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Abstract

In this paper, we investigate some questions related to some Cauchy
equations. Our interest is to apply the (α, α + 1) type R operators to
analyze such equations.
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1 Introduction

Let X be a Banach space and B(X) denotes a bounded operator on X. Also let
H be a closed densely defined operator on a Banach space X with σ(H) ⊆ R
and whose resolvent ‖ (z −H)−1 ‖ is bounded for all z 6∈ R and that it satisfy
the hypothesis below

‖ (z −H)−1 ‖≤ c | Iz |−1
(
〈z〉
| Iz |

)α
(1)

for some α ≥ 0 and c > 0 then H is of (α, α + 1) type R.

Here 〈z〉 := (1+ | z |2) 1
2 and Iz is the imaginary part of z. The hypothesis

above appears in [1] which we can state is important in application of the
U functional Calculus for (α, α + 1) type R operators [2]. The U functional
calculus for an operator H of (α, α + 1) type R is defined via the formula

f(H) = − 1

π

∫
C

∂f̃

∂z̄
(z −H)−1dxdy (2)
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for f ∈ U and f̃ is an analytic extension of f and U denotes the space of
smooth functions. This definition is due to Helffer and Sjostrand [6]. We now
consider the general abstract Cauchy equation given by;{

u’(t)=-Hu(t), t ≥ 0;
u(0)=x, x ∈ X.

(3)

It is well known that a function u(.) : [0,∞) → D(H)(Domain of H) with
u(.) ∈ ([0,∞);X) and u(0) = x and satisfy (3) is a solution of (3). In studying
(3), the notion of integrated semigroups comes in handy. This class comprises
of the one parameter semi-group and the cosine families. It is also important to
note that some classes of abstract Cauchy equations exist where the elements
of e−tH is not bounded operators, for example the Schrodinger operators acting
on Lp(Rn), 1 ≤ p ≤ ∞ for p 6= 2. To deal with such problems, one needs to find
larger sets of functions f giving rise to bounded operators in form of e−tHf(H)
such that the solution of (3) exist. In [6] it had been realized that (2) can be
used to study Schrodinger operators on Lp(Rn), 1 ≤ p ≤ ∞ for p 6= 2, in
which case the general solution u(t) = e−itH of the Schrodinger equation is
unbounded. This means that in (3) one must look for a suitable functional
calculus involving H and e−tH , and so the notion of U functional calculus comes
in handy. In our study therefore, we shall apply the U functional calculus for
(α, α+1) type R operator H satisfying (1) to study abstract Cauchy equations
of the form given by (3) where the solution denoted by u(t) is unbounded.
An operator H on a Banach space X is the generator of k times integrated
semigroup (where k ∈ No ) if there exist w ≥ 0 and S(.) : [0,∞) → B(H) a
strongly continuous group such that (w,∞) is contained in the resolvent set
of H and

(λI −H)−1 = λk
∫ ∞
0

e−λtS(t)xdt (4)

for all x ∈ X and λ > w. The function S(.) is called k-times integrated
semigroup. It follows from the Hille Yosida theorem that one can characterize
the operators H satisfying (1) for which (3) admits a unique solution given by
a strongly continuous Co semi group of (α, α + 1) type R operators acting on
the Banach space X. The solution of (3) is given by u(t, x) = T (t)x where
T (t) = e−tH for t ≥ 0 and x ∈ X. It follows that H is the infinitesimal
generator of u(t). We now consider the abstract Cauchy equation given by
(3). If a closed densely defined linear operator H has a resolvent in the half
right plane and if u(.) is an exponential bounded solution of (3) with u(0) = x,
then the resolvent R(λ,H)x is the Laplace transform of u(.) that is;

R(λ,H)x =

∫ ∞
0

e−λtu(t)xdt (5)

We now state some definitions and Theorems necessary in proving our results.
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2 Definitions and theorems

Definition 2.1 Let A ∈ B(X), then there exist a constant C ≥ 1 and γ ≥ 0
such that

‖ etA ‖≤ Cetγ (6)

for all t ≥ 0.
Theorem 2.2 Let H be a bounded operator with σ(H) ⊆ R and Tt = eiHt

such that
‖ Tt ‖≤ C(1+ | t |)α (7)

where α is non-negative integer. Then H is of (α, α + 1)-type R
Proof: See[5]
The following two theorems are consistent with the (α, α+1) type R operators
and whose proofs can be found in [3].
Theorem 2.3 Let H be a linear operator on a Banach space X. If there exist
constants w and C such that the resolvent R(λ,H) exist and satisfy

| R(λ,H) |≤ C(1+ | u |)k (8)

for some −1 ≤ k and for all u ∈ C with R(λ) > w (R(λ) denotes Real
part of λ), then (3) has a unique solution u(.) for every x ∈ D(H) such that
| u(t) |≤ Cept ‖ x ‖ for p > w.
Theorem 2.4 Let H be a linear operator with nonempty resolvent set. If (3)
has a solution u(.), with u(0) = x such that | u(t) |≤ Cept for some constants
C, p then for every λ ∈ ρ(H) with R(λ) > p we’ve

R(λ,H)x =

∫ ∞
0

eλtu(t)xdt (9)

The following is an immediate consequence of Theorem 2.3
Corollary 2.5 If H is of (0, 1) type R with C = 1, then (8) reduces to

| R(λ,H) |≤ 1 (10)

for k = 0 and (3) has a unique solution u(t) which is bounded above by 1 for
‖ x ‖= 1. In this case

