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Abstract

In this paper, we provide an algorithm to convert the third-order nonlinear evo-

lution equations to regular higher-order partial differential equations near movable

singularities. Therefore, the Cauchy-Kowalevski theorem is always applicable. As a

result, we always have a routine conceptual proof of the convergence of the Laurent

series obtained from the Painlevé test.

Mathematics Subject Classification: 30E15, 34A25, 37K10

Keywords: Regularity; Laurent series solution; convergence

1. Introduction

A partial differential equation is said to have the Painlevé property if all solu-
tions are single-valued near any non-characteristic holomorphic movable sin-
gularity manifolds [13]. The Painlevé property is intimately connected with
integrability [8, 9]. However, the formal series expansion, widely used in the
Painlevé analysis, cannot prove this property if it is not convergent. In this
paper, we first present an algorithm to convert the third-order evolution equa-
tions to higher-order regular partial differential equations and next, as a con-
sequence, prove the convergence of the Laurent series from the Painlevé test.
The idea was indeed inspired by an example of Kruskal. For a long time,
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Kruskal had the following idea: Suppose a solution u of a potentially inte-
grable equation has poles near movable singularities, then u−1 should be an
analytic function which satisfies some regular equation near movable singular-
ities of u . Kruskal discovered that if u satisfies the second Painlevé equation,
then u−1 satisfies a six th-order regular equation. This property for Painlevé
equations is believed to be shared by all integrable equations. Recently, Yee
formulated an algorithm of converting any general third-order ordinary differ-
ential equations to regular higher-order equations near movable singularities
in [12]. The general property of regularity of differential equations is the key,
since the existence theorem of analytic solutions applies in the neighborhood
of the movable singularities and the Painlevé property follows immediately. In
this paper, we further extended the algorithm to the third-order nonlinear evo-
lution equations of the form ut = K(z, u, uz, uz2 , uz3). The higher-order regular
equations we get are in the form that we can apply the Cauchy-Kowalevski
theorem. Consequently, we have a conceptual proof that the formal Laurent
series solutions for the evolution equations are always convergent.

Over the years, various more general Painlevé methods have been evolved
[1, 2, 3, 4, 5]. Hu and Yan demonstrated in [6, 7] an algorithmic way of reg-
ularizing the principal balances for systems of ordinary differential equations
passing the Painlevé test. They further showed that their new method (namely,
the mirror method) is equivalent to the Painlevé test. Yee [10, 11] also exam-
ined a perturbative extension of the mirror method. In this paper, we also
demonstrated the mirror algorithm can also be used to prove the convergence
of the formal Laurent series obtained from the Painlevé test.

In Sect. 2, the mathematical formulation of the underlying theory will be
presented in detail. The indicial normalization u = θ−k will be used as the
transformation for the conversion. In Sect. 3, we shall demonstrate how to
deduce the formal series of the derivatives in the powers of a new variable
θ. In Sect. 4, we shall present the algorithm for showing the analyticity of
coefficient functions of derivatives. In Sect. 5, we shall make use of the θ-series
of the derivatives to convert the target equation to a higher-order regular
partial differential equation. In Sect. 6, we shall apply an alternative (mirror)
approach to prove the convergence result of PDEs. Conclusion can be found
in Sect. 7.

2. Mathematical formulation

2.1. Regular equations for nonlinear evolution equations. Let u(z, t)
satisfy the third-order evolution equation, in the complex domain, of the form

ut = K
(
z, u, uz, uz2 , uz3

)
, (1)

where K is analytic in z, rational in u, and is polynomial in all derivatives.
Note also that we shall use the notation: uzstr = ∂r+su/∂tr∂zs. The case of
ordinary differential equations is then easily incorporated by taking ut = 0.
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Moreover, the case of higher-order form of (1) can be generalized accordingly,
with the same reasoning presented here.

Let φ(z, t) = 0 be the (singular) manifold on which u is singular. One can
easily construct a Laurent expansion u ∼

∑
un(z, t)φn−α for a solution of (1)

near an arbitrary non-characteristic singular manifold given by φ = 0. In the
expansion, φ can be regarded as a new variable. However in order that the
solution can be constructed in the neighborhood of the singular manifold it is
necessary to require φz 6= 0. This important requirement corresponds to the
assumption that the singularity manifold is non-characteristic. By the implicit
function theorem, we can express z as a function of t,

φ(z, t) = z − ψ(t) = 0, (2)

where ψ is an arbitrary (analytic) function of t.

