International Journal of Mathematical Analysis Vol. 17, 2023, no. 2, 69 - 74 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2023.912476

On the Algebra of Diagonal Operators

Fotios C. Paliogiannis

Mathematics Department, St. Francis College 179 Livingston Street, Brooklyn, NY 11201, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

Let \mathcal{A} be the algebra of all bounded diagonal operators on an infinite dimensional separable complex Hilbert space \mathcal{H} . In this paper, we characterize the algebra $N(\mathcal{A})$ of unbounded operators affiliated with \mathcal{A} and the unbounded Borel functions of these operators.

Mathematics Subject Classification: 47A60, 47B15

Keywords: Diagonal operator, commutant, abelian von Neuman algebra, Gelfand isomorphism, unbounded operator, Borel functional calculus

1 The bounded case

Let $B(\mathcal{H})$ be the algebra of all bounded operators on an infinite dimensional separable complex Hilbert space \mathcal{H} and $\{e_n : n \in \mathbb{N}\}$ an orthonormal basis for \mathcal{H} . Given a sequence $\{a_n\}$ in \mathbb{C} and $x \in \mathcal{H}$, the operator $A \in B(\mathcal{H})$ defined by

$$Ax = \sum_{n=1}^{\infty} a_n(x, e_n)e_n$$
, or equivalently, $Ae_n = a_ne_n$ $(n \in \mathbb{N})$

is called a diagonal operator on \mathcal{H} .

Note that for each j = 1, 2,, we have

$$Ae_j = \sum_{i=1}^{\infty} (Ae_j, e_i)e_i = \sum_{i=1}^{\infty} a_j(e_j, e_i)e_i = \sum_{i=1}^{\infty} a_j \delta_{ij} e_i,$$

where δ_{ij} is the Kronecher delta: $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq i$. In this way, we associate to each diagonal operator an infinite diagonal matrix having

 a_n as diagonal elements.

Let $l^{\infty} = l^{\infty}(\mathbb{N}, \mathbb{C})$ be the C^* -algebra of all bounded complex sequences $\{a_n\}$ with norm

$$||\{a_n\}|| = \sup_n |a_n|$$

We denote by

$$\mathcal{A} = \{ A \in B(\mathcal{H}) : Ae_n = a_n e_n, \text{ where } \{a_n\} \in l^{\infty} \}$$
 (1)

the sub-algebra of $B(\mathcal{H})$ of all bounded diagonal operators on \mathcal{H} .

Proposition 1.1. The mapping $\Psi : \mathcal{A} \to l^{\infty}$ defined by $\Psi(A) = \{a_n\}$, is an isometric *-isomorphism from \mathcal{A} onto l^{∞} .

Proof. For each $A \in \mathcal{A}$ and $n \in \mathbb{N}$, we have

$$|a_n| = ||a_n e_n|| = ||Ae_n|| \le ||A|| ||e_n|| = ||A||.$$

Hence, $\sup_n |a_n| \le ||A||$.

On the other hand, for every $x \in H$, we have

$$||Ax||^2 = ||\sum_{n=1}^{\infty} (x, e_n)Ae_n||^2 = ||\sum_{n=1}^{\infty} (x, e_n)a_ne_n||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2 |a_n|^2$$

$$\leq \sup_{n} |a_n|^2 \sum_{n=1}^{\infty} |(x, e_n)|^2 = \sup_{n} |a_n|^2 ||x||^2,$$

(the last equality by Parseval's identity). Therefore, $||A|| \leq \sup_n |a_n|$. Thus,

$$||A|| = \sup_{n} |a_n| = ||\{a_n\}||,$$

and Ψ is isometric. Finally, it is easy to see that Ψ is a *-isomorphism and makes \mathcal{A} an abelian C^* -subalgebra of $B(\mathcal{H})$ with $A^*e_n = \overline{a_n}e_n$.

Let $X_{l^{\infty}}$ be the Gelfand space of l^{∞} (the space of all non-zero multiplicative linear functional on l^{∞}). Now, if ρ is a non-zero multiplicative linear functional on l^{∞} , the composite mapping $\rho \circ \Psi$ is a non-zero multiplicative linear functional on \mathcal{A} . That is, $\rho \in X_{\mathcal{A}}$ (the Gelfand space of \mathcal{A}). Accordingly, we can define a mapping $\Psi^{\natural}: X_{l^{\infty}} \to X_{\mathcal{A}}$ by

$$\Psi^{\sharp}(\rho) = \rho \circ \Psi \qquad (\rho \in X_{l^{\infty}}).$$

Then the mapping Ψ^{\natural} is a homeomorhism (both spaces $X_{l^{\infty}}$ and $X_{\mathcal{A}}$ equipped with the weak*-topology). Thus, we may identify $X_{\mathcal{A}}$ with $X_{l^{\infty}}$.