R(λ,H)x =

∫ ∞
0

e−λtu(t)xdt ≤
∫ ∞
0

e−λtdt ≤ 1

λ
(11)

In particular, if u(t) is a contraction then the solution u(t) satisfying (3) is
bounded above by 1.
Definition 2.6 The Schwartz space S(Rn) of rapidly decreasing smooth func-
tions consists of all f ∈ C∞(Rn) satisfying

lim|x|→∞P (x)
∂α1+...,+αn

∂xα1
1 ..., ∂x

αn
n

(x) = 0
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for each polynomial P and each partial derivative as indicated above and
(α1, ..., αn ∈ {0, 1, 2, ...})
Remark 2.7 C∞c (R) ⊂ S(Rn). Here, f ∈ C∞c (R) if and only if f ∈ C∞(R)
and f has compact support. Also C∞c (R) is dense in Lp(Rn), 1 ≤ p <∞, and
in Co(Rn), the continuous functions on Rn that vanish at infinity; hence S(Rn)
is also dense in these spaces. We now define the following family S(β), β ∈ R
found in [7] as follows:
Definition 2.8 f ∈ S(β) if f ∈ C∞c (R) and f(λ) has an asymptotic expansion
in λ−1 as λ→∞ in the following sense. For any N > 0

f(λ) =
N∑
K=0

akλ
−β−k + γN(λ) (12)

λ ≥ 1 and where γN(λ) satisfy

|
(
d

dλ
γN(λ)

)
|≤ CNk

(1+ | λ |)−β−N−1 (13)

for all λ ≥ 1 and k = 0, 1, 2...,
If β = 0 then (12) reduces to

f(λ) =
N∑
K=0

akλ
−k + γN(λ) (14)

and γN(λ) satisfy

|
(
d

dλ
γN(λ)

)
|≤ CNk

(1+ | λ |)−N−1 (15)

for all λ ≥ 1 and k = 0, 1, 2...,
We now state the following theorems whose proofs can be found in [7].
Theorem 2.9 Let 1 ≤ p ≤ ∞ and let f ∈ S(∞). Then e−itHf(H) is bounded
in Lp(RN) for t ∈ R. Moreover, for β > N | 1/p− 1/2 |,

‖ e−itHf(H) ‖≤ C(1+ | t |)β, t ∈ R (16)

Theorem 2.10 Suppose N ≤ 3 and let 1 ≤ p ≤ ∞. If f ∈ S(β) for some
β > 2 +N/4 then

‖ e−itHf(H) ‖≤ C(1+ | t |)N |1/p−1/2|, t ∈ R (17)

Theorem 2.11 Let H be a schrodinger operator on Lp(RN) then H is of
(α, α + 1)

′
type R for α := N | 1/p− 1/2 |.

Remark 2.12 Theorem 2.11 holds whenever we replace 〈〉 by | | in (1) and it
is stronger than (1) since | z |≤< z > for all z ∈ C. Therefore (α, α+ 1)′ type
R implies (α, α + 1) type R.
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3 Main Results

Consider the Cauchy equation given by;{
u′(t) = −iHu(t), t ≥ 0;
u(0) = x, x ∈ C∞c (R).

(18)

and H satisfy (1), then our first result is given by the following theorem.
Theorem 2.13 Let H be (α, α + 1) type R operator, then u(t) ∈ C∞c (R)is a
solution of (18) provided that u(t) satisfies Theorem 2.2

Proof. Let u(t) ∈ C∞c (R) such that u(t) = e−iHt for t ∈ R and H is of (α, α+1)
type R, then u(t) satisfy Theorem 2.2. It follows that u′(t) = −iHu(t) satisfy
(18) and u(0)x = x for each x ∈ R and therefore, u(t) is a solution of (18).
Now since H has a resolvent lying on the right half plane, and u(t) is a solution
of (18) with u(0) = x and u(t) satisfying Theorem 2.2, we have that

R(λ,−iH)x =

∫ ∞
0

eλtu(t)xdt

=

∫ ∞
0

eλte−iHtxdt

≤ C(1+ | t |)α

for all t ∈ R and some α ≥ 0 and some. It follows that u(t) is the unique
solution of (18) and that R(λ,−iH) is the inverse Laplace transform of u(t).

Theorem 2.14 Let H be of (α, α+ 1) type R operator, and u(t) ∈ C∞c (R)
be a convergent solution of (18) then u(t)f(H) is also a convergent solution of
(18) for every f ∈ C∞c (R)

Proof. Suppose Theorem 2.9 holds and f ∈ C∞c (R), then f(H) can be extended
to a bounded operator Lp(R) for 1 ≤ p ≤ ∞. Letting α = 0, it is also shown in
[7], that if 1 ≤ p ≤ ∞ and α→∞ then u(t)f(H) is bounded in Lp(R) for t ∈ R
and satisfy inequality in theorem 2.2. In particular, if α = N | 1/p−1/2 |,then
it follows from Theorem 2.10 that

‖ u(t)f(H) ‖≤ C(1+ | t |)N |1/p−1/2|, t ∈ R (19)

Since (19) and inequality of Theorem 2.2 have the same bound, and u(t) is
a convergent solution of (18), it follows that u(t)f(H) is also a convergent a
solution of (18) and this completes our proof.
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