International Journal of Mathematical Analysis Vol. 17, 2023, no. 1, 19 - 26 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2023.912471

On Stević-Sharma Operators from the Analytic Besov Space into Bloch-Type Spaces

Zhitao Guo

School of Science, Henan Institute of Technology Xinxiang, 453003, China

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

The boundedness, essential norm and compactness of Stević-Sharma operators from the the analytic Besov space B_1 into Bloch-type spaces are investigated in this paper.

Mathematics Subject Classification: 47B38, 30H25, 30H30

Keywords: Stević-Sharma operator; Bloch-type space; boundedness; compactness; essential norm

1 Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} , $H(\mathbb{D})$ the space of all analytic functions on \mathbb{D} and $S(\mathbb{D})$ the family of all analytic self-maps of \mathbb{D} . Denote by \mathbb{N} the set of positive integers.

The Bloch-type space, which is denoted by \mathcal{B}_{μ} , consists of all $f \in H(\mathbb{D})$ such that $||f|| = \sup_{z \in \mathbb{D}} \mu(z) |f'(z)| < \infty$, where μ is a weight, namely a strictly positive continuous function on \mathbb{D} . We also assume that μ is radial: $\mu(z) = \mu(|z|)$ for each $z \in \mathbb{D}$. Under the norm $||f||_{\mathcal{B}_{\mu}} = |f(0)| + ||f||$, \mathcal{B}_{μ} becomes a Banach space.

The analytic Besov space B_1 consists of all $f \in H(\mathbb{D})$ which can be written as $f(z) = \sum_{n=1}^{\infty} a_n \sigma_{\lambda_n}(z)$ for some sequences $\{a_n\}_{n \in \mathbb{N}} \subset l^1$ and $\{\lambda_n\}_{n \in \mathbb{N}} \subset \mathbb{D}$, where $\sigma_w(z) = \frac{w-z}{1-\overline{w}z}$ for $z, w \in \mathbb{D}$.

For $f \in B_1$, the norm is defined by

$$||f||_{\mathcal{B}_1} = \inf \left\{ \sum_{n=1}^{\infty} |a_n| : f(z) = \sum_{n=1}^{\infty} a_n \sigma_{\lambda_n}(z) \right\}.$$

The space B_1 was extensively studied in [1], where it was shown that if one defines appropriately the notion of a "Möbius invariant space", then B_1 is the smallest one. Therefore, B_1 is also called the minimal Möbius invariant space.

In [4, 5], Stević et al. introduced the following Stević-Sharma operator:

$$T_{\psi_1,\psi_2,\varphi}f(z) = \psi_1(z)f(\varphi(z)) + \psi_2(z)f'(\varphi(z)), \quad f \in H(\mathbb{D}),$$

where $\psi_1, \psi_2 \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Recently, the research of Stević-Sharma operator between analytic function spaces has aroused the interest of experts (see, for instance, [2, 3, 8] and also related references therein).

In this paper, we investigate the boundedness, compactness and essential norm of Stević-Sharma operator from B_1 space into Bloch-type spaces. Recall that the essential norm of a bounded linear operator $T: X \to Y$ is the distance from T to the compact operators $K: X \to Y$, namely

$$||T||_{e,X\to Y} = \inf\{||T - K||_{X\to Y} : K \text{ is compact}\}.$$

Here X and Y are Banach spaces. Notice that $||T||_{e,X\to Y}=0$ if and only if $T:X\to Y$ is compact.

Throughout this paper, for nonnegative quantities X and Y, we use the abbreviation $X \lesssim Y$ or $Y \gtrsim X$ if there exists a positive constant C independent of X and Y such that $X \leq CY$. Moreover, we write $X \approx Y$ if $X \lesssim Y \lesssim X$.

2 Main Results

To prove the main results, we state several lemmas firstly.

Lemma 2.1. [6] Let $k \in \mathbb{N}$, then for any $f \in B_1$, we have

$$||f||_{\infty} \lesssim ||f||_{B_1}$$
 and $(1-|z|^2)^k |f^{(k)}(z)| \lesssim ||f||_{B_1}$.

