Blow-up Phenomenon to a Generalized Camassa-Holm Equation

Ying Wang

Department of Mathematics
Zunyi Normal University, 563006, Zunyi, China

Abstract
Considered in this paper is a generalized Camassa-Holm equation proposed by Novikov. Firstly, a blow-up criterion is established. Then, a new blow-up phenomenon is derived for the equation.

Mathematics Subject Classification: 35D05, 35G25, 35L05, 35Q35

Keywords: Blow-up phenomenon; Blow-up criterion; A generalized Camassa-Holm equation

1 Introduction

One of the most celebrated models of shallow water wave is the Camassa-Holm (CH) equation

\[u_t - u_{txx} + 3uu_x - 2u_x u_{xx} - uu_{xxx} = 0, \quad (1) \]

which was derived first by Fokas and Fuchssteiner [1] as a bi-Hamiltonian generalization of the KdV equation. It describes a certain non-Newtonian fluids and models finite length, small amplitude radial deformation waves in cylindrical hyperelastic rods [2]. The physical derivation and the discovery of soliton for the equation were done by Camassa and Holm [3]. It is shown in [3] that equation (1) possesses a Lax pair and infinitely many conserved integrals. The remarkable features of the CH equation can be found in [4, 5] and the references therein.
In this paper, we consider the Cauchy problem of integrable dispersive wave equation

\[
\begin{aligned}
&\begin{cases}
 u_t - u_{txx} - 4uu_x + 6u_xu_{xx} + 2uu_{xxx} - 2u_x^2 - 2uu_{xx} = 0, \\
 u(0, x) = u_0(x),
\end{cases}
\end{aligned}
\]

which is presented in Novikov [6]. It is shown in [6] that Eq. (2) admits a hierarchy of local higher symmetries. Eq. (2) is regarded as a generalized Camassa-Holm equation (or a generalized Degasperis-Procesi equation [7]) because it has similar structure with them. In [7], Li and Yin established the local existence and uniqueness of strong solutions for the problem (2) in nonhomogeneous Besov spaces by using the Littlewood-Paley theory. The well-posedness of (2) was studied in [8] for the periodic and the nonperiodic cases in the sense of Hadamard. In addition, nonuniform dependence was proved by using the method of approximate solutions and well-posedness estimates. However, to our best knowledge, the blow-up mechanisms and travelling waves have not been investigated yet.

Inspired by the works [7,8], our aim in this paper is to investigate whether or not equations (2) with nonlocal nonlinearities has similar remarkable properties as Eq. (1). More precisely, we firstly establish a blow-up criterion, then a new blow-up phenomenon for the problem (2) is derived. One of difficult issues in our blow-up phenomenon analysis is that there is not the estimate of the norm \(\| u \|_{H^1} \) for the problem (2). To overcome the difficult, we subtly select to track the blow-up quantities

\[
P(t) = \left(\sqrt{2}u + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{10}}{2} \right)u_x \right)(t, q(t, x_1))
\]

and

\[
Q(t) = \left(\sqrt{2}u + \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{10}}{2} \right)u_x \right)(t, q(t, x_1))
\]

along the characteristics. In fact, in the blow-up analysis, the interaction between \(u \) and \(u_x \) plays a key role, which motivates us to carry out a refined analysis of the characteristic dynamics of \(P \) and \(Q \). For the problem (2), the estimates of \(P \) and \(Q \) can be closed in the form of

\[
P'(t) \leq \alpha PQ, \quad Q'(t) \geq -\beta PQ,
\]

where \(\alpha, \beta \geq 0 \) can be constants. From (3) the monotonicity of \(P \) and \(Q \) can be established, and hence the finite-time blow-up follows.