Since $X_{l\infty} = \beta(\mathbb{N})$ (the β -compactification of \mathbb{N} , see e.g. [1, Exercise 3.5.5]), we obtain

$$X_{\mathcal{A}} \approx \beta(\mathbb{N}).$$

Let $l^2 = l^2(\mathbb{N}, \mathbb{C})$ be the Hilbert space of square summable complex sequences $\{a_n\}$ with norm

$$||\{a_n\}|| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{\frac{1}{2}}$$

and $U: \mathcal{H} \mapsto l^2$ be the unitary isomorphism

$$Ux = \{(x, e_n)\}_{n=1}^{\infty}.$$

Then, as is easily seen,

$$U\mathcal{A}U^{-1}=\mathcal{M},$$

where

$$\mathcal{M} = \{ M_{a_n} \in B(l^2) : \{ a_n \} \in l^{\infty} \}$$

is the multiplication algebra acting on l^2 . Moreover, \mathcal{M} is maximal abelian i.e. $\mathcal{M}' = \mathcal{M}$, where \mathcal{M}' is the commutant of \mathcal{M} . Therefore \mathcal{A} is also maximal abelian $(\mathcal{A}' = \mathcal{A})$. Hence, $\mathcal{A}'' = \mathcal{A}$, and the double commutant theorem tells us that \mathcal{A} is an abelian von Neumann algebra. Thus, in view of the Gelfand-Naimark theorem ([1, Theorem 4.4.3]), $\mathcal{A} \cong C(X)$, where $X = X_{\mathcal{A}}$. Moreover, by ([1, Theorem 5.2.1]), $X_{\mathcal{A}} \approx \beta(\mathbb{N})$ is extremely disconnected compact Hausdorff space.

2 The unbounded case

A closed linear operator A defined on a dense linear subspace $\mathcal{D}(A)$ of \mathcal{H} is said to commute with the bounded operator $T \in B(\mathcal{H})$, if $TA \subseteq AT$. This means that for each $x \in \mathcal{D}(A)$, we have $Tx \in \mathcal{D}(A)$ and TAx = ATx. A projection E on E such that $EA \subseteq AE$ and E and E is called a bounding projection for E. A bounding sequence for E is a non-decreasing sequence E is a projection on E such that E is a non-decreasing sequence E is an E in E in

Let $\{A\}' = \{T \in B(\mathcal{H}) : TA \subseteq AT\}$. It is easy to see that $\{A\}'$ is a strongly closed sub-algebra of $B(\mathcal{H})$, and $T \in \{A\}'$ if and only if $T^* \in \{A^*\}'$. Hence, $\{A\}' \cap \{A^*\}'$ is a von Neumann algebra. A closed densely defined operator A is affiliated with a von Neumann algebra \mathcal{U} , denoted by $A \eta \mathcal{U}$ if $\mathcal{U}' \subseteq \{A\}'$. The algebra $W^*(A) = \{\{A\}' \cap \{A^*\}'\}'$ is the smallest von Neumann algebra with which A is affiliated, and is referred to it as the von Neumann algebra generated by A. In fact, an operator A is normal A is normal if and only if

it is affiliated with an abelian von Neumann algebra ([1, Theorem 5.6.18]).

