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Abstract 

 

In this paper, a four parametric extension of the Laplace transform is introduced. 

The relation between the extended transform and the classical Laplace transform 

is established. Moreover, the extended transforms of a number of functions like 

constant, polynomials, exponential, trigonometric and hyperbolic trigonometric 

functions, are found using fundamental theorems of integral calculus. 
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1 Introduction 

 
During the study of probability theory, the Laplace transform was firstly 

introduced by Pierre Simon Laplace in 1782 and has become a hot topic among 

the researchers from the 19th century due to extensive applications in many areas 

of Mathematics, Physics, Chemistry, Economics and Engineering. For Re( ) 0  ; 

The Laplace transform L  of the function ( )v   is defined as  

(1)  
0

( ) ( ) ( )stL t e t dt s 


   

(see [5]). For (0)( ) ( )t t   and ( ) ( ) ( ),
k

k

k

d
t t k N

dt
   ; the Laplace transforms 

( )s of some functions ( )t  are listed below: 
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s
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!
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, s
s







 sin( )t t   
3

2 2 2( )s s




 

tte  2

1

( )s 
 ( ) ( )t t   ( ) ( )t t   

n tt e  1

!
,

( )n

n
s

s


 



 ( ) ( )u t t    ( )se s   

sin( )t  
2 2

, 0s
s







 ( )ct  

1
( ), 0
s

c
c c
   

cos( )t  
2 2

, 0
s

s
s 




 
0

( )

t

u du  
1

( )s
s
  

sinh( )t  
2 2

, s
s








 ( )u t  

se

s



 

cosh( )t  
2 2

,
s

s
s







 ( )nt t  ( 1) ( )
n

n

d
s

ds
   

sin( )t t  
2 2 2

2
, 0

( )

s
s

s







 

( )t

t


 ( )

s

u du



  

cos( )t t  
2 2

2 2 2
, 0

( )

s
s

s









 ( ) ( )n t  

( 1)

1

( ) (0)
n

n n i i

i

s s s  



  , 

 

A number of properties and applications of the Laplace transform in real 

life have been discussed involving mass spring damper system, chemical pollution 

in a reservoir and transfer function of control system etc (see [6]). The solution of 

population growth and decay problems have been found which arises in the field 

of Physics, Chemistry, Biology and Social Sciences etc using the Laplace 

transform [8]. We refer [1], [2], [3], [4] and [7] for the study of the integral 

transforms.  

Along with other basic properties, the following properties of definite integral are 

used in the later results  

(2) 
2 2

1 1

( ) ( )

c c

c c

x dx y dy    
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and 

(3)  
32 2

1 1 3

3 1 2( ) ( ) ( ) , , .

cc c

c c c

x dx x dx x dx c c c        

 

Definition 1.1  The number of arrangements of k  distinct things taken r  (distinct 

things) at a time, 0 ,r k  is denoted by k

rp  and is given by    

  

   
 

!

!

k

r

k
P

k r



  

and is in fact the number of arrangements a set of k  distinct objects, each taken r  

at a time, without repetition of an object in an arrangement. One may observe 

that !k

kP k . 

         2 The Extended Laplace Transform 

 

Definition 2.1   For 4( , , , ) , 0;a b c d R c   we define  

(4)  ( )

( , , . ) ( , , , )

0

{ ( )} ( ) ( ).as b t

a b c d a b c dL t e ct d dt s 


     

Definition 2.2   If 4( , , , )a b c d R  and , 0c d  , for a function ( )t ; we define a 

new integral transform I  as 

(5)   
0

( ) ( ) .

d as b
t

cI t e t dt 




   

Definition 2.3   If 
4( , , , )a b c d R  and 0c  ,  

(i) for a real number s ; we define s  as 

(6)  
as b

s
c


   

and 

(ii) we define e  as 

(7) 

( )

.

d
as b

ce
e

c



   

3 Main Results 

 
Firstly, we establish the relationship between the classical and the 

extended Laplace transforms.  

 

Theorem 3.1  If ( )s , 
( , , , ) ( )a b c d s , I , s  and  e  are defined as in (1), (4), (5), 

(6) and (7) respectively, then  ( , , , ) ( ) ( ) ( ) .a b c d s e s I t        

 

Proof: For ct d x  ; (4) becomes  
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 
( ) ( )

( , , , )

1 1
( ) ( ) ( ) .

x d t d
as b as b

c c
a b c d

d d

L t e x dx e t dt
c c

  
  

   

    

Using (2), (3), the above relation leads to the relation   

   
( )

( , , , ) ( ) ( ) ( ) ,

d
as b

c

a b c d

e as b
L t I t

c c
 



 
   

 
 

 

which, with collaboration of (6) and (7), leads to the required result. 