\section{Preliminary}

We write the equivalent form of the problem (2) as follows

\[
\begin{aligned}
&\begin{cases}
 u_t - 2uu_x = \partial_x(1 - \partial_x^2)^{-1}(u^2 + (u^2)_x), \\
 u(0, x) = u_0(x)
\end{cases}
\end{aligned}
\]

The characteristics \(q(t, x) \) relating to (4) is governed by

\[
\begin{aligned}
&\begin{cases}
 q_t(t, x) = -2u(t, q(t, x)), \quad t \in [0, T), \\
 q(0, x) = x, \quad x \in \mathbb{R}.
\end{cases}
\end{aligned}
\]
Applying the classical results in the theory of ordinary differential equations, one can obtain that the characteristics \(q(t, x) \in C^1([0, T) \times \mathbb{R}) \) with \(q_u(t, x) > 0 \) for all \((t, x) \in [0, T) \times \mathbb{R}\). Furthermore, it is shown from [7] that the potential \(m = u - u_{xx} \) satisfies
\[
m(t, q(t, x))q_x^2(t, x) \geq m_0(x)e^{-\int_0^t (2u_x - 2u)(\tau, q(\tau, x))d\tau}.
\]

2.1 Notation

We firstly give some notations.

Let \(\mathbb{R} \) denote real number set. The space of all infinitely differentiable functions \(\phi(t, x) \) with compact support in \([0, +\infty) \times \mathbb{R}\) is denoted by \(C_0^\infty \). Let \(L^p = L^p(\mathbb{R})(1 \leq p < +\infty) \) be the space of all measurable functions \(h \) such that
\[
\| h \|_{L^p} = \int_\mathbb{R} |h(t, x)|^pdx < \infty.
\]
We define \(L^\infty = L^\infty(\mathbb{R}) \) with the standard norm \(\| h \|_{L^\infty} = \sup_{x \in \mathbb{R}}|h(t, x)| \). For any real number \(s \), \(H^s = H^s(\mathbb{R}) \) denotes the Sobolev space with the norm defined by
\[
\| h \|_{H^s} = \left(\int_\mathbb{R} (1 + |\xi|^2)^s |\hat{h}(t, \xi)|^2d\xi \right)^{\frac{1}{2}} < \infty,
\]
where \(\hat{h}(t, \xi) = \int_\mathbb{R} e^{i\xi \tau} h(t, \tau)d\tau \).

We denote by \(* \) the convolution, and the convolution product on \(\mathbb{R} \) is defined by
\[
(f * g)(x) = \int_\mathbb{R} f(y)g(x - y)dy.
\]

Using the Green function \(g(x) = \frac{1}{2}e^{-|x|} \), we have \((1 - \partial_x^2)^{-1} f = g(x) * f \) for all \(f \in L^2 \), and \(g(u - u_{xx}) = u \). For \(T > 0 \) and nonnegative number \(s \), \(C([0, T); H^s(\mathbb{R})] \) denotes the Frechet space of all continuous \(H^s \)-valued functions on \([0, T)\). For simplicity, throughout this article, we let \(C \) denote any positive constant.

2.2 Several Lemmas

In this section, we firstly give some Lemmas.

Lemma 2.1. (Kato and Pronce [9]) Let \(r > 0 \). If \(u \in H^r \cap W^{1,\infty} \) and \(v \in H^{r-1} \cap L^\infty \), then
\[
\| [A^r, u]v \|_{L^2} \leq c(\| \partial_x u \|_{L^\infty} \| A^{r-1} v \|_{L^2} + \| A^r u \|_{L^2} \| v \|_{L^\infty}),
\]
where \([A^r, u]v = A^r(uv) - uA^rv\).

Lemma 2.2. (Kato and Pronce [9]) If \(r > 0 \), then \(H^r \cap L^\infty \) is an algebra. Moreover,
\[
\| uv \|_{H^r} \leq c(\| u \|_{L^\infty} \| v \|_{H^r} + \| u \|_{H^r} \| v \|_{L^\infty}),
\]
where c is a constant depending only on r.

Lemma 2.3. Let $u_0(x) \in H^1(\mathbb{R})$. Then the following inequality holds

$$\| u(t, x) \|_{H^1(\mathbb{R})} \leq \| u_0(x) \|_{H^1(\mathbb{R})} e^{2 \int_0^t \| u_x \|_{L^\infty} dt}.$$ \hspace{1cm} (9)

Proof.

Multiplying both sides of (2) by u and integrating with respect to x on \mathbb{R}, we get

$$\frac{1}{2} \frac{d}{dt} \int_\mathbb{R} (u^2 + u_x^2) dx = \int_\mathbb{R} u_x^2 dx - \int_\mathbb{R} 2uu_x^2 dx \leq 2 \| u_x \|_{L^\infty} \int_\mathbb{R} (u^2 + u_x^2) dx.$$ \hspace{1cm} (10)

Using Gronwall’s inequality, we obtain (9).