For any $w \in \mathbb{D}$ and $j \in \mathbb{N}$, set

$$f_{j,w}(z) = \frac{(1-|w|^2)^j}{(1-\overline{w}z)^j}, \quad z \in \mathbb{D}.$$
 (1)

It is known that $f_{j,w} \in B_1$, and for each $j \in \mathbb{N}$, $||f_{j,w}||_{B_1} \lesssim 1$. Moreover, $f_{j,w}$ converges to zero uniformly on compact subsets of \mathbb{D} as $|w| \to 1$.

Similar to the proof of [2, Lemma 2], we have the following lemma.

Lemma 2.2. For any $0 \neq w \in \mathbb{D}$ and $i, k \in \{0, 1, 2\}$, there exist constants $c_{i,j}, j \in \{1, 2, 3\}$ such that the function

$$g_{i,w}(z) := \sum_{j=1}^{3} c_{i,j} f_{j,w}(z) \in B_1 \quad and \quad g_{i,w}^{(k)}(w) = \frac{\overline{w}^k \delta_{ik}}{(1-|w|^2)^k},$$

where δ_{ik} is Kronecker delta.

Now we characterize the boundedness of Stević-Sharma operator $T_{\psi_1,\psi_2,\varphi}$: $B_1 \to \mathcal{B}_{\mu}$. To simplify notation of this paper, we set

$$A_0(z) = \psi_1'(z), \quad A_1(z) = \psi_1(z)\varphi'(z) + \psi_2(z), \quad A_2(z) = \psi_2(z)\varphi'(z).$$

Theorem 2.3. Let $\psi_1, \psi_2 \in H(\mathbb{D})$, $\varphi \in S(\mathbb{D})$ and μ be a radial weight. Then the following statements are equivalent.

- (i) The operator $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ is bounded.
- (ii) For each $i \in \{0, 1, 2\}$,

$$\sup_{w\in\mathbb{D}} \|T_{\psi_1,\psi_2,\varphi}f_{i+1,w}\|_{\mathcal{B}_{\mu}} < \infty \quad and \quad \sup_{z\in\mathbb{D}} \mu(z)|A_i(z)| < \infty,$$

where $f_{i+1,w}$ is defined in (1).

(iii) For each $i \in \{0, 1, 2\},\$

$$\sup_{z \in \mathbb{D}} \frac{\mu(z)|A_i(z)|}{(1-|\varphi(z)|^2)^i} < \infty. \tag{2}$$

Proof. (i) \Rightarrow (ii). Assume that $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ is bounded. For each $w \in \mathbb{D}$ and $i \in \{0,1,2\}$, we have $\sup_{w \in \mathbb{D}} \|f_{i+1,w}\|_{B_1} \lesssim 1$. Hence,

$$\sup_{w \in \mathbb{D}} \|T_{\psi_1, \psi_2, \varphi} f_{i+1, w}\|_{\mathcal{B}_{\mu}} \le \|T_{\psi_1, \psi_2, \varphi}\|_{B_1 \to \mathcal{B}_{\mu}} \sup_{w \in \mathbb{D}} \|f_{i+1, w}\|_{B_1} < \infty.$$

Taking $f_0(z) = 1 \in B_1$, by the boundedness of $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ we get

$$\sup_{z \in \mathbb{D}} \mu(z)|A_0(z)| = \sup_{z \in \mathbb{D}} \mu(z)|(T_{\psi_1, \psi_2, \varphi} f_0)'(z)| \le ||T_{\psi_1, \psi_2, \varphi} f_0||_{\mathcal{B}_{\mu}} < \infty.$$
 (3)

Applying the operator $T_{\psi_1,\psi_2,\varphi}$ to $f_1(z)=z\in B_1$, we obtain

$$\sup_{z \in \mathbb{D}} \mu(z) |A_0(z)\varphi(z) + A_1(z)| \le \sup_{z \in \mathbb{D}} \mu(z) |(T_{\psi_1, \psi_2, \varphi} f_1)'(z)| \le ||T_{\psi_1, \psi_2, \varphi} f_1||_{\mathcal{B}_{\mu}} < \infty,$$

which along with (3), the fact that $|\varphi(z)| < 1$ and the triangle inequality yields