One may find the values of  

 ( )I t for ( )t  , ( ) tt e  , ( ) tt te  , ( ) n tt t e  , ( ) cos( )tt e t  ,

( ) cos( )t t t  , ( ) sin( )tt e t  , ( ) sin( )t t t  , ( ) sinh( )t t  , 

( ) cosh( )t t  , etc, easily by use of basic theorems of definite integrals. The 

results are listed below:  

  

 3.1 The Newly Defined Integral Transform of Some Elementary Functions 

 
The integral transform { ( )}I t , defined in (5), of ( )t , for different values 

of  ( )t ,  is listed in the following table: 

 

 
( )t  { ( )}I t  

1  
1 1

[1 ]
s ce


 

 

t  2 2

1 1

( ) ( )

d

cs e ce s s
  

    
 

nt  

1 11

1

0

1 1 1 1
1
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i n

i

d P P
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 






     
       

        
  

te  

( )

( )

d
as b c

cc ce

as b c as b c



 

  


   

 

n tt e  

1 1
( )

0

!

i nd nas b c
n i nc

i

i

c c
e d P n

as b c as b c



 

 
  





   
    

      
  

sin( )t  
2

2 2 2 2 2 2 2 2 2

( )sin( ) cos( )

[( ) ] [( ) ] ( )

as b d c d c

as b c e as b c e as b c

   

  


  

      
 

cos( )t  
2 2 2 2 2 2 2 2 2

( )cos( ) sin( ) ( )

[( ) ] [( ) ] ( )

as b d c d c as b

as b c e as b c e as b c

  

  

 
  

      
 

sinh( )t  
2

2 2 2 2 2 2 2 2 2

( )sinh( ) cosh( )

[( ) ] [( ) ] ( )

as b d c d c

as b c e as b c e as b c

   

  


  

      
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cosh( )t  
2 2 2 2 2 2 2 2 2

( )cosh( ) sinh( ) ( )

[( ) ] [( ) ] ( )

as b d c d c as b

as b c e as b c e as b c

  

  

 
  

      
 

sin( )t t  

3

2 2 2 2 2 2 2 2 2 2

( ) sin( ) cos( ) 2 ( )

[( ) ] [( ) ] (( ) )
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   

  

 
  

      
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2 2 2 2 2 2 2 2 2 2 2
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[(( ) ) ] [( ) ] [(( ) ) ]
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 
  

       
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2 2 2 2 2 2
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[( ) ] [( )(( ) )]

d d c d d c d d

cs e as b c e as b as b c e

    

 
  

       
 

4 2 3 2 5 3

2 2 2 2 2 2 2 2 2 2 2
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
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 
 

   
 

 

 

Using the results mentioned above in (3.1), (3.2), (6) and (7), respectively, we 

obtain the results listed below:   

 

3.2 Four Parametric Laplace Transform of Some Functions 

 
The four parametric extended Laplace transform 

( , , , ) ( )a b c d s , defined in 

(4), of ( )t , for different values of  ( )t ,  is listed in the following table: 
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as b c

as b c as b c

  


 


  

   
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   
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   
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      
 

3 3 2

2 2 2 2 2 2 2 2 2 2

sin( ) ( )sin( ) cos( )

(( ) ) (( ) ) ( )

c d c as b d c d

s as b c as b c as b c

    

  


  

      
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 

 
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   
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     
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2 2

2 2 2 2 2 2

1 ( )cos( )

(( ) ) ( )

c e ce as b d

s as b c s as b as b c

 

 

  
  

     
 

2 2 2 2 2 2

sin( ) ( )

( ) ( )

c d ce as b

as b c as b c

 

 

 
 

   
 

 

sin( )t t   

2 3

2 2 2 2 2 2 2 2 2

( )sin( )

( ) (( ) ) ( ) ( ) ( )

c e d c e as b d

s as b c as b as b s as b c

    

 

  
   

      
 

2

2 2 2 2 2 2

cos( )

( ) ( )

c d c e

as b c as b c

  

 


 

   
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