Definition 2.1. Given initial data $u_0 \in H^s$, $s > \frac{3}{2}$, the function u is said to be a weak solution to the initial-value problem (21) if it satisfies the following identity

$$\int_0^T \int_\mathbb{R} u \varphi_t - u^2 \varphi_x - p^* (u^2 + 2uu_x) \varphi_x dx dt + \int_\mathbb{R} u_0(x) \varphi(0, x) dx = 0$$ \hspace{1cm} (11)

for any smooth test function $\varphi(t, x) \in C^\infty_c([0, T] \times \mathbb{R})$. If u is a weak solution on $[0, T)$ for every $T > 0$, then it is called a global weak solution.

3 Blow-up

3.1 Blow-up criterion

The blow-up criterion was listed as follows

Theorem 3.1. Let $u_0 \in H^r(\mathbb{R})$ with $r > \frac{3}{2}$. Then the corresponding solution u to problem (2) blows up in finite time if and only if

$$\lim_{{t \to T^-}} \inf_{x \in \mathbb{R}} \{|u_x|\} = +\infty.$$ \hspace{1cm} (12)

Proof. Applying Λ^r to two sides of Eq. (21) and multiplying by $\Lambda^r u$ and integrating on \mathbb{R}

$$\frac{1}{2} \frac{d}{dt} \int_\mathbb{R} (\Lambda^r u)^2 = 2 \int_\mathbb{R} \Lambda^r (uu_x) \Lambda^r u dx + \int_\mathbb{R} \Lambda^r f(u) \Lambda^r u dx,$$ \hspace{1cm} (13)

where $f(u) = \partial_x (1 - \partial_x^2)^{-1} \left[u^2 + (u^2)_x \right]$.

Thanks to Lemma 2.1 and 2.2, we get

\[
\int_{\mathbb{R}} \Lambda^r(uu_x)\Lambda^r udx = \int_{\mathbb{R}} [\Lambda^r, u]u_x \Lambda^r udx + \int_{\mathbb{R}} u\Lambda^r u_x\Lambda^r u
\]

\[
\leq \| [\Lambda^r, u]u_x \|_{L^2} \| \Lambda^r u \|_{L^2} + c \| u_x \|_{L^\infty} \| u \|_{H^r}^2
\]

\[
\leq c \| u \|_{H^r} (\| u_x \|_{L^\infty} \| u_x \|_{H^{r-1}} + \| u \|_{H^r} \| u_x \|_{L^\infty})
\]

\[
+ c \| u_x \|_{L^\infty} \| u \|_{H^r}^2
\]

\[
\leq c \| u_x \|_{L^\infty} \| u \|_{H^r}^2. \tag{14}
\]

Similarly, we have

\[
| \int_{\mathbb{R}} \Lambda^r f(u)\Lambda^r udx | \leq \| u \|_{H^r} \| \Lambda^r f(u) \|_{L^2} \tag{15}
\]

and

\[
\| \Lambda^r f(u) \|_{L^2} \leq \| \partial_x(1 - \partial^2_x)^{-1} \left[u^2 + 2uu_x \right] \|_{H^r}
\]

\[
\leq \| u^2 \|_{H^{r-1}} + \| u^2 \|_{H^r}
\]

\[
\leq c \| u^2 \|_{H^r} \leq c \| u \|_{L^\infty} \| u \|_{H^r}, \tag{16}
\]

where we have used Lemma 2.1.

It follows from (13), (14), (16) and Lemma 2.3 that

\[
\frac{d}{dt} \| u \|_{H^r}^2 \leq c \| u \|_{H^r}^2 (1 + \| u_x \|_{L^\infty} + \| u_0(x) \|_{H^1(\mathbb{R})} e^{2\int_{0}^{t}\|u_x\|_{L^\infty} ds}). \tag{17}
\]

Therefore, if there exists a positive number \(M \) such that \(\| u_x \|_{L^\infty} \leq M \), then Gronwall’s inequality gives rise to

\[
\| u \|_{H^r}^2 \leq c \| u_0 \|_{H^r}^2 e^{\int_{0}^{t}(1+M+\|u_0(x)\|_{H^1(\mathbb{R})})e^{2Ms}ds}, \tag{18}
\]

which implies that \(u \) does not blow up. This completes the proof of Theorem 3.1.