$$\sup_{z\in\mathbb{D}}\mu(z)|A_1(z)|<\infty.$$

By using the function $f_2(z) = z^2 \in B_1$, in the same manner we obtain

$$\sup_{z\in\mathbb{D}}\mu(z)|A_2(z)|<\infty.$$

(ii) \Rightarrow (iii). Note that we only need to show that for $i \in \{1, 2\}$, (2) holds. By Lemma 2.2, for each $i \in \{1, 2\}$ and $\varphi(w) \neq 0$, there exist constants $c_{i,1}, c_{i,2}, c_{i,3}$ such that

$$g_{i,\varphi(w)}(z) = \sum_{j=1}^{3} c_{i,j} f_{j,\varphi(w)}(z) \in B_1 \quad \text{and} \quad g_{i,\varphi(w)}^{(k)}(z) = \frac{\overline{\varphi(w)}^k \delta_{ik}}{(1 - |\varphi(w)|^2)^k},$$

where $k \in \{0, 1, 2\}$. Then we have

$$\sum_{j=1}^{3} |c_{i,j}| \sup_{w \in \mathbb{D}} ||T_{\psi_1,\psi_2,\varphi} f_{j,\varphi(w)}||_{\mathcal{B}_{\mu}} \ge \sup_{w \in \mathbb{D}} ||T_{\psi_1,\psi_2,\varphi} g_{i,\varphi(w)}||_{\mathcal{B}_{\mu}}$$

$$\ge \frac{\mu(w)|A_i(w)||\varphi(w)|^i}{(1-|\varphi(w)|^2)^i}.$$
(4)

From (4) and (ii), for each $i \in \{1, 2\}$, we have

$$\sup_{z \in \mathbb{D}} \frac{\mu(z)|A_{i}(z)|}{(1 - |\varphi(z)|^{2})^{i}} \leq \sup_{|\varphi(w)| > \frac{1}{2}} \frac{\mu(w)|A_{i}(w)|}{(1 - |\varphi(w)|^{2})^{i}} + \sup_{|\varphi(w)| \leq \frac{1}{2}} \frac{\mu(w)|A_{i}(w)|}{(1 - |\varphi(w)|^{2})^{i}}
\lesssim \sum_{i=1}^{3} \sup_{w \in \mathbb{D}} ||T_{\psi_{1}, \psi_{2}, \varphi}f_{j, \varphi(w)}||_{\mathcal{B}_{\mu}} + \sup_{w \in \mathbb{D}} \mu(w)|A_{i}(w)| < \infty.$$

(iii) \Rightarrow (i). Suppose that (iii) holds. For any $f \in B_1$, by Lemma 2.1 we have

$$\mu(z)|(T_{\psi_1,\psi_2,\varphi}f)'(z)| \le \sum_{i=0}^{2} \mu(z)|A_i(z)||f^{(i)}(\varphi(z))|$$

$$\lesssim ||f||_{B_1} \sum_{i=0}^{2} \frac{\mu(z)|A_i(z)|}{(1-|\varphi(z)|^2)^i}.$$
(5)

Moreover,

$$|(T_{\psi_1,\psi_2,\varphi}f)(0)| \leq |\psi_1(0)||f(\varphi(0))| + |\psi_2(0)|f'(\varphi(0))|$$

$$\lesssim \left(|\psi_1(0)| + \frac{|\psi_2(0)|}{1 - |\varphi(0)|^2}\right) ||f||_{\mathcal{B}_1}.$$

Thus $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ is bounded. The proof is completed.

Next, we give some estimations of the essential norm of Stević-Sharma operator acting from B_1 space to Bloch-type spaces.

Theorem 2.4. Let $\psi_1, \psi_2 \in H(\mathbb{D}), \varphi \in S(\mathbb{D})$ and μ be a radial weight such that $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ is bounded. Then

$$||T_{\psi_1,\psi_2,\varphi}||_{e,B_1\to\mathcal{B}_{\mu}} \approx \max\{\rho_i\}_{i=0}^2 \approx \max\{\tau_l\}_{l=1}^2,$$

where

$$\rho_i = \limsup_{|w| \to 1} \|T_{\psi_1, \psi_2, \varphi} f_{i+1, w}\|_{\mathcal{B}_{\mu}}, \quad \tau_l = \limsup_{|\varphi(z)| \to 1} \frac{\mu(z) |A_l(z)|}{(1 - |\varphi(z)|^2)^l}.$$