By assuming that (1) passes the Painlevé test, we wish to convert it into a
regular partial differential equation near any non-characteristic, holomorphic
movable singular manifold. The regularity of the differential equation allows
us to apply the existence theorem of analytic solutions in the neighborhood
of the movable singularities and this is an approach for directly proving the
Painlevé property (PP) for partial differential equations (PDEs) . In fact we
cannot conclude that the PDEs have the Painlevé property, without knowing
the convergence of the Painlevé series expansions. By showing that they ac-
tually converge, we start to prove (1) for u could be formally converted into a
regular analytic equation (in a new variable) near any non-characteristic mov-
able manifold φ = 0, and then apply the Cauchy-Kowalevskaya theorem to an
initial value problem for the solutions of the converted equation. The theorem
actually asserts the existence of a unique analytic solution in a neighborhood
of any initial point for the Cauchy problem.

In this paper, we provide a simple, direct yet effective proof that equation
of the form (1) can be reduced to a regular partial differential equation and
demonstrate the result with a few examples such as the Korteweg-de Vries
equation, the modified Korteweg-de Vries equation, and the Burgers’ equation.
We also introduce an application for showing that the formal Laurent series
solutions are always convergent, for the original partial differential equations.

2.2. Indicial normalization as the transformation. We convert (1) to a
regular equation by a simple transform

u = θ(z, t)−k, (3)

where k is to be determined. We call this transformation the indicial nor-
malization, and here k is indeed a positive integer that could be deduced by
observing the dominant behaviour in the neighborhood of a movable singular-
ity of order k. We should emphasize that one should determine all possible
choices of k in the dominant balance. At this stage, we only remark that for
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some equations one may find a number of different k’s, depending on the non-
linearities, each will lead to a separate Laurent expansion which must be taken
in consideration.

It is straightforward to take the partial derivatives of (3)

uz = (−k) θ−k−1 θz,

ut = (−k) θ−k−1 θt,

uz2 = (−k)(−k − 1) θ−k−2 (θz)
2 + (−k) θ−k−1 θz2 ,

uz3 = (−k)(−k − 1)(−k − 2) θ−k−3 (θz)
3

+ 3(−k)(−k − 1) θ−k−2 θzθz2 + (−k) θ−k−1 θz3 ,

(4)

where the subscripts denote the differentiation with respect to z (and also t).
After substituting the partial derivatives in (4) into (1), we first determine
the value(s) of k by observing the dominant behaviour near φ = 0. We then
multiply θ−λ (λ being the most negative integral power of θ appears in the
substituted equation) on both sides of the equation and the transformation
eventually converts (1) to the equation

θlθz3 = g
(
z, θ, θz, θt, θz2

)
, (5)

where l is an integer and g is analytic in all variables.

The transformed equation here is singular when θ = 0. In view of (4) the
most negative power of θ appears in the first term of uz3 , so we must have
l > 2. In fact, as long as the nonlinearity balances with the highest order
derivative in the dominant equation, the index l must be identical to two, that
is the number of non-negative resonances, for third-order partial differential
equations, in the Laurent expansion solution possessed in the Painlevé test. In
the followings we would like to have this assumption so that l = 2 is restricted
for the case of third-order evolution equations.

3. Deduction of formal series of derivatives in powers of θ

As we assumed that (1) passes the Painlevé test for partial differential equa-
tions, it possesses the Laurent series solution, in the neighborhood of (2),

u(z, t) =
(
z − ψ(t)

)−k ∞∑
m=0

um(t)
(
z − ψ(t)

)m
. (6)

Here k is a positive integer determined by the dominant balance and the coef-
ficients um are (analytic) functions of t only. The series expansion (6) should
contain a sufficient number of arbitrary functions. In view of the third-order
equation (1) the resonances are m = −1, i, j (j > i ≥ 0), corresponding to the
fact that ψ, ui = r(t), uj = s(t) are arbitrary analytic functions, respectively.
In the neighborhood of the singularity manifold (2), solutions can therefore be



A method of proving the convergence of the formal Laurent series solutions 5

explicitly written in the form

u = u0(t, ψ)
(
z − ψ(t)

)−k
+ u1(t, ψ, ψt)

(
z − ψ(t)

)1−k
+ u2(t, ψ, ψt, ψt2)

(
z − ψ(t)

)2−k
+ · · ·

+ r(t)
(
z − ψ(t)

)i−k
+ ui+1(t, ψ, · · · , ψti+1 ; r)

(
z − ψ(t)

)i+1−k

+ ui+2(t, ψ, · · · , ψti+2 ; r, rt)
(
z − ψ(t)

)i+2−k
+ · · ·

+ s(t)
(
z − ψ(t)

)j−k
+ uj+1(t, ψ, · · · , ψtj+1 ; r, · · · , rtj−i ; s)

(
z − ψ(t)

)j+1−k

+ uj+2(t, ψ, · · · , ψtj+2 ; r, · · · , rtj+1−i ; s, st)
(
z − ψ(t)

)j+2−k
+ · · · ,

(7)

where u0, u1, u2, . . . are analytic functions of t. We shall assume that the
coefficient function u0 is nonzero everywhere along z = ψ(t). Henceforth, the
case i > 0 is assumed and we will carry out the subsequent argument for i > 0.

