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Abstract

Considered in this paper is a generalized Camassa-Holm equation
proposed by Novikov. Firstly, a blow-up criterion is established. Then,
a new blow-up phenomenon is derived for the equation.
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1 Introduction

One of the most celebrated models of shallow water wave is the Camassa-Holm
(CH)equation

Up — Uppy + 3UUL — 2UpUpy — Ullgyy = 0, (1)

which was derived first by Fokas and Fuchssteiner [1] as a bi-Hamiltonian
generalization of the KdV equation. It describes a certain non-Newtonian
fluids and models finite length, small amplitude radial deformation waves in
cylindrical hyperelastic rods [2]. The physical derivation and the discovery of
soliton for the equation were done by Camassa and Holm [3]. It is shown in [3]
that equation (1) possesses a Lax pair and infinitely many conserved integrals.
The remarkable features of the CH equation can be found in [4,5] and the
references therein.
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In this paper, we consider the Cauchy problem of integrable dispersive wave
equation

U — Upge — AUy + Uz ULp + 2Ulgry — 202 — 2Ullyy = 0,
: 2)
{ u(0,z) = uo(z),

which is presented in Novikov [6]. It is shown in [6] that Eq.(2) admits a hier-
archy of local higher symmetries. Eq.(2) is regarded as a generalized Camassa-
Holm equation (or a genenralized Degasperis-Procesi equation [7]) because it
has similar structure with them. In [7], Li and Yin established the local ex-
istence and uniqueness of strong solutions for the problem (2) in nonhomoge-
neous Besov spaces by using the Littlewood-Paley theory. The well-posedness
of (2) was studied in [8] for the periodic and the nonperiodic cases in the sense
of Hadamard. In addition, nonuniform dependence was proved by using the
method of approximate solutions and well-posedness estimates. However, to
our best knowledge, the blow-up mechanisms and travelling waves have not
been investigated yet.

Inspired by the works [7,8], our aim in this paper is to investigate whether or
not equations (2) with nonlocal nonlinearities has similar remarkable properties
as Eq. (1). More precisely, we firstly establish a blow-up criterion, then a new
blow-up phenomenon for the problem (2) is derived. Ome of difficult issues
in our blow-up phenomenon analysis is that there is not the estimate of the
norm || u ||z for the problem (2). To overcome the difficult, we subtly select
to track the blow-up quantities P(t) = (v2u + (‘/75 + @)%) (t,q(t,z1)) and
Q) = (V2u+ (\/75 — @)ul«)(t, q(t,z1)) along the characteristics. In fact, in
the blow-up analysis, the interaction between v and u, plays a key role, which
motivates us to carry out a refined analysis of the characteristic dynamics of
P and Q. For the problem (2), the estimates of P and @ can be closed in the
form of

P(t) <aPQ, Q1) > —APQ, 3)
where «, f > 0 can be constants. From (3) the monotonicity of P and @ can
be established, and hence the finite-time blow-up follows.

2 Preliminary
We write the equivalent form of the problem (2) as follows

Uy — 2ut, = 0.(1 — 0%)~Hu? + (u?),), (4)
u(0,z) = up(x)
The characteristics q(t, z) relating to (4) is governed by

{ @t x) = =2u(t, q(t,x)), te€l0,T),
q(0,2) =z, z€R.
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Applying the classical results in the theory of ordinary differential equations,
one can obtain that the characteristics ¢(¢,z) € C'([0,T) xR) with q,(¢,z) > 0
for all (t,z) € [0,7) x R. Furthermore, it is shown from [7] that the potential
m = u — Uy, satisfies

m(t, q(t, 2))@2(t ) > mo(w)e Jo2urm2ratrir, ()

2.1 Notation

We firstly give some notations.

Let R denote real number set. The space of all infinitely differentiable functions
¢(t,z) with compact support in [0, +00) x R is denoted by C§°. Let LP =
LP(R)(1 < p < 4+00) be the space of all measurable functions A such that
| h||Fe= [g|h(t,z)[Pde < co. We define L® = L*(R) with the standard
norm || i [[ oo = infy(e)=0SUp,e | A(t, ¥)|. For any real number s, H* = H*(R)
denotes the Sobolev space with the norm defined by

I e ( Ja~ rsmsvz(t,s)\?ds)z < oo,

where h(t,£) = Je e h(t, z)dx.

We denote by * the convolutlon, and the convolution product on R is defined

by
- / F(w)a(z — v)dy. (6)

Using the Green function g(z) = e *l, we have (1 — 9%)7'f = g(z)  f for
all f € L? and g * (u — uy,) = u. For T > 0 and nonnegative number s,
C([0,T); H*(R)) denotes the Frechet space of all continuous H?*-valued func-
tions on [0,7). For simplicity, throughout this article, we let C' denote any
positive constant

2.2 Several Lemmas

In this section, we firstly give some Lemmas.
Lemma 2.1.( Kato and Pronce [9]) Let r > 0.If u € H" N WH* and
ve H 1N L™, then

A" ulv [|z2< e(] Opw [zl Ao [l22 + || Amw [zl v [|2), (7)

where [A”, ulv = A" (uv) — ul"v.
Lemma 2.2. ( Kato and Pronce [9])If r > 0, then H" N L*> is an algebra.
Moreover,

lwv ([ < el w llzooll 0 e + (][] 0 flze), (8)
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where ¢ 1s a constant depending only on r.
Lemma 2.3. Let up(z) € HY(R). Then the following inequality holds

t
[t 2) [l <I| uole) [l e*fol=le=ar. (9)

Proof.
Multiplying both sides of (2) by u and integrating with respect to x on R,
we get

1d/ 2,2 / 3 / 2
—— [ (v F+uy)dr = [ uydr — [ 2uu,dx
2dt R< ) R R
<2 uy | /(u2+u§)dx. (10)
R

Using Gronwall’s inequality, we obtain (9).
Definition 2.1. Given initial data ug € H®, s > %, the function u is
said to be a weak solution to the initial-value problem (21) if it satisfies the

following identity
T
| [ ten = ps a2+ 2un)pudodt + [ wn()p0.0)de =0 (1)
0o JR R

for any smooth test function ¢(t,x) € C([0,T) x R). If u is a weak solution
on [0,T) for every T > 0, then it is called a global weak solution.