Proof. It is evident that for each $i \in \{0,1,2\}$, $\sup_{w \in \mathbb{D}} \|f_{i+1,w}\|_{B_1} \lesssim 1$ and $f_{i+1,w}$ converges to zero uniformly on compact subsets of \mathbb{D} as $|w| \to 1$. For any compact operator K from B_1 into \mathcal{B}_{μ} , by using [7, Lemma 2] we have $\lim_{|w| \to 1} \|Kf_{i+1,w}\|_{\mathcal{B}_{\mu}} = 0$. Therefore, for each $i \in \{0,1,2\}$,

$$||T_{\psi_1,\psi_2,\varphi} - K||_{B_1 \to \mathcal{B}_{\mu}} \gtrsim \limsup_{|w| \to 1} ||T_{\psi_1,\psi_2,\varphi} f_{i+1,w}||_{\mathcal{B}_{\mu}} - \limsup_{|w| \to 1} ||K f_{i+1,w}||_{\mathcal{B}_{\mu}} = \rho_i.$$

Hence,

$$||T_{\psi_1,\psi_2,\varphi}||_{e,B_1\to\mathcal{B}_{\mu}} = \inf_K ||T_{\psi_1,\psi_2,\varphi} - K||_{B_1\to\mathcal{B}_{\mu}} \gtrsim \max\{\rho_i\}_{i=0}^2.$$
 (6)

Let $\{z_j\}$ be a sequence in \mathbb{D} such that $|\varphi(z_j)| \to 1$ as $j \to \infty$. Since $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ is bounded, using (4) for any compact operator $K: B_1 \to \mathcal{B}_{\mu}$ and $l \in \{1,2\}$, we obtain

$$||T_{\psi_1,\psi_2,\varphi} - K||_{B_1 \to \mathcal{B}_{\mu}} \gtrsim \limsup_{j \to \infty} \frac{\mu(z_j)|A_l(z_j)||\varphi(z_j)|^l}{(1 - |\varphi(z_j)|^2)^l},$$

Thus we have

$$||T_{\psi_1,\psi_2,\varphi}||_{e,B_1\to\mathcal{B}_{\mu}} \gtrsim \limsup_{|\varphi(z)|\to 1} \frac{\mu(z)|A_l(z)|}{(1-|\varphi(z)|^2)^l} = \tau_l,$$

and consequently

$$||T_{\psi_1,\psi_2,\varphi}||_{e,B_1\to\mathcal{B}_{\mu}} \gtrsim \max\{\tau_l\}_{l=1}^2. \tag{7}$$

Define $K_r f(z) = f_r(z) = f(rz)$, $0 \le r < 1$. Then $K_r : B_1 \to \mathcal{B}_1$ is a compact operator with $||K_r|| \le 1$. Moreover, it is easily seen that $f_r \to f$ uniformly on compact subsets of \mathbb{D} as $r \to 1$. Let $\{r_j\} \subset (0,1)$ be a sequence such that $r_j \to 1$ as $j \to \infty$. Hence, for any $j \in \mathbb{N}$, $T_{\psi_1,\psi_2,\varphi}K_{r_j} : B_1 \to \mathcal{B}_{\mu}$ is compact, and so

$$||T_{\psi_1,\psi_2,\varphi}||_{e,B_1\to\mathcal{B}_{\mu}} \le \limsup_{j\to\infty} ||T_{\psi_1,\psi_2,\varphi} - T_{\psi_1,\psi_2,\varphi}K_{r_j}||_{B_1\to\mathcal{B}_{\mu}}.$$

24 Zhitao Guo

Therefore, we only need to show that

$$\limsup_{j \to \infty} \|T_{\psi_1, \psi_2, \varphi} - T_{\psi_1, \psi_2, \varphi} K_{r_j}\|_{B_1 \to \mathcal{B}_{\mu}} \lesssim \min \left\{ \max \{\rho_i\}_{i=0}^2, \max \{\tau_l\}_{l=1}^2 \right\}.$$
 (8)