If we expand each coefficient function um by

um(t, ψ, ψt, · · · ; r, rt, · · · ; s, st, · · · )
= um(t, z − (z − ψ), ψt, · · · ; r, rt, · · · ; s, st, · · · )

into a series in powers of (z − ψ), with analytic functions as coefficients, then
we get a formal series

u = ū0(z, t)
(
z − ψ(t)

)−k
+ ū1(z, t; ψt)

(
z − ψ(t)

)1−k
+ ū2(z, t; ψt, ψt2)

(
z − ψ(t)

)2−k
+ · · ·

+
[
r(t) + ūi(z, t; ψt, · · · , ψti)

](
z − ψ(t)

)i−k
+ ūi+1(z, t; ψt, · · · , ψti+1 ; r)

(
z − ψ(t)

)i+1−k
+ · · ·

+
[
s(t) + ūj(z, t; ψt, · · · , ψtj ; r, · · · , rtj−i−1)

](
z − ψ(t)

)j−k
+ ūj+1(z, t; ψt, · · · , ψtj+1 ; r, · · · , rtj−i ; s)

(
z − ψ(t)

)j+1−k
+ · · · ,

(8)

where ū0, ū1, ū2, . . . are analytic functions of (z, t), and ū0 6= 0 near z = ψ(t).
In case i > 0, we fix one branch of solution a1(z, t) = [ū0(z, t)]

−1/k 6= 0 near
z = ψ(t) and introduce the indicial normalization (3), so that a formal series
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expansion can be deduced as

θ = a1(z, t)
(
z − ψ(t)

)
+ a2(z, t; ψt)

(
z − ψ(t)

)2
+
[
− r(t)

k
a1(z, t)

k+1 + ai+1(z, t; ψt, · · · , ψti)
](
z − ψ(t)

)i+1

+ ai+2(z, t; ψt, · · · , ψti+1 ; r)
(
z − ψ(t)

)i+2
+ · · ·

+
[
− s(t)

k
a1(z, t)

k+1

+ aj+1(z, t; ψt, · · · , ψtj ; r, · · · , rtj−i−1)
](
z − ψ(t)

)j+1

+ aj+2(z, t; ψt, · · · , ψtj+1 ; r, · · · , rtj−i ; s)
(
z − ψ(t)

)j+2
+ · · · .

(9)

By the method of undetermined coefficients, the series (9) is formally in-
verted near z − ψ(t) = 0, so that we can write z − ψ(t) as a formal series in
powers of θ. The procedure can be done by substituting

z − ψ(t) = A1θ + A2θ
2 + · · ·+ Ai+1θ

i+1 + · · ·+ Aj+1θ
j+1 + · · · ,

ψtm = −
(
z − ψ(t)

)
tm

into (9) and then solving the resulting recursive relations we obtain

z − ψ(t) = a1(z, t)
−1 θ + Z2

(
z, t; θt

)
θ2 + Z3

(
z, t; θt, θt2

)
θ3 + · · ·

+
[
(
r(t)

k
) a1(z, t)

k−i−1 + Zi+1

(
z, t; θt, · · · , θti

)]
θi+1

+ Zi+2

(
z, t; θt, · · · , θti+1 ; r

)
θi+2 + · · ·

+
[
(
s(t)

k
) a1(z, t)

k−j−1

+ Zj+1

(
z, t; θt, · · · , θtj ; r, · · · , rtj−i−1

)]
θj+1

+ Zj+2

(
z, t; θt, · · · , θtj+1 ; r, · · · , rtj−i ; s

)
θj+2 + · · · .

(10)

Taking the first-derivatives of (9), we have the formal series

θz = â10(z, t) + â11(z, t; ψt)
(
z − ψ(t)

)
+ · · ·

+
[
r(t) (−i+ 1

k
) a1(z, t)

k+1 + â1i (z, t; ψt, · · · , ψti)
](
z − ψ(t)

)i
+ â1i+1(z, t; ψt, · · · , ψti+1 ; r)

(
z − ψ(t)

)i+1
+ · · ·

+
[
s(t) (−j + 1

k
) a1(z, t)

k+1

+ â1j(z, t; ψt, · · · , ψtj ; r, · · · , rtj−i−1)
](
z − ψ(t)

)j
+ â1j+1(z, t; ψt, · · · , ψtj+1 ; r, · · · , rtj−i ; s)

(
z − ψ(t)

)j+1
+ · · · ,

(11)
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θt = ã00(z, t; ψt) + ã01(z, t; ψt)
(
z − ψ(t)

)
+ · · ·

+
[
r(t)ψt(

i+ 1

k
) a1(z, t)

k+1 + ã0i (z, t; ψt, · · · , ψti)
](
z − ψ(t)

)i
+ ã0i+1(z, t; ψt, · · · , ψti+1 ; r, rt)

(
z − ψ(t)

)i+1
+ · · ·

+
[
s(t)ψt(

j + 1

k
) a1(z, t)

k+1

+ ã0j(z, t; ψt, · · · , ψtj ; r, · · · , rtj−i−1)
](
z − ψ(t)

)j
+ ã0j+1(z, t; ψt, · · · , ψtj+1 ; r, · · · , rtj−i ; s, st)

(
z − ψ(t)

)j+1
+ · · · .