3 Blow-up

3.1 Blow-up criterion

The blow-up criterion was listed as follows
Theorem 3.1.Let ug € H'(R) withr > 3. Then the corresponding solution
u to problem (2) blows up in finite time if and only if
lim in£{|ux|} = 400. (12)

t—T— xz€

Proof. Applying A" to two sides of Eq. (21) and multiplying by A"« and
integrating on R
1d

—— [ (A"u)? :Z/AT(uux)Arudx—f—/ATf(u)Arudx, (13)

where f(u) = 9,(1 — 82)~! lu2 + (u2)$] .
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Thanks to Lemma 2.1 and 2.2, we get

/Ar(uum)/\rudx:/[Ar,u]uxArudx+/uAruxATu
R R

R
<I A" W [zl Amw (22 +e || o [z w |17
<cllwllm (e o<l e L= + 1w llae ]| va flze)
+e || g [l w17
< el ug ol w llF- - (14)

Similarly, we have

!/A’"f(U)A’"udeISHUHHrH A" f(u) |22 (15)
R
and

| A7 F () || <]) D4 (1 — 02" [ ; Zuux} .

<l w* e + [l v |z
<cllu lm< el ullze] wllm, (16)

where we have used Lemma 2.1.
It follows from (13), (14), (16) and Lemma 2.3 that

d t Uu. oo aT
el < ellu lar ([ e [l + [ uo(@) [l ¢Hlolluallzdry —(17)

Therefore, if there exists a positive number M such that || u, ||p~< M, then
Gronwall’s inequality gives rise to

| |20 < ¢ || uo |3 efot(1+M+||UO(JJ)||H1(R)52Ms)d87 (18)

which implies that u does not blow up. This completes the proof of Theorem
3.1.

3.2 Blow-up phenomenon

In this section, we give a new blow-up phenomenon.
Theorem 3.2. Let ug € H*(R), s > 3. There is a point x1 € R such that
1V2uo (1) + %iuo,x(:vlﬂ < @Uow(ml). Then the blow-up occurs in finite time

Vh+1

TO < < Q. (19)
4\/—u8(x1) — ug(x1)uo e (1) + U%,x<x1)
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Proof. Along with the trajectory of ¢(¢,x) defined in (5),we have

du(t,q) 2 2 2
= 0,1 ) (e + ()) (20)
and
Ou.(t, q) 6.2 2 2\—1/, 2 2
= 2u; — u® — 2uu, + (1 — 07) 7 (u” + (u”),). (21)

At the point (t,q(t,21)), we select to track the dynamics of P(t) = (vV2u +

(8 + %%)us) (1, q(t,21)) and Q() = (V2u + (F — *50)us) (t.q(t, 11)) along
the characteristics, we obtain

P,(t):ﬂau(t,%(:m))ﬂg g) (t;t(tvwl))

=V20,(1 - 07) 7 (u® + (u?)2) + (g \/TTO)[Qui—uQ—2uuz+(1—83)’1(u2+(u2)z)]
:—(g 3\f) +(§ £)(—MIJFQui)JF(@Jr?’T\/ﬁ)/fe*‘””*y‘u%zy
z—(*/TTO %)u +(§ ?)(—%uzwui)

2(@+g)( 2u? — 2uug + 2u?)

> (0, 2 g (22

and

ot
= V20,1 — )70 (0)e) — (Y0 — Y222 <~ 2y + (1 03)7 (2 + (u))
R N e A ) e
< (VIO B (O VR, ) 4 (3v2 - VD) # 0
g%(&f—@) 2—(@7§)( 2utg + 2u?)
S,(@, \f)( 2u? — 2uug + 2u?)
< (0 -pe, (23)

where || g ||[;1=1 is applied.
Then we obtain

)PQ, (24)
) PQ. (25)
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From assumptions of Theorem 3.2, the initial data satisfies

P(0) = v2up(z1) + \guo,x(%) + @UOJ(%) >0,
Q0) = \/§U0($1) + guo,z(%) - @%,x(%) <0,
P(0)Q(0) < 0. (26)

Therefore, using the continuity of P(t) and Q(¢) along the characteristics em-
anating from z, the following inequalities

P(t) > P(0)>0, Q) <Q0)<0 (27)
and
Pt)>0, Q) <0 (28)
hold.
Letting h(t) = /—PQ(t) and using the estimate P%Q > h(t), we have
o PQEPQ
=g
(3 +PIPQ* — (52— F)PQ
- 2y/—PQ
)
= 2y/—PO
> (U0 e (29

Solving (29) gives rise to

1 1 10 2
Lo L (02, (30)
h — h(0) 2 2
which implies that h — 400 as t — T with T given by
10 2 1 541
7, < YIOHV2 L V5 + < oo, (31)

- 4 h(0) 4\/—u(2)(x1) — ug(21)uo, (1) + uf ,(21)

Observe that h(t) = \/gui —2(u+ Fuy)? <| @ | uz(t,q(t, 1)) |. Therefore,
h — 400 as t — Tp implies | u,(t, q(t, z1)) | = +o00 as t — Tp.
The proof of Theorem 3.2 is completed.
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