Let \mathcal{U} be an abelian von Neumann algebra. We denote by $\mathcal{N}(\mathcal{U})$ the abelian *-algebra (with unit I) of the closed densely defined operators affiliated with \mathcal{U} ([1, Theorem 5.6.15]). The Gelfand space $X = X_{\mathcal{U}}$ is an extremely disconnected compact Hausdorff space. Let $\dot{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the one-point compactification of the complex plane \mathbb{C} . A function $f: X \to \dot{\mathbb{C}}$ is called normal if f is continuous and $\overline{U_f} = X$, where $U_f = \{x \in X : f(x) \neq \infty\}$. We denote by N(X) the family of normal functions on X. If $f, g \in N(X)$, then the sum f + g and product fg are both defined and continuous on $U_f \cap U_g$ and have unique continuous extensions on X denoted by $f \dotplus g$ and $f \cdot g$ respectively ([2, Theorem 2.1]). Moreover, if $f \in N(X)$, then we define f^* to be the unique element of N(X) that extends the function \bar{f} defined on U_f . Now $(N(X), \dotplus, \cdot)$ becomes a *-algebra containing C(X) as subalgebra ([2, Proposition 2.2]), and the Gelfand *-isomorphism $\Gamma: \mathcal{U} \to C(X)$ extends to a *-isomorphism $\Gamma: \mathcal{N}(\mathcal{U}) \to N(X)$ such that $\Gamma(AE) = \dot{\Gamma}(A) \cdot \Gamma(E)$ for $A \in \mathcal{N}(\mathcal{U})$ and any bounding projection $E \in \mathcal{U}$ ([1, Theorem 5.6.19]).

The following theorem characterizes the unbounded operators affiliated with the algebra \mathcal{A} of diagonal operators, viz, $N(\mathcal{A})$.

Theorem 2.1. Let A be a closed densely defined operator on \mathcal{H} and $\{e_n : n \in \mathbb{N}\}$ an orthonormal basis for \mathcal{H} . Then $A \in \mathcal{N}(\mathcal{A})$ if and only if there exists a sequence $\{a_n\}$ in \mathbb{C} such that

$$Ax = \sum_{n=1}^{\infty} a_n(x, e_n)e_n, \ D(A) = \{x \in \mathcal{H} : \{a_n(x, e_n)\} \in l^2\}$$
 (2)

Proof. Let A be the operator defined by (2). Clearly, if $\{a_n\} \in l^{\infty}$, then $A \in \mathcal{A}$. Note also that $e_m \in D(A)$ for each $m \in \mathbb{N}$ and A is a densely defined normal operator. Moreover, $D_0 = span\{e_n : n \in \mathbb{N}\}$ is a core for A, i.e., $A = \overline{A}|_{D_0}$, where the bar refers to the closure of the operator. To see this, let $x \in D(A)$ and take $x_n = \sum_{k=1}^n (x, e_k)e_k$. Then as $n \to \infty$, we have $x_n \to x$ and

$$Ax_n = \sum_{j=1}^{\infty} a_j(x_n, e_j)e_j = \sum_{j=1}^{\infty} a_j \left[\left(\sum_{k=1}^n (x, e_k)e_k, e_j \right) \right] e_j = \sum_{j=1}^{\infty} a_j \left[\sum_{k=1}^n (x, e_k)(e_k, e_j) \right] e_j$$
$$= \sum_{j=1}^n a_j(x, e_j)e_j \to \sum_{j=1}^{\infty} a_j(x, e_j)e_j = Ax.$$

We now show $A \subseteq \{A\}'$. Let $T \in A$. Since D_0 is a core for A, it is enough to show that $e_n \in D_0$ implies $Te_n \in D_0$ and $TAe_n = ATe_n$ for all $n \in \mathbb{N}$.

If $Te_n = t_n e_n$, then clearly $Te_n \in D_0$ and $TAe_n = ATe_n = a_n t_n e_n$. Thus, $A \in \mathcal{N}(\mathcal{A})$.