(12)

Later on, it is found that we need more higher-order derivatives. Therefore,
we generally apply the differential operators D(α), with multi-index α, to the
equation (9). In fact, we only need the additional derivatives such as θz2 , θz3 ,
. . . , θzj+2 , θzj+3 and θzt, θz2t, . . . , θzj+1t. We note that the above underlined
derivative functions such as θzi+1 , θzi+1t, θzj+1 , θzj+1t play an important role in
connection with the resonance functions r(t) and s(t). Now we can differentiate
(9) with respect to z and t accordingly and write explicitly in the form (n =
1, 2, . . . , j + 1),

θzn = ân0 (z, t; ψt, · · · , ψtn−1) + ân1 (z, t; ψt, · · · , ψtn)
(
z − ψ(t)

)
+ · · ·

+
[
(−r(t)

k
)

(i+ 1)!

(i− n+ 1)!
a1(z, t)

k+1

+ âni−n+1(z, t; ψt, · · · , ψti)
](
z − ψ(t)

)i−n+1

+ âni−n+2(z, t; ψt, · · · , ψti+1 ; r)
(
z − ψ(t)

)i−n+2
+ · · ·

+
[
(−s(t)

k
)

(j + 1)!

(j − n+ 1)!
a1(z, t)

k+1

+ ânj−n+1(z, t; ψt, · · · , ψtj ; r, · · · , rtj−i−1)
](
z − ψ(t)

)j−n+1

+ ânj−n+2(z, t; ψt, · · · , ψtj+1 ; r, · · · , rtj−i ; s)
(
z − ψ(t)

)j−n+2
+ · · · ,

(13)
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θznt = ãn0 (z, t; ψt, · · · , ψtn) + ãn1 (z, t; ψt, · · · , ψtn+1)
(
z − ψ(t)

)
+ · · ·

+
[
ψt(

r(t)

k
)
(i+ 1)!

(i− n)!
a1(z, t)

k+1

+ ãni−n(z, t; ψt, · · · , ψti)
](
z − ψ(t)

)i−n
+ ãni−n+1(z, t; ψt, · · · , ψti+1 ; r, rt)

(
z − ψ(t)

)i−n+1
+ · · ·

+
[
ψt(

s(t)

k
)
(j + 1)!

(j − n)!
a1(z, t)

k+1

+ ãnj−n(z, t; ψt, · · · , ψtj ; r, · · · , rtj−i−1)
](
z − ψ(t)

)j−n
+ ãnj−n+1(z, t; ψt, · · · , ψtj+1 ; r, · · · , rtj−i ; s, st)

(
z − ψ(t)

)j−n+1

+ · · · ,

(14)

θzj+2 = âj+2
0 (z, t; ψt, · · · , ψtj+1 ; r, · · · , rtj−i ; s)

+ âj+2
1 (z, t; ψt, · · · , ψtj+2 ; r, · · · , rtj−i+1 ; s, st)

(
z − ψ(t)

)
+ · · · ,

(15)

θzj+3 = âj+3
0 (z, t; ψt, · · · , ψtj+2 ; r, · · · , rtj−i+1 ; s, st)

+ âj+3
1 (z, t; ψt, · · · , ψtj+3 ; r, · · · , rtj−i+2 ; s, st, st2)

(
z − ψ(t)

)
+ · · · .

(16)

One can see that (13)–(16) are series in powers of (z − ψ). Indeed we can
expand them into series in powers of θ. This can be done by substituting (10)
into (13)–(16), where n = 1, 2, · · · , j + 1,

θzn = α̂n0 (z, t; θt, · · · , θtn−1) + α̂n1 (z, t; θt, · · · , θtn) θ + · · ·

+
[
(−r(t)

k
)

(i+ 1)!

(i− n+ 1)!
a1(z, t)

k−i+n

+α̂ni−n+1(z, t; θt, · · · , θti)
]
θi−n+1

+ α̂ni−n+2(z, t; θt, · · · , θti+1 ; r) θi−n+2 + · · ·

+
[
(−s(t)

k
)

(j + 1)!

(j − n+ 1)!
a1(z, t)

k−j+n

+ α̂nj−n+1(z, t; θt, · · · , θtj ; r, · · · , rtj−i−1)
]
θj−n+1

+ α̂nj−n+2(z, t; θt, · · · , θtj+1 ; r, · · · , rtj−i ; s) θj−n+2 + · · · ,

(17)
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θznt = α̃n0 (z, t; θt, · · · , θtn) + α̃n1 (z, t; θt, · · · , θtn+1) θ + · · ·

+
[
θt (

r(t)

k
)
(i+ 1)!