3.2 Blow-up phenomenon

In this section, we give a new blow-up phenomenon.

Theorem 3.2. Let \(u_0 \in H^s(\mathbb{R}), s > \frac{3}{2} \). There is a point \(x_1 \in \mathbb{R} \) such that

\[
|\sqrt{2}u_0(x_1) + \frac{\sqrt{2}}{2}u_{0,x}(x_1)| < \frac{\sqrt{10}}{2}u_{0,x}(x_1).
\]

Then the blow-up occurs in finite time \(T_0 \) with

\[
T_0 \leq \frac{\sqrt{5} + 1}{4\sqrt{-u_0^2(x_1) - u_0(x_1)u_{0,x}(x_1) + u_{0,x}^2(x_1)}} < \infty. \tag{19}
\]
Proof. Along with the trajectory of \(q(t, x) \) defined in (5), we have

\[
\frac{\partial u(t, q)}{\partial t} = \partial_x (1 - \partial_x^2)^{-1}(u^2 + (u_x)^2) \tag{20}
\]

and

\[
\frac{\partial u_x(t, q)}{\partial t} = 2u_x^2 - u^2 - 2uu_x + (1 - \partial_x^2)^{-1}(u^2 + (u_x)^2). \tag{21}
\]

At the point \((t, q(t, x_1))\), we select to track the dynamics of \(P(t) = (\sqrt{2}u + (\sqrt{2} + \sqrt{10})u_x)(t, q(t, x_1)) \) and \(Q(t) = (\sqrt{2}u + (\sqrt{2} - \sqrt{10})u_x)(t, q(t, x_1)) \) along the characteristics, we obtain

\[
P'(t) = \sqrt{2}\frac{\partial u(t, q(t, x_1))}{\partial t} + (\sqrt{2} + \sqrt{10})\frac{\partial u_x(t, q(t, x_1))}{\partial t}
\]

\[
= \sqrt{2}\partial_x (1 - \partial_x^2)^{-1}(u^2 + (u_x)^2) + (\sqrt{2} + \sqrt{10})(2u_x^2 - u^2 - 2uu_x + (1 - \partial_x^2)^{-1}(u^2 + (u_x)^2))
\]

\[
= -\left(\frac{\sqrt{10}}{2} + \frac{3\sqrt{2}}{2}\right)u^2 + \left(\frac{\sqrt{10}}{2} + \frac{\sqrt{2}}{2}\right)(-2uu_x + 2u_x^2) + \left(\frac{\sqrt{10}}{2} + \frac{3\sqrt{2}}{2}\right)\int_0^\infty e^{-|x-y|}u^2dy
\]

\[
\geq -\left(\frac{\sqrt{10}}{2} + \frac{\sqrt{2}}{2}\right)(-2uu_x + 2u_x^2)
\]

\[
\geq \left(\frac{\sqrt{10}}{2} + \frac{\sqrt{2}}{2}\right)(-2uu_x + 2u_x^2)
\]

\[
\geq -\left(\frac{\sqrt{10}}{2} + \frac{\sqrt{2}}{2}\right)PQ \tag{22}
\]

and

\[
Q'(t) = \sqrt{2}\frac{\partial u(t, q(t, x_1))}{\partial t} - (\sqrt{2} - \sqrt{10})\frac{\partial u_x(t, q(t, x_1))}{\partial t}
\]

\[
= \sqrt{2}\partial_x (1 - \partial_x^2)^{-1}(u^2 + (u_x)^2) - (\sqrt{2} - \sqrt{10})(2u_x^2 - u^2 - 2uu_x + (1 - \partial_x^2)^{-1}(u^2 + (u_x)^2))
\]

\[
= -\left(\frac{\sqrt{10}}{2} + \frac{3\sqrt{2}}{2}\right)u^2 - \left(\frac{\sqrt{10}}{2} - \frac{\sqrt{2}}{2}\right)(-2uu_x + 2u_x^2) + \left(\frac{\sqrt{10}}{2} + \frac{3\sqrt{2}}{2}\right)\int_0^\infty e^{-|x-y|}u^2dy
\]

