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Abstract

Considered in this paper is a generalized Camassa-Holm equation
proposed by Novikov. Firstly, a blow-up criterion is established. Then,
a new blow-up phenomenon is derived for the equation.
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1 Introduction

One of the most celebrated models of shallow water wave is the Camassa-Holm
(CH)equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0, (1)

which was derived first by Fokas and Fuchssteiner [1] as a bi-Hamiltonian
generalization of the KdV equation. It describes a certain non-Newtonian
fluids and models finite length, small amplitude radial deformation waves in
cylindrical hyperelastic rods [2]. The physical derivation and the discovery of
soliton for the equation were done by Camassa and Holm [3]. It is shown in [3]
that equation (1) possesses a Lax pair and infinitely many conserved integrals.
The remarkable features of the CH equation can be found in [4, 5] and the
references therein.
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In this paper, we consider the Cauchy problem of integrable dispersive wave
equation {

ut − utxx − 4uux + 6uxuxx + 2uuxxx − 2u2x − 2uuxx = 0,
u(0, x) = u0(x),

(2)

which is presented in Novikov [6]. It is shown in [6] that Eq.(2) admits a hier-
archy of local higher symmetries. Eq.(2) is regarded as a generalized Camassa-
Holm equation (or a genenralized Degasperis-Procesi equation [7]) because it
has similar structure with them. In [7], Li and Yin established the local ex-
istence and uniqueness of strong solutions for the problem (2) in nonhomoge-
neous Besov spaces by using the Littlewood-Paley theory. The well-posedness
of (2) was studied in [8] for the periodic and the nonperiodic cases in the sense
of Hadamard. In addition, nonuniform dependence was proved by using the
method of approximate solutions and well-posedness estimates. However, to
our best knowledge, the blow-up mechanisms and travelling waves have not
been investigated yet.

Inspired by the works [7,8], our aim in this paper is to investigate whether or
not equations (2) with nonlocal nonlinearities has similar remarkable properties
as Eq. (1). More precisely, we firstly establish a blow-up criterion, then a new
blow-up phenomenon for the problem (2) is derived. One of difficult issues
in our blow-up phenomenon analysis is that there is not the estimate of the
norm ‖ u ‖H1 for the problem (2). To overcome the difficult, we subtly select

to track the blow-up quantities P (t) =
(√

2u + (
√
2
2

+
√
10
2

)ux
)
(t, q(t, x1)) and

Q(t) =
(√

2u + (
√
2
2
−
√
10
2

)ux
)
(t, q(t, x1)) along the characteristics. In fact, in

the blow-up analysis, the interaction between u and ux plays a key role, which
motivates us to carry out a refined analysis of the characteristic dynamics of
P and Q. For the problem (2), the estimates of P and Q can be closed in the
form of

P ′(t) ≤ αPQ, Q′(t) ≥ −βPQ, (3)

where α, β ≥ 0 can be constants. From (3) the monotonicity of P and Q can
be established, and hence the finite-time blow-up follows.

2 Preliminary

We write the equivalent form of the problem (2) as follows{
ut − 2uux = ∂x(1− ∂2x)−1(u2 + (u2)x),
u(0, x) = u0(x)

(4)

The characteristics q(t, x) relating to (4) is governed by{
qt(t, x) = −2u(t, q(t, x)), t ∈ [0, T ),
q(0, x) = x, x ∈ R.
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Applying the classical results in the theory of ordinary differential equations,
one can obtain that the characteristics q(t, x) ∈ C1([0, T )×R) with qx(t, x) > 0
for all (t, x) ∈ [0, T )×R. Furthermore, it is shown from [7] that the potential
m = u− uxx satisfies

m(t, q(t, x))q2x(t, x) ≥ m0(x)e−
∫ t
0 (2ux−2u)(τ,q(τ,x))dτ . (5)

2.1 Notation

We firstly give some notations.
Let R denote real number set. The space of all infinitely differentiable functions
φ(t, x) with compact support in [0,+∞) × R is denoted by C∞0 . Let Lp =
Lp(R)(1 ≤ p < +∞) be the space of all measurable functions h such that
‖ h ‖PLP =

∫
R |h(t, x)|pdx < ∞. We define L∞ = L∞(R) with the standard

norm ‖ h ‖L∞= infm(e)=0supx∈R\e|h(t, x)|. For any real number s, Hs = Hs(R)
denotes the Sobolev space with the norm defined by

‖ h ‖Hs=

(∫
R
(1 + |ξ|2)s|ĥ(t, ξ)|2dξ

) 1
2

<∞,

where ĥ(t, ξ) =
∫
R e
−ixξh(t, x)dx.