For any $f \in B_1$ such that $||f||_{B_1} \leq 1$, we have

$$\begin{aligned}
&\|(T_{\psi_{1},\psi_{2},\varphi} - T_{\psi_{1},\psi_{2},\varphi}K_{r_{j}})f\|_{\mathcal{B}_{\mu}} \\
&= |(T_{\psi_{1},\psi_{2},\varphi}f - T_{\psi_{1},\psi_{2},\varphi}f_{r_{j}})(0)| + \sup_{z \in \mathbb{D}} \mu(z)|(T_{\psi_{1},\psi_{2},\varphi}f - T_{\psi_{1},\psi_{2},\varphi}f_{r_{j}})'(z)| \\
&\lesssim \underbrace{|(f - f_{r_{j}})(\varphi(0))| + |(f - f_{r_{j}})'(\varphi(0))|}_{E_{0}} + \sup_{z \in \mathbb{D}} \mu(z)|(f - f_{r_{j}})(\varphi(z))A_{0}(z)| \\
&+ \sup_{|\varphi(z)| > r_{N}} \mu(z) \sum_{l=1}^{2} |(f - f_{r_{j}})^{(l)}(\varphi(z))A_{l}(z)| \\
&\stackrel{|\varphi(z)| > r_{N}}{E_{2}} \mu(z) \sum_{l=1}^{2} |(f - f_{r_{j}})^{(l)}(\varphi(z))A_{l}(z)|,
\end{aligned} \tag{9}$$

where $N \in \mathbb{N}$ such that $r_j \geq \frac{1}{2}$ for all $j \geq N$. Moreover, for any nonnegative integer s, $(f - f_{r_j})^{(s)} \to 0$ uniformly on compact subsets of \mathbb{D} as $j \to \infty$. Theorem 2.3 now implies

$$\lim_{j \to \infty} \sup E_0 = \lim_{j \to \infty} \sup E_2 = 0. \tag{10}$$

From [7, Lemma 3] it follows that

$$\lim_{j \to \infty} E_1 \lesssim \lim_{j \to \infty} \sup_{z \in \mathbb{D}} |(f - f_{r_j})(z)| = 0, \tag{11}$$

where we used the condition (2). Finally, we estimate E_3 .

$$E_{3} \leq \sum_{l=1}^{2} \underbrace{\sup_{|\varphi(z)| > r_{N}} \mu(z) |f^{(l)}(\varphi(z)) A_{l}(z)|}_{F_{l}} + \sum_{l=1}^{2} \underbrace{\sup_{|\varphi(z)| > r_{N}} \mu(z) |r_{j}^{l} f^{(l)}(r_{j} \varphi(z)) A_{l}(z)|}_{G_{l}}.$$
(12)

For each $l \in \{1, 2\}$, from Lemma 2.1, (4) and (5) it follows that

$$F_{l} = \sup_{|\varphi(z)| > r_{N}} \frac{(1 - |\varphi(z)|^{2})^{l} |f^{(l)}(\varphi(z))|}{|\varphi(z)|^{l}} \frac{\mu(z) |A_{l}(z)| |\varphi(z)|^{l}}{(1 - |\varphi(z)|^{2})^{l}}$$

$$\lesssim ||f||_{B_{1}} \sup_{|\varphi(z)| > r_{N}} ||T_{\psi_{1}, \psi_{2}, \varphi} g_{l, \varphi(z)}||_{\mathcal{B}_{\mu}}$$

$$\lesssim \sum_{j=0}^{2} \sup_{|w| > r_{N}} ||T_{\psi_{1}, \psi_{2}, \varphi} f_{j+1, w}||_{\mathcal{B}_{\mu}}.$$
(13)

On the other hand,

$$F_{l} = \sup_{|\varphi(z)| > r_{N}} (1 - |\varphi(z)|^{2})^{l} |f^{(l)}(\varphi(z))| \frac{\mu(z)|A_{l}(z)|}{(1 - |\varphi(z)|^{2})^{l}}$$

$$\lesssim ||f||_{B_{1}} \sup_{|\varphi(z)| > r_{N}} \frac{\mu(z)|A_{l}(z)|}{(1 - |\varphi(z)|^{2})^{l}}.$$
(14)

