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Abstract

Let A be the algebra of all bounded diagonal operators on an infi-
nite dimensional separable complex Hilbert space H. In this paper, we
characterize the algebra N(A) of unbounded operators affiliated with
A and the unbounded Borel functions of these operators.
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1 The bounded case

Let B(H) be the algebra of all bounded operators on an infinite dimensional
separable complex Hilbert space H and {e, : n € N} an orthonormal basis for
H. Given a sequence {a,} in C and = € H, the operator A € B(H) defined by

Az =3 ay(x,e,)e,, or equivalently, Ae, = aye, (n € N)

is called a diagonal operator on H.

Note that for each j = 1,2, ...., we have

o oo
Ae; = g (Aej, e;)e; g i(ej,ee; g a;o;je;,
i=1 i—1

where ¢;; is the Kronecher delta: ¢;; = 1 if ¢ = j and 0;; = 0 if ¢ # 4. In this
way, we associate to each diagonal operator an infinite diagonal matrix having
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a, as diagonal elements.

Let [* = [*(N,C) be the C*-algebra of all bounded complex sequences
{a,} with norm

{anHl = supa|
We denote by
A={A € B(H): Ae, = ape,, where {a,} € 1*} (1)
the sub-algebra of B(H) of all bounded diagonal operators on H.

Proposition 1.1. The mapping ¥ : A — [* defined by V(A) = {a,} , is an
isometric x-isomorphism from A onto [*°.

Proof. For each A € A and n € N, we have
|an| = llanen| = [|Aen|| < [[A[ll[en]] = [IAll.

Hence, sup, |a| < ||A]].
On the other hand, for every x € H, we have

o0 o o0
|| Az|[* = |] Z(xa en)Aen||? = || Z($’€n>anen||2 = Z |(z, en)[?|an?
n=1 n=1 n=1

x
< sup |ay,|? Z (2, e,)|* = sup |a,|*||z]|?,
n n=1 "

(the last equality by Parseval’s identity). Therefore, ||A|| < sup,, |a,|.
Thus,

1Al = sup |an| = [[{an}l;

and W is isometric. Finally, it is easy to see that WU is a x-isomorphism and
makes A an abelian C*-subalgebra of B(#H) with A*e,, = aye,,. O

Let X~ be the Gelfand space of [*° (the space of all non-zero multipicative
linear functional on [*°). Now, if p is a non-zero multiplicative linear functional
on [*°, the composite mapping poV is a non-zero multiplicative linear functional
on A. That is, p €X 4 (the Gelfand space of A). Accordingly, we can define a
mapping W% : Xjeo — X 4 by

Vi(p) =pol  (p€ Xp=).

Then the mapping ¥? is a homeomorhism (both spaces X;~ and X4 equipped
with the weak*-topology). Thus, we may identify X 4 with Xje.
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Since X~ = B(N) (the B-compactification of N, see e.g. [1, Exercise 3.5.5]),
we obtain

Let [2 = [*(N, C) be the Hilbert space of square summable complex sequences
{a,} with norm

[{an}| = (Z |an|2)

and U : H — [? be the unitary isomorphism

Uz = {(z,en) }o1-

Then, as is easily seen,

UAU = M,

where

M ={M,, € B(I*): {a,} €1}

is the multiplication algebra acting on [?. Moreover, M is maximal abelian i.e.
M’ = M, where M’ is the commutant of M. Therefore A is also maximal
abelian (A" = A). Hence, A” = A, and the double commutant theorem tells
us that A is an abelian von Neumann algebra. Thus, in view of the Gelfand-
Naimark theorem ([1, Theorem 4.4.3]), A = C'(X), where X = X 4. Moreover,
by ([1, Theorem 5.2.1]), X4 ~ B(N) is extremely disconnected compact Haus-
dorff space.

2 The unbounded case

A closed linear operator A defined on a dense linear subspace D(A) of H is said
to commute with the bounded operator T' € B(H), if TA C AT. This means
that for each x € D(A), we have Tz € D(A) and TAx = ATz. A projection £
on H such that EA C AE and AE € B(H) is called a bounding projection for
A. A bounding sequence for A is a non-decreasing sequence {E, }, _ of projec-
tions on H such that \/,_ | E, = I, E,A C AE,, and AE, € B(H) foralln € N.

Let {A} ={T € B(H) : TA C AT}. Itis easy to see that { A} is a strongly
closed sub-algebra of B(H), and T' € {A}" if and only if 7% € {A*}. Hence,
{AY N {A*} is a von Neumann algebra. A closed densely defined operator A
is affiliated with a von Neumann algebra U, denoted by AnlU if U’ C {A}'.
The algebra W*(A) = {{A} N {A*}/}, is the smallest von Neumann algebra
with which A is affiliated, and is referred to it as the von Neumann algebra
generated by A. In fact, an operator A is normal (A*A = AA*) if and only if
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it is affiliated with an abelian von Neumann algebra ([1, Theorem 5.6.18]).