(i− n)!
a1(z, t)

k−i+n+1

+ α̃ni−n(z, t; θt, · · · , θti)
]
θi−n

+ α̃ni−n+1(z, t; θt, · · · , θti+1 ; r, rt) θ
i−n+1 + · · ·

+
[
θt (

s(t)

k
)
(j + 1)!

(j − n)!
a1(z, t)

k−j+n+1

+α̃nj−n(z, t; θt, · · · , θtj ; r, · · · , rtj−i−1)
]
θj−n

+ α̃nj−n+1(z, t; θt, · · · , θtj+1 ; r, · · · , rtj−i ; s, st) θ
j−n+1 + · · · ,

(18)

θzj+2 = α̂j+2
0 (z, t; θt, · · · , θtj+1 ; r, · · · , rtj−i ; s)

+ α̂j+2
1 (z, t; θt, · · · , θtj+2 ; r, · · · , rtj−i+1 ; s, st) θ + · · · ,

(19)

θzj+3 = α̂j+3
0 (z, t; θt, · · · , θtj+2 ; r, · · · , rtj−i+1 ; s, st)

+ α̂j+3
1 (z, t; θt, · · · , θtj+3 ; r, · · · , rtj−i+2 ; s, st, st2) θ + · · · .

(20)

The two derivative series θzi+1 and θzj+1 are extracted from (17) and are
written explicitly in the following.

θzi+1 =
[
(−r(t)

k
)(i+ 1)! a1(z, t)

k+1 + α̂i+1
0 (z, t; θt, · · · , θti)

]
+ α̂i+1

1 (z, t; θt, · · · , θti+1 ; r) θ + · · ·

+
[
(−s(t)

k
)
(j + 1)!

(j − i)!
a1(z, t)

k−j+i+1

+ α̂i+1
j−i(z, t; θt, · · · , θtj ; r, · · · , rtj−i−1)

]
θj−i

+ α̂i+1
j−i+1(z, t; θt, · · · , θtj+1 ; r, · · · , rtj−i ; s) θj−i+1 + · · · ,

(21)

θzj+1 =
[
(−s(t)

k
)(j + 1)! a1(z, t)

k+1

+ α̂j+1
0 (z, t; θt, · · · , θtj ; r, · · · , rtj−i−1)

]
+ α̂j+1

1 (z, t; θt, · · · , θtj+1 ; r, · · · , rtj−i ; s) θ

+ α̂j+1
2 (z, t; θt, · · · , θtj+2 ; r, · · · , rtj−i+1 ; s, st) θ

2 + · · · .

(22)
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One can observe that the arbitrary functions r(t) and s(t) first appear in
the leading terms of θzi+1 and θzj+1 respectively. The derivative series θzi+1

and θzj+1 are indeed intimately connected with the resonance functions r(t)
and s(t), therefore we often call them as derivative resonances.

Moreover, we may invert the series (21) into

r(t) =
[
− k

(i+ 1)!
a1(z, t)

−k−1 θzi+1 + β̂0(z, t; θt, · · · , θti)
]

+ β̂1(z, t; θt, · · · , θti+1 ; θzi+1) θ

+ β̂2(z, t; θt, · · · , θti+2 ; θzi+1 , θzi+1t) θ
2 + · · ·

+
[
− s(t) (j + 1)!

(j − i)!(i+ 1)!
a1(z, t)

i−j

+ β̂j−i(z, t; θt, · · · , θtj ; θzi+1 , θzi+1t, · · · , θzi+1tj−i−1)
]
θj−i

+ β̂j−i+1(z, t; θt, · · · , θtj+1 ; θzi+1 , θzi+1t, · · · , θzi+1tj−i ; s) θj−i+1

+ · · · .

(23)

The above series contains another resonance function s(t) and we next substi-
tute that into (22) and invert it into

s(t) =
[
− k

(j + 1)!
a1(z, t)

−k−1 θzj+1

+ γ̂0(z, t; θt, · · · , θtj ; θzi+1 , θzi+1t, · · · , θzi+1tj−i−1)
]

+ γ̂1(z, t; θt, · · · , θtj+1 ; θzi+1 , θzi+1t, · · · , θzi+1tj−i ; θzj+1) θ

+ γ̂2(z, t; θt, · · · , θtj+2 ; θzi+1 , θzi+1t, · · · ,
θzi+1tj−i+1 ; θzj+1 , θzj+1t) θ

2 + · · · .