Next, we find the normal function $\varphi = \dot{\Gamma}(A)$. First note that, for each $n \in$ \mathbb{N} , the functional $\rho_n: \mathcal{A} \to \mathbb{C}$ defined by $\rho_n(T) = (Te_n, e_n)$ is a multiplicative linear functional on \mathcal{A} . Moreover, the set $\{\rho_n : n \in \mathbb{N}\}$ is a dense open subset of X. For this first note that if $(Te_n, e_n) = 0$ with $T \in \mathcal{A}$, then T = 0. Hence, if $f = \Gamma(T) \in C(X)$, then $f \equiv 0$ on X. Next suppose that $\overline{\{\rho_n : n \in \mathbb{N}\}} \neq X$ (the closure in X), and let $q \in X \setminus \{\rho_n : n \in \mathbb{N}\}$. Since X is a compact Hausdorff space it is completely regular. Therefore, there exists $f \in C(X)$, $0 \le f \le 1$ such that f(q) = 1 and $f \equiv 0$ on $\{\rho_n : n \in \mathbb{N}\}$. In particular, $f(\rho_n)=0$, and so $f\equiv 0$ on X, a contradiction. Now, let $f\in C(X)$ be such that $f(\rho_m) = 1$ and $f(\rho_n) = 0$ for all $n \neq m$. Then $X = {\rho_m} \cup {\rho_n : n \neq m}$. Since f is continuous, it follows that $f \equiv 0$ on $\{\rho_n : n \neq m\}$. Hence, $f = \chi_{\{\rho_m\}}$ (the characteristic function of $\{\rho_m\}$), and so $\{\rho_m\}$ is an open (clopen) subset of X. Thus, $\{\rho_n : n \in \mathbb{N}\}$ is an open dense subset of X. If P_m is the projection onto $span\{e_m\}$, then $P_m \in \mathcal{A}$ and $\Gamma(P_m) = \chi_{\{\rho_m\}}$. Moreover, each P_m is a bounding projection for A and $\{E_n:n\in\mathbb{N}\}$, where $E_n=\sum_{m=1}^n P_m$, is a bounding sequence for A.

Finally,

$$\dot{\Gamma}(AP_m) = \Gamma(AP_m) = \dot{\Gamma}(A) \cdot \Gamma(P_m) = \varphi \cdot \chi_{\{\rho_m\}}.$$

At the same time, $\Gamma(AP_m) = a_m \Gamma(P_m) = a_m \chi_{\{\rho_m\}}$. Thus, $\varphi(\rho_n) = a_n$ for each $n \in \mathbb{N}$.

To prove the converse, suppose $A \in N(\mathcal{A})$ and let $\Gamma(A) = \varphi$. Take $\{a_n\} = \{\varphi(\rho_n)\}$, and consider the operator $A_0e_n = a_ne_n$ for all $n \in \mathbb{N}$. Then, arguing as above, we get $A_0 \in N(\mathcal{A})$ and $\dot{\Gamma}(A_0) = \varphi_0$ where $\varphi_0(\rho_n) = a_n$. Thus, $\varphi = \varphi_0$, and so $A = A_0$.

Next we characterize the Borel functional calculus for diagonal operators.

Theorem 2.2. Let $A \in N(A)$ be $Ae_n = a_n e_n$ and $B_u(\sigma(A))$ the algebra of unbounded Borel functions on the spectrum $\sigma(A)$. If $f \in B_u(\sigma(A))$, then $f(A)e_n = f(a_n)e_n$ with $D(f(A)) = \{x \in \mathcal{H} : \{f(a_n)(x,e_n)\} \in l^2\}$ for all $n \in \mathbb{N}$.

<u>Proof.</u> Let $\varphi = \dot{\Gamma}(A)$. Then $\sigma(A) = Range(\varphi) \cup \{\infty\} = \{a_n : n \in \mathbb{N}\} \cup \{\infty\} = \{a_n : n \in \mathbb{N}\}$ (see [1, Proposition 5.6.20]). Moreover, the function $f \circ \varphi$ lies in $B_u(X)$ (the algebra of Borel functions on X). Since the complement of $\{\rho_n : n \in \mathbb{N}\}$ is a meager (nowhere dense) set in X, $f \circ \varphi$ agrees with a

unique normal function g on $\{\rho_n : n \in \mathbb{N}\}$ ([1, Lemma 5.6.22]). Hence, $g(\rho_n) = f(\varphi(\rho_n)) = f(a_n)$.

By definition of the unbounded Borel functional calculus, $f(A) = \dot{\Gamma}^{-1}(g) \in N(\mathcal{A})$ ([1, Remark 5.6.25]), and so $\dot{\Gamma}(f(A)) = g$. Thus, in view of Theorem 2.1, we get $f(A)e_n = g(\rho_n)e_n = f(a_n)e_n$ and $D(f(A)) = \{x \in \mathcal{H} : \{f(a_n)(x, e_n)\} \in l^2\}$ for all $n \in \mathbb{N}$. \square

References

- R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I , Academic Press, New York, 1983. https://doi.org/10.1007/978-1-4612-2968-1
- [2] F. C. Paliogiannis, The algebra of unbounded continuous functions on a Stonean space and unbounded operators, *Michigan Mathematical Journal*, **46** (1) (1999), 39-52. https://doi.org/10.1307/mmj/1030132357

Received: May 11, 2023; Published: June 8, 2023