Let U be an abelian von Neumann algebra. We denote by N (U) the abelian
x-algebra (with unit I) of the closed densely defined operators affiliated with
U ([1, Theorem 5.6.15]). The Gelfand space X = Xi; is an extremely dis-
connected compact Hausdorff space. Let C = C U {oo} be the one-point
compactification of the complex plane C. A function f : X — C is called
normal if f is continuous and Uy = X, where U; = {z € X : f(z) # co}. We
denote by N(X) the family of normal functions on X. If f,g € N(X), then
the sum f + g and product fg are both defined and continuous on Uy N U,
and have unique continuous extensions on X denoted by f+4g¢ and f - g re-
spectively ([2, Theorem 2.1]). Moreover, if f € N(X), then we define f*
to be the unique element of N(X) that extends the function f defined on
Us. Now (N(X),+, ) becomes a *-algebra containing C'(X) as subalgebra (]2,
Proposition 2.2]), and the Gelfand *-isomorphism I' : 4 — C(X) extends to
a x-isomorphism I' : N(U) — N(X) such that ['(AE) = T'(A) - I'(E) for
A € N(U) and any bounding projection E € U ([1, Theorem 5.6.19]).

The following theorem characterizes the unbounded operators affiliated
with the algebra A of diagonal operators, viz, N(A).

Theorem 2.1. Let A be a closed densely defined operator on H and {e, : n €
N} an orthonormal basis for H. Then A € N(A) if and only if there exists a
sequence {a,} in C such that

Z (z,en)en, D(A)={x € H : {an(x,e,)} € I*} (2)

Proof. Let A be the operator defined by (2). Clearly, if {a,} € [*°, then A € A.
Note also that e,, € D(A) for each m € N and A is a densely defined normal
operator. Moreover, Dy = span{e, : n € N} is a core for A, i.e., A = FDO,
where the bar refers to the closure of the operator. To see this, let x € D(A)
and take z, = > ;_, (2, ex)e;. Then as n — oo, we have z,, — = and

Ax, = Zaj(l’n,ej)ej = Zaj [(Z(m ek)€x, €; ] €; Z% LZ1 T, ) ek,ej))] €j

j=1 j=1 k=1 j=1

—gajxe]ejégajaje] = Ax.

We now show A C {A} . Let T" e A. Since Dy is a core for A, it is enough
to show that e, € Dy implies Te, € Dy and T'Ae,, = ATe, for all n € N.
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If Te, = t,e,, then clearly Te, € Dy and T Ae,, = ATe, = a,t,e,. Thus,
Ae N(A).

Next, we find the normal function ¢ = I'(4). First note that, for each n €
N, the functional p,, : A — C defined by p,(T) = (Ten, €,) is a multiplicative
linear functional on 4. Moreover, the set {p, : n € N} is a dense open subset
of X. For this first note that if (Te,,e,) = 0 with T" € A, then 7' = 0. Hence,
if f=T(T) e C(X), then f =0 on X. Next suppose that {p, : n € N} # X
(the closure in X), and let ¢ € X \ {p,:n € N}. Since X is a compact
Hausdorff space it is completely regular. Therefore, there exists f € C(X),
0 < f < 1 such that f(¢) = 1 and f = 0 on {p, : n € N}. In particular,
f(pn) =0, and so f = 0 on X, a contradiction. Now, let f € C(X) be such
that f(pm) =1 and f(p,) =0 for all n # m. Then X = {p,,} U{p, : n # m}.
Since f is continuous, it follows that f =0 on {p, : n # m}. Hence, f =x, |
(the characteristic function of {p,,}), and so {p,,} is an open (clopen) subset
of X. Thus, {p, : n € N} is an open dense subset of X. If P, is the projection
onto span{ey}, then P, € A and I'(P,) = x,, , - Moreover, each P, is a
bounding projection for A and {E, : n € N}, where E,, = > " | P, is a
bounding sequence for A.

Finally,

[(AP,) = T(AP,) =T(A) - T(Pn) = ¢ - X, -

At the same time, I'(APy,) = anl'(Py) = amx,,, ,- Thus, ¢(p,) = a, for each
n € N.

To prove the converse, suppose A € N(A) and let ['(A) = ¢. Take {a,} =
{¢(pn)}, and consider the operator Age,, = a,e, for all n € N. Then, arguing
as above, we get Ay € N(A) and I'(4y) = ¢ where @o(p,) = a,. Thus,
w = g, and so A = A.

[

Next we characterize the Borel functional calculus for diagonal operators.

Theorem 2.2. Let A € N(A) be Ae, = ane, and B,(c(A)) the algebra of
unbounded Borel functions on the spectrum o(A). If f € By(o(A)), then
f(Ae, = flay)e, with D(f(A)) = {z € H : {f(an)(z,e,)} € I} for all
n € N.

Proof. Let ¢ = I'(A). Then o(A) = Range(p)U{oo} = {a, : n € N}U{oo} =
{an : n € N} (see [1, Proposition 5.6.20]). Moreover, the function f o ¢ lies
in B,(X) (the algebra of Borel functions on X). Since the complement of
{pn + n € N} is a meager (nowhere dense) set in X, f o ¢ agrees with a
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unique normal function g on {p, : n € N} ([1, Lemma 5.6.22]). Hence,
g(pn) = f(gO(pn)) = f(an) .

By definition of the unbounded Borel functional calculus, f(A) =T"'(g) €
N(A) ([1, Remark 5.6.25]), and so I'(f(A)) = g. Thus, in view of Theorem 2.1,
we get f(A)en = g(pn)en = flan)en and D(f(A)) = {z € H : {f(an)(z,en)} €
I’} forallmeN. O
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