(24)

Now we substitute (23)–(24) back into (17)–(20) and again expand them
into series in powers of θ. By observing that more derivatives, including θzi+1t2 ,
θzi+1t3 , · · · , θzj+1t2 , θzj+1t3 , · · · , are generated in (23)–(24), we expect to get the
series in terms of the (resonance) derivatives θzi+1tq and θzj+1tq , instead of r(t)
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and s(t). For n = 1, 2, . . . , j (n 6= i+ 1),

θzn = Ân0 (z, t; θt, · · · , θtn−1) + Ân1 (z, t; θt, · · · , θtn) θ + · · ·

+
[ 1

(i− n+ 1)!
a1(z, t)

n−i−1 θzi+1

+ Âni−n+1(z, t; θt, · · · , θti)
]
θi−n+1

+ Âni−n+2(z, t; θt, · · · , θti+1 ; θzi+1) θi−n+2 + · · ·

+
[ 1

(j − n+ 1)!
a1(z, t)

n−j−1 θzj+1

+ Ânj−n+1(z, t; θt, · · · , θtj ; θzi+1 , · · · , θzi+1tj−i−1)
]
θj−n+1

+ Ânj−n+2(z, t; θt, · · · , θtj+1 ; θzi+1 , · · · , θzi+1tj−i ; θzj+1) θj−n+2

+ · · · ,

(25)

θznt = Ãn0 (z, t; θt, · · · , θtn) + Ãn1 (z, t; θt, · · · , θtn+1) θ + · · ·

+
[
− θt

(i− n)!
a1(z, t)

n−i θzi+1

+ Ãni−n(z, t; θt, · · · , θti)
]
θi−n

+ Ãni−n+1(z, t; θt, · · · , θti+1 ; θzi+1 , θzi+1t) θ
i−n+1 + · · ·

+
[
− θt

(j − n)!
a1(z, t)

n−j θzj+1

+ Ãnj−n(z, t; θt, · · · , θtj ; θzi+1 , · · · , θzi+1tj−i−1

]
θj−n

+ Ãnj−n+1(z, t; θt, · · · , θtj+1 ; θzi+1 , · · · ,
θzi+1tj−i ; θzj+1 , θzj+1t) θ

j−n+1 + · · · ,

(26)

θzj+2 = Âj+2
0 (z, t; θt, · · · , θtj+1 ; θzi+1 , · · · , θzi+1tj−i ; θzj+1)

+ Âj+2
1 (z, t; θt, · · · , θtj+2 ; θzi+1 , · · · ,

θzi+1tj−i+1 ; θzj+1 , θzj+1t) θ + · · · ,
(27)

θzj+3 = Âj+3
0 (z, t; θt, · · · , θtj+2 ; θzi+1 , · · · , θzi+1tj−i+1 ; θzj+1 , θzj+1t)

+ Âj+3
1 (z, t; θt, · · · , θtj+3 ; θzi+1 , · · · ,

θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2) θ + · · · .
(28)
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4. Algorithm to show analyticity of coefficient functions of
derivatives

In view of (25)–(28), they are expressed as asymptotic series in powers of θ
and can be written in the form

D(α)θ = A0 +A1θ +A2θ
2 +A3θ

3 + · · · . (29)

Our main task is to show the analyticity of the coefficient functions An in (29).
In case of the third-order partial differential equation (1), this can be done by
writing (29) into D(α)θ = A0 +A1θ+B2θ2, where B2 = A2 +A3θ+ · · · , and
showing the corresponding functions A0, A1, B2 of derivatives are analytic in
all variables.

By substituting (4) into the original equation (1), we obtain

θ−k−1θt = K̄
(
z, θ−k, θ−k−1θz, θ

−k−2θ2z

+ αθ−k−1θz2 , θ
−k−3θ3z

+ βθ−k−2θzθz2 + γθ−k−1θz3
)
,

(30)

where K̄ is an expression in powers of θ, and α, β, γ are only constants. By
observing (30) near θ = 0, for a fixed value of k, one can see that the term
with the most negative power of θ appears in K̄ may depend on z and θz only.
Therefore, we prefer to rewrite the singular equation (30) into

g̃(z, θz) + θ h̃(z, θ, θz, θt, θz2)− θ2 θz3 = 0, (31)

where g̃ and h̃ are analytic functions and g̃ is not identically zero. In fact,
(31) can be simplified as a condition on θz, g̃(z, θz) = OA,3(θ). Here we
shall use the notation throughout the context: OA,m(θn) means an expression
of the form θnR

(
z, θ, · · · , D(α′)θ

)
, where D(α′) is a differential operator

with multi-index |α′| 6 m, and R is a function analytic in all variables. It
determines the leading behaviour of θz near θ = 0. Since θz = OA,3(θ) violates
the non-characteristic assumption, the condition yields that

θz = α
{1,0}
0 (z) +OA,3(θ), (32)

where α
{1,0}
0 is a nonzero analytic function of z.