We denote by ∗ the convolution, and the convolution product on R is defined
by

(f ∗ g)(x) =

∫
R
f(y)g(x− y)dy. (6)

Using the Green function g(x) = 1
2
e−|x|, we have (1 − ∂2x)−1f = g(x) ∗ f for

all f ∈ L2, and g ∗ (u − uxx) = u. For T > 0 and nonnegative number s,
C([0, T );Hs(R)) denotes the Frechet space of all continuous Hs-valued func-
tions on [0, T ). For simplicity, throughout this article, we let C denote any
positive constant

2.2 Several Lemmas

In this section, we firstly give some Lemmas.
Lemma 2.1.( Kato and Pronce [9]) Let r > 0.If u ∈ Hr ∩ W 1,∞ and

v ∈ Hr−1 ∩ L∞, then

‖ [Λr, u]v ‖L2≤ c(‖ ∂xu ‖L∞‖ Λr−1v ‖L2 + ‖ Λru ‖L2‖ v ‖L∞), (7)

where [Λr, u]v = Λr(uv)− uΛrv.
Lemma 2.2. ( Kato and Pronce [9])If r > 0, then Hr ∩L∞ is an algebra.

Moreover,

‖ uv ‖Hr≤ c(‖ u ‖L∞‖ v ‖Hr + ‖ u ‖Hr‖ v ‖L∞), (8)
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where c is a constant depending only on r.
Lemma 2.3. Let u0(x) ∈ H1(R). Then the following inequality holds

‖ u(t, x) ‖H1(R)≤‖ u0(x) ‖H1(R) e
2
∫ t
0 ‖ux‖L∞dτ . (9)

Proof.
Multiplying both sides of (2) by u and integrating with respect to x on R,

we get

1

2

d

dt

∫
R
(u2 + u2x)dx =

∫
R
u3xdx−

∫
R

2uu2xdx

≤ 2 ‖ ux ‖L∞
∫
R
(u2 + u2x)dx. (10)

Using Gronwall’s inequality, we obtain (9).
Definition 2.1. Given initial data u0 ∈ Hs, s > 3

2
, the function u is

said to be a weak solution to the initial-value problem (21) if it satisfies the
following identity∫ T

0

∫
R
uϕt − u2ϕx − p ∗ (u2 + 2uux)ϕxdxdt+

∫
R
u0(x)ϕ(0, x)dx = 0 (11)

for any smooth test function ϕ(t, x) ∈ C∞c ([0, T )×R). If u is a weak solution
on [0, T ) for every T > 0, then it is called a global weak solution.

3 Blow-up

3.1 Blow-up criterion

The blow-up criterion was listed as follows
Theorem 3.1.Let u0 ∈ Hr(R) with r > 3

2
. Then the corresponding solution

u to problem (2) blows up in finite time if and only if

lim
t→T−

inf
x∈R
{|ux|} = +∞. (12)

Proof. Applying Λr to two sides of Eq. (21) and multiplying by Λru and
integrating on R

1

2

d

dt

∫
R
(Λru)2 = 2

∫
R

Λr(uux)Λ
rudx+

∫
R

Λrf(u)Λrudx, (13)

where f(u) = ∂x(1− ∂2x)−1
[
u2 + (u2)x

]
.
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Thanks to Lemma 2.1 and 2.2, we get∫
R

Λr(uux)Λ
rudx =

∫
R
[Λr, u]uxΛ

rudx+

∫
R
uΛruxΛ

ru

. ≤‖ [Λr, u]ux ‖L2‖ Λru ‖L2 +c ‖ ux ‖L∞‖ u ‖2Hr

≤ c ‖ u ‖Hr (‖ ux ‖L∞‖ ux ‖Hr−1 + ‖ u ‖Hr‖ ux ‖L∞)

+c ‖ ux ‖L∞‖ u ‖2Hr

≤ c ‖ ux ‖L∞‖ u ‖2Hr . (14)

Similarly, we have

|
∫
R

Λrf(u)Λrudx |≤‖ u ‖Hr‖ Λrf(u) ‖L2 (15)

and

‖ Λrf(u) ‖L2≤‖ ∂x(1− ∂2x)−1
[
u2 + 2uux

]
‖Hr

≤‖ u2 ‖Hr−1 + ‖ u2 ‖Hr

≤ c ‖ u2 ‖Hr≤ c ‖ u ‖L∞‖ u ‖Hr , (16)

where we have used Lemma 2.1.
It follows from (13), (14), (16) and Lemma 2.3 that

d

dt
‖ u ‖2Hr≤ c ‖ u ‖2Hr (1+ ‖ ux ‖L∞ + ‖ u0(x) ‖H1(R) e

2
∫ t
0 ‖ux‖L∞dτ ). (17)

Therefore, if there exists a positive number M such that ‖ ux ‖L∞≤ M , then
Gronwall’s inequality gives rise to

‖ u ‖2Hr≤ c ‖ u0 ‖2Hr e
∫ t
0 (1+M+‖u0(x)‖H1(R)e

2Ms)ds, (18)

which implies that u does not blow up. This completes the proof of Theorem
3.1.

