧) =
15

56
(

𝑧 − 1

𝑧 + 1
) +

3

16
(

𝑧 + 1

𝑧 − 1
) +

1

784
325

(
𝑧 − 1
𝑧 + 1) +

224
325

(
𝑧 + 1
𝑧 − 1)

 

 

Since ℎ𝑖 > 0 and 𝑘𝑖 > 0 for 1 ≤ 𝑖
≤ 2, the conditions of Corollary 1 are satisfied, and the 

polynomial 𝑔(𝑧) = 8𝑧4 − 8𝑧3 + 2𝑧2 + 2𝑧 − 1 is Shur stable. 
Also, we should note two things here: 

1. In the last expansion, we needed only 2 iterations (half the degree of g): one for ℎ1 

and 𝑘1, another for ℎ2 and 𝑘2. 
2. More importantly, one should note the extremely simple calculations to generate 

the coefficients ℎ1, 𝑘1 and ℎ2, 
𝑘2 compared to the highly elaborate computations of the old 

procedure. 
 

Case 2: n odd. 

We reconsider the same example we addressed in [9, P. 6],  

Consider the polynomial 

𝑔(𝑧) = 4𝑧3 − 6𝑧2 + 4𝑧 − 1 
(a) The old procedure [9]: 

The reciprocal of g is 

𝑔𝜏(𝑧) = 𝑧𝑛𝑔(1/𝑧̄) = −𝑧3 + 4𝑧2 − 6𝑧 + 4 
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Therefore, the test function can be written as 

𝛹(𝑧) =
𝑔(𝑧) − 𝑔𝜏(𝑧)

𝑔(𝑧) + 𝑔𝜏(𝑧)
=

5𝑧3 − 10𝑧2 + 10𝑧 − 5

3𝑧3 − 2𝑧2 − 2𝑧 + 3
 

Using the old procedure of [9, P.6-8], 𝛹(𝑧) given by (3) above can be expanded as 

follows: 

𝛹(𝑧) =
15

11
(

𝑧 − 1

𝑧 + 1
) +

1

121
40 (

𝑧 − 1
𝑧 + 1) +

1
40
11 (

𝑧 − 1
𝑧 + 1)

 

Since ℎ𝑖 > 0 and 𝑘𝑖 = 0 for 0 ≤ 𝑖
≤ 2, the conditions of [8, Theorem 1] are satisfied, 

and the polynomial 𝑔(𝑧) = 4𝑧3 − 6𝑧2 + 4𝑧 − 1is Shur stable. 

In fact the zeros of 𝑔(𝑧) are 
1

2
,
1

2
+

1

2
𝑖,

1

2
−

1

2
𝑖 all lying inside the unit circle. 

In this expansion, we needed 3 (degree of g) iterations:  

first for ℎ1 =
15

11
, 𝑘1 = 0, second for ℎ2 =

121

40
, 𝑘2 = 0, and third for ℎ3 =

40

11
, 𝑘3

= 0. 
 

(b) The new procedure: 

 

Now, let us expand 𝛹(𝑧) using the new procedure illustrated in expansion (7), 

namely 

 

𝛹(𝑧) = 𝑘1

𝑧 + 1

𝑧 − 1
+

1

ℎ2
𝑧 − 1
𝑧 + 1 + 𝑘2

𝑧 + 1
𝑧 − 1

 

 

The coefficients 𝑘1, ℎ2 and 𝑘2 are now easily calculated using the new procedure. 
 

𝑘1 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙ 𝛹(𝑧)) =

1

5
 

Easy to verify that the function  

𝛹1(𝑧) = 𝛹(𝑧) −
1

5
(

𝑧 + 1

𝑧 − 1
) 

can be written as: 

𝛹1(𝑧) =
2

5
(

𝑧2 − 1

𝑧2 − 𝑧 + 1
) 

 

and the coefficients ℎ2 and 𝑘2 can now be calculated as 
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ℎ2 = lim
𝑧→−1

(
𝑧 + 1

𝑧 − 1
∙

1

𝛹1(𝑧)
) =

15

8
 

 

𝑘2 = lim
𝑧→1

(
𝑧 − 1

𝑧 + 1
∙

1

𝛹1(𝑧)
) =

5

8
 

 

Finally, 

𝛹(𝑧) =
1

5
(

𝑧 + 1

𝑧 − 1
) +

1

15
8 (

𝑧 − 1
𝑧 + 1) +

5
8 (

𝑧 + 1
𝑧 − 1)

 

 

In this expansion, we needed only 2 iterations ((degree+1)/2: one for 𝑘1, another for 

ℎ2 and 𝑘2. 
 

We also note the extremely simple calculations to generate the coefficients 

𝑘1, ℎ2, and 𝑘2 compared to the highly elaborate computations of the old 

procedure [9, P. 6 − 8]. 
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