Next we differentiate (31) with respect to z and t and get respectively

g̃1,0
(
z, θz, θt, θz2

)
+ θ h̃1,0

(
z, θ, θz, θt, θz2 , θzt, θz3

)
= θ2 θz4 (33)

and

g̃0,1
(
z, θz, θt, θz2 , θzt

)
+ θ h̃0,1

(
z, θ, θz, θt, θz2 , θzt, θt2 , θz3 , θz2t

)
= θ2 θz3t. (34)

At this stage, we aim to determine the leading behaviours of θ-derivatives
near θ = 0. Therefore, after substituting (32) into (33)–(34), we can obtain

ĝ1,0
(
z, θt, θz2

)
= OA,4(θ), (35)

ĝ0,1
(
z, θt, θz2 , θzt) = OA,4(θ), (36)
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respectively. Here (35)–(36) can be viewed as corresponding conditions on θz2
and θzt. Indeed, (35) helps to determine the leading behaviour of θz2 , and
substitute this expression into (36) to get the condition on θzt. The analyticity
of ĝ1,0 and ĝ0,1 guarantees the solvability of θz2 and θzt in terms of analytic
functions. Hence we can write

θz2 = α
{2,0}
0 (z, θt) +OA,4(θ), (37)

θzt = α
{1,1}
0 (z, θt) +OA,4(θ), (38)

where α
{2,0}
0 and α

{1,1}
0 are some (possibly zero) analytic functions of z and θt.

We continuously differentiate (33) with respect to z and t, and (34) with
respect to t, we get respectively

g̃2,0
(
z, θz, θt, θz2 , θzt, θz3

)
+ θ h̃2,0 = θ2 θz5 , (39)

g̃1,1
(
z, θz, θt, θz2 , θzt, θt2 , θz3 , θz2t

)
+ θ h̃1,1 = θ2 θz4t, (40)

g̃0,2
(
z, θz, θt, θz2 , θzt, θt2 , θz3 , θz2t, θzt2

)
+ θ h̃0,2 = θ2 θz3t2 . (41)

By substituting the leading-order behaviours of (32) and (37)–(38) into (39)–
(41), we can obtain the respective conditions on θz3 , θz2t and θzt2 . They are
written as

ĝ2,0
(
z, θt, θz3

)
= OA,5(θ), (42)

ĝ1,1
(
z, θt, θt2 , θz3 , θz2t

)
= OA,5(θ), (43)

ĝ0,2
(
z, θt, θt2 , θz3 , θz2t, θzt2

)
= OA,5(θ). (44)

By solving (42)–(44) recursively, it follows immediately that

θz3 = α
{3,0}
0

(
z, θt

)
+OA,5(θ), (45)

θz2t = α
{2,1}
0

(
z, θt, θt2

)
+OA,5(θ), (46)

θzt2 = α
{1,2}
0

(
z, θt, θt2

)
+OA,5(θ), (47)

where α
{3,0}
0 , α

{2,1}
0 and α

{1,2}
0 are analytic functions.

Following this idea, we generally apply the differential operators D(α) to (31)
where |α| 6 j. Here j is the index at which the coefficient function uj in the
Laurent expansion (6) is to be indeterminate, the value of j being called the
largest resonance. We then obtain respectively

g̃(z, θz) + θ h̃− θ2 θz3 = 0, (48)

g̃1,0(z, θz, θt, θz2) + θ h̃1,0 − θ2 θz4 = 0, (49)

g̃0,1(z, θz, θt, θz2 , θzt) + θ h̃0,1 − θ2 θz3t = 0, (50)

g̃2,0(z, θz, θt, θz2 , θzt, θz3) + θ h̃2,0 − θ2 θz5 = 0, (51)

g̃1,1(z, θz, θt, θz2 , θzt, θt2 , θz3 , θz2t) + θ h̃1,1 − θ2 θz4t = 0, (52)

g̃0,2(z, θz, θt, θz2 , θzt, θt2 , θz3 , θz2t, θzt2) + θ h̃0,2 − θ2 θz3t2 = 0, (53)
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and so on,

g̃j,0(z, θz, θt, θz2 , θzt, · · · , θzq , θzq−1t, · · · , θzj , θzj−1t, θzj+1)

+ θ h̃j,0 − θ2 θzj+3 = 0,
(54)

g̃j−1,1
(
z, θz, θt, θz2 , θzt, θt2 , · · · , θzq , θzq−1t, θzq−2t2 , · · · ,

θzj , θzj−1t, θzj−2t2 , θzj+1 , θzjt
)

+ θ h̃j−1,1 − θ2 θzj+2t = 0,
(55)

and so on,

g̃0,j
(
z, θz, θt, θz2 , θzt, θt2 , θz3 , θz2t, θzt2 , θt3 , · · · ,

θz3tq−3 , θz2tq−2 , θztq−1 , θtq , · · · ,
θz3tj−3 , θz2tj−2 , θztj−1 , θtj , θz3tj−2 , θz2tj−1 , θztj

)
+ θ h̃0,j − θ2 θz3tj = 0,

(56)

where g̃m,n and h̃m,n are some functions analytic in all variables, where the
indexes (m,n) have all combinations such that 1 6 m+ n 6 j.