3.2 Blow-up phenomenon

In this section, we give a new blow-up phenomenon.
Theorem 3.2. Let u0 ∈ Hs(R), s > 3

2
. There is a point x1 ∈ R such that

|
√

2u0(x1) +
√
2
2
u0,x(x1)| <

√
10
2
u0,x(x1). Then the blow-up occurs in finite time

T0 with

T0 ≤
√

5 + 1

4
√
−u20(x1)− u0(x1)u0,x(x1) + u20,x(x1)

<∞. (19)
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Proof. Along with the trajectory of q(t, x) defined in (5),we have

∂u(t, q)

∂t
= ∂x(1− ∂2x)−1(u2 + (u2)x) (20)

and

∂ux(t, q)

∂t
= 2u2x − u2 − 2uux + (1− ∂2x)−1(u2 + (u2)x). (21)

At the point (t, q(t, x1)), we select to track the dynamics of P (t) =
(√

2u +

(
√
2
2

+
√
10
2

)ux
)
(t, q(t, x1)) and Q(t) =

(√
2u + (

√
2
2
−
√
10
2

)ux
)
(t, q(t, x1)) along

the characteristics, we obtain

P ′(t) =
√
2
∂u(t, q(t, x1))

∂t
+ (

√
2

2
+

√
10

2
)
∂ux(t, q(t, x1))

∂t

=
√
2∂x(1− ∂2x)−1(u2 + (u2)x) + (

√
2

2
+

√
10

2
)[2u2x − u2 − 2uux + (1− ∂2x)−1(u2 + (u2)x)]

= −(
√
10

2
+

3
√
2

2
)u2 + (

√
10

2
+

√
2

2
)(−2uux + 2u2x) + (

√
10

2
+

3
√
2

2
)

∫ ∞
x

e−|x−y|u2dy

≥ −(
√
10

2
+

3
√
2

2
)u2 + (

√
10

2
+

√
2

2
)(−2uux + 2u2x)

≥ (

√
10

2
+

√
2

2
)(−2u2 − 2uux + 2u2x)

≥ −(
√
10

2
+

√
2

2
)PQ (22)

and

Q′(t) =
√
2
∂u(t, q(t, x1))

∂t
− (

√
10

2
−
√
2

2
)
∂ux(t, q(t, x1))

∂t

=
√
2∂x(1− ∂2x)−1(u2 + (u2)x)− (

√
10

2
−
√
2

2
)[2u2x − u2 − 2uux + (1− ∂2x)−1(u2 + (u2)x)]

= −(−
√
10

2
+

3
√
2

2
)u2 − (

√
10

2
−
√
2

2
)(−2uux + 2u2x) + (

−
√
10

2
+

3
√
2

2
)

∫ ∞
x

e−|x−y|u2dy

≤ −(−
√
10

2
+

3
√
2

2
)u2 − (

√
10

2
−
√
2

2
)(−2uux + 2u2x) + (3

√
2−
√
10)g ∗ u2

≤
1

2
(3
√
2−
√
10)u2 − (

√
10

2
−
√
2

2
)(−2uux + 2u2x)

≤ −(
√
10

2
−
√
2

2
)(−2u2 − 2uux + 2u2x)

≤ (

√
10

2
−
√
2

2
)PQ, (23)

where ‖ g ‖L1= 1 is applied.
Then we obtain

P ′(t) ≥ −(

√
10

2
+

√
2

2
)PQ, (24)

Q′(t) ≤ (

√
10

2
−
√

2

2
)PQ. (25)
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From assumptions of Theorem 3.2, the initial data satisfies

P (0) =
√

2u0(x1) +

√
2

2
u0,x(x1) +

√
10

2
u0,x(x1) > 0,

Q(0) =
√

2u0(x1) +

√
2

2
u0,x(x1)−

√
10

2
u0,x(x1) < 0,

P (0)Q(0) < 0. (26)

Therefore, using the continuity of P (t) and Q(t) along the characteristics em-
anating from x1, the following inequalities

P (t) > P (0) > 0, Q(t) < Q(0) < 0 (27)

and

P ′(t) > 0, Q′(t) < 0 (28)

hold.
Letting h(t) =

√
−PQ(t) and using the estimate P−Q

2
≥ h(t), we have

h′(t) = −P
′Q+ PQ′

2
√
−PQ

≥
(
√
10
2

+
√
2
2

)PQ2 − (
√
10
2
−
√
2
2

)P 2Q

2
√
−PQ

≥
−(
√
10
2
−
√
2
2

)PQ(P −Q)

2
√
−PQ

≥ (

√
10

2
−
√

2

2
)h2. (29)

Solving (29) gives rise to

1

h
≤ 1

h(0)
− (

√
10

2
−
√

2

2
)t, (30)

which implies that h→ +∞ as t→ T0 with T0 given by

T0 ≤
√

10 +
√

2

4

1

h(0)
=

√
5 + 1

4
√
−u20(x1)− u0(x1)u0,x(x1) + u20,x(x1)

<∞. (31)

Observe that h(t) =
√

5
2
u2x − 2(u+ 1

2
ux)2 <|

√
10
2
| ux(t, q(t, x1)) |. Therefore,

h→ +∞ as t→ T0 implies | ux(t, q(t, x1)) |→ +∞ as t→ T0.
The proof of Theorem 3.2 is completed.
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