Taking the limits as $N \to \infty$ in (13) and (14), we obtain

$$\limsup_{j \to \infty} F_l \lesssim \sum_{j=0}^{2} \limsup_{|w| \to 1} \|T_{\psi_1, \psi_2, \varphi} f_{j+1, w}\|_{\mathcal{B}_{\mu}} \lesssim \max\{\rho_i\}_{i=0}^2, \tag{15}$$

and

$$\limsup_{j \to \infty} F_l \lesssim \max\{\tau_l\}_{l=1}^2. \tag{16}$$

Similarly, we have

$$\limsup_{j \to \infty} G_l \lesssim \max\{\rho_i\}_{i=0}^2 \quad \text{and} \quad \limsup_{j \to \infty} G_l \lesssim \max\{\tau_l\}_{l=1}^2. \tag{17}$$

Therefore, by (9)-(12) and (15)-(17), we get

$$\begin{split} & \limsup_{j \to \infty} \| T_{\psi_1, \psi_2, \varphi} - T_{\psi_1, \psi_2, \varphi} K_{r_j} \|_{B_1 \to \mathcal{B}_{\mu}} \\ = & \limsup_{j \to \infty} \sup_{\|f\|_{\mathcal{B}_1} \le 1} \| (T_{\psi_1, \psi_2, \varphi} - T_{\psi_1, \psi_2, \varphi} K_{r_j}) f \|_{\mathcal{B}_{\mu}} \\ \lesssim & \min \Big\{ \max\{\rho_i\}_{i=0}^3, \max\{\tau_l\}_{l=1}^3 \Big\}. \end{split}$$

That is, (8) holds. The proof is completed.

From Theorem 2.4, we immediately obtain the following corollary, which characterizes the compactness of $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$.

Corollary 2.5. Let $\psi_1, \psi_2 \in H(\mathbb{D})$, $\varphi \in S(\mathbb{D})$ and μ be a radial weight such that $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ is bounded. Then the following statements are equivalent.

- (i) The operator $T_{\psi_1,\psi_2,\varphi}: B_1 \to \mathcal{B}_{\mu}$ is compact.
- (ii) For each $i \in \{0, 1, 2\}$,

$$\limsup_{|w|\to 1} \|T_{\psi_1,\psi_2,\varphi}f_{i+1,w}\|_{\mathcal{B}_\mu} = 0.$$

(iii) For each $l \in \{1, 2\}$,

$$\lim_{|\varphi(z)| \to 1} \frac{\mu(z)|A_l(z)|}{(1 - |\varphi(z)|^2)^l} = 0.$$

Acknowledgements. This work was supported by the Doctoral Fund of Henan Institute of Technology (No. KQ2003).

26 Zhitao Guo

References

J. Arazy, S.D. Fisher, J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math., 1985 (1985), 110 - 145.
 https://doi.org/10.1515/crll.1985.363.110

- [2] Z. Guo, L. Liu, X. Zhao, On Stević-Sharma operators from the minimal Möbius invariant space into Zygmund-type spaces, J. Math. Inequal., 16 (2022), 1557 - 1570. https://doi.org/10.7153/jmi-2022-16-101
- [3] Y. Liu, Y. Yu, On Stević-Sharma type operator from the Besov spaces into the weighted-type space H_{μ}^{∞} , Math. Inequal. Appl., **22** (2019), 1037 1053. https://doi.org/10.7153/mia-2019-22-71
- [4] S. Stević, A. K. Sharma, A. Bhat, Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 218 (2011), 2386 - 2397. https://doi.org/10.1016/j.amc.2011.06.055
- [5] S. Stević, A. K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman space, Appl. Math. Comput., 217 (2011), 8115 - 8125. https://doi.org/10.1016/j.amc.2011.03.014
- [6] K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl., 157 (1991), 318 336. https://doi.org/10.1016/0022-247x(91)90091-d
- [7] X. Zhu, Weighted composition operators from the minimal Möbius invariant space into *n*-th weighted-type spaces, *Ann. Funct. Anal.*, **11** (2020), 379 390. https://doi.org/10.1007/s43034-019-00010-7
- [8] X. Zhu, E. Abbasi, A. Ebrahimi, A class of operator-related composition operators from the Besov spaces into the Bloch space, *Bull. Iranian Math. Soc.*, **47** (2021), 171 184. https://doi.org/10.1007/s41980-020-00374-w

Received: January 14, 2023; Published: January 28, 2023