Generally, (48)–(56) give algebraic conditions on the derivatives θz, θz2 , θzt,
θz3 , θz2t, θzt2 , θz4 , θz3t, θz2t2 , θzt3 , · · · , θzj+1 , θzjt, · · · , θztj . By solving (48)–(56)
recursively, we can deduce the leading-order behaviours of the derivatives

θzptq = α
{p,q}
0

(
z, θt, θt2 , . . . , θtp+q−1

)
+OA,p+q+2(θ), (57)

where 1 6 p 6 j+ 1, 0 6 q 6 j, 1 6 p+ q 6 j+ 1, and α
{p,q}
0 are some analytic

functions. But we should remark that the formulae for some derivatives cannot
be found because of the existence of resonances. In the case of third-order
equations, we simply skip the formulae for θzi+1 , θzj+1 and θzi+1tq (the values
of i and j being the two resonances, j > i), which correspond to the resonance
terms appear and consequently, they cannot be determined.

Now we need to work out the second round calculations in order to refine
the formulae (57) up to OA,j+3(θ

2). We start to put the past formulae of
derivatives θz and θz2 into (48) and solve the equation of the next order, we
can determine

θz = α
{1,0}
0 (z) + α

{1,0}
1 (z, θt) θ +OA,4(θ

2), (58)

where α
{1,0}
1 is analytic. In order to find the refined formula of θz2 , we put the

past formulae of θz2 and θz3 with the refined formula (58) of θz into (49). Then
after solving the equation we can determine the next order formula

θz2 = α
{2,0}
0 (z, θt) + α

{2,0}
1 (z, θt, θt2) θ +OA,5(θ

2), (59)

where α
{2,0}
1 is analytic.

Following the same procedure with the equations (48)–(56), we can eventu-
ally obtain a refinement of all expansion formulae of the form

θzptq = α
{p,q}
0

(
z, θt, θt2 , · · · , θtp+q−1

)
+ α

{p,q}
1

(
z, θt, θt2 , · · · , θtp+q

)
θ +OA,kp,q(θ

2),
(60)
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where 1 6 p 6 j + 3, 0 6 q 6 j, 1 6 p + q 6 j + 1, 3 6 kp,q 6 j + 3, and the

coefficient functions α
{p,q}
m are analytic in all variables.

By observing (60) with (25)–(28), we showed the analyticity of all coefficient
functions of derivatives, for n = 1, 2, . . . , j (n 6= i+ 1),

θzn = Ân0
(
z, t; θt, · · · , θtn−1

)
+ Ân1

(
z, t; θt, · · · , θtn

)
θ + · · ·

+
[ 1

(i− n+ 1)!
a1(z, t)

n−i−1 θzi+1

+ Âni−n+1

(
z, t; θt, · · · , θti

)]
θi−n+1

+ Âni−n+2

(
z, t; θt, · · · , θti+1 ; θzi+1

)
θi−n+2 + · · ·

+
[ 1

(j − n+ 1)!
a1(z, t)

n−j−1 θzj+1

+ Ânj−n+1

(
z, t; θt, · · · , θtj ; θzi+1 , · · · , θzi+1tj−i−1

)]
θj−n+1

+ Ânj−n+2

(
z, t; θt, · · · , θtj+1 ; θzi+1 , · · · , θzi+1tj−i ; θzj+1

)
θj−n+2

+ · · ·+OA,kn0(θ
2),

(61)

θznt = Ãn0
(
z, t; θt, · · · , θtn

)
+ Ãn1

(
z, t; θt, · · · , θtn+1

)
θ + · · ·

+
[
− θt

(i− n)!
a1(z, t)

n−i θzi+1 + Ãni−n
(
z, t; θt, · · · , θti

)]
θi−n

+ Ãni−n+1

(
z, t; θt, · · · , θti+1 ; θzi+1 , θzi+1t

)
θi−n+1 + · · ·

+
[
− θt

(j − n)!
a1(z, t)

n−j θzj+1

+ Ãnj−n
(
z, t; θt, · · · , θtj ; θzi+1 , · · · , θzi+1tj−i−1

)]
θj−n

+ Ãnj−n+1

(
z, t; θt, · · · , θtj+1 ; θzi+1 , · · · ,

θzi+1tj−i ; θzj+1 , θzj+1t

)
θj−n+1 + · · ·+OA,kn1(θ

2),

(62)

θzj+2 = Âj+2
0

(
z, t; θt, · · · , θtj+1 ; θzi+1 , · · · , θzi+1tj−i ; θzj+1

)
+ Âj+2

1

(
z, t; θt, · · · , θtj+2 ; θzi+1 , · · · ,

θzi+1tj−i+1 ; θzj+1 , θzj+1t

)
θ +OA,kj+2

(θ2),

(63)

θzj+3 = Âj+3
0

(
z, t; θt, · · · , θtj+2 ; θzi+1 , · · · ,

θzi+