\[
\leq -\left(\frac{\sqrt{10}}{2} + \frac{3\sqrt{2}}{2}\right)u^2 - \left(\frac{\sqrt{10}}{2} - \frac{\sqrt{2}}{2}\right)(-2uu_x + 2u_x^2) + (3\sqrt{2} - \sqrt{10})g * u^2
\]

\[
\leq 1/2(3\sqrt{2} - \sqrt{10})u_x^2 - \left(\frac{\sqrt{10}}{2} - \frac{\sqrt{2}}{2}\right)(-2uu_x + 2u_x^2)
\]

\[
\leq -\left(\frac{\sqrt{10}}{2} - \frac{\sqrt{2}}{2}\right)(-2uu_x + 2u_x^2)
\]

\[
\leq \left(\frac{\sqrt{10}}{2} - \frac{\sqrt{2}}{2}\right)PQ, \tag{23}
\]

where \(\|g\|_{L^1} = 1\) is applied.

Then we obtain

\[
P'(t) \geq -\left(\frac{\sqrt{10}}{2} + \frac{\sqrt{2}}{2}\right)PQ, \tag{24}
\]

\[
Q'(t) \leq \left(\frac{\sqrt{10}}{2} - \frac{\sqrt{2}}{2}\right)PQ. \tag{25}
\]
From assumptions of Theorem 3.2, the initial data satisfies
\begin{align*}
P(0) &= \sqrt{2}u_0(x_1) + \frac{\sqrt{2}}{2}u_{0,x}(x_1) + \frac{\sqrt{10}}{2}u_{0,x}(x_1) > 0, \\
Q(0) &= \sqrt{2}u_0(x_1) + \frac{\sqrt{2}}{2}u_{0,x}(x_1) - \frac{\sqrt{10}}{2}u_{0,x}(x_1) < 0, \\
P(0)Q(0) &= < 0. \quad (26)
\end{align*}
Therefore, using the continuity of $P(t)$ and $Q(t)$ along the characteristics emanating from x_1, the following inequalities
\begin{align*}
P(t) > P(0) > 0, \quad Q(t) < Q(0) < 0 \quad (27)
\end{align*}
and
\begin{align*}
P'(t) > 0, \quad Q'(t) < 0 \quad (28)
\end{align*}
hold.

Letting $h(t) = \sqrt{-PQ(t)}$ and using the estimate \(\frac{P-Q}{2} \geq h(t) \), we have
\begin{align*}
h'(t) &= -\frac{P'Q + PQ'}{2\sqrt{-PQ}} \\
&\geq \frac{(\sqrt{10} + \sqrt{2})PQ^2 - (\sqrt{10} - \sqrt{2})P^2Q}{2\sqrt{-PQ}} \\
&\geq -\frac{(\sqrt{10} - \sqrt{2})PQ(P - Q)}{2\sqrt{-PQ}} \\
&\geq (\frac{\sqrt{10} - \sqrt{2}}{2})h^2. \quad (29)
\end{align*}

Solving (29) gives rise to
\begin{align*}
\frac{1}{h} \leq \frac{1}{h(0)} - (\frac{\sqrt{10} - \sqrt{2}}{2})t, \quad (30)
\end{align*}
which implies that $h \rightarrow +\infty$ as $t \rightarrow T_0$ with T_0 given by
\begin{align*}
T_0 &\leq \frac{\sqrt{10} + \sqrt{2}}{4} \frac{1}{h(0)} = \frac{\sqrt{5} + 1}{4\sqrt{-u_0^2(x_1) - u_0(x_1)u_{0,x}(x_1) + u_{0,x}^2(x_1)}} < \infty. \quad (31)
\end{align*}
Observe that $h(t) = \sqrt{\frac{5}{2}u_x^2 - 2(u + \frac{1}{2}u_{x})} < |\frac{\sqrt{10}}{2} | u_x(t,q(t,x_1)) |$. Therefore, $h \rightarrow +\infty$ as $t \rightarrow T_0$ implies $| u_x(t,q(t,x_1)) | \rightarrow +\infty$ as $t \rightarrow T_0$.

The proof of Theorem 3.2 is completed.

Acknowledgments. This research was funded by the Guizhou Province Science and Technology Basic Project (Grant No. QianKeHe Basic [2020]1Y011).
References

Received: November 30, 2023; Published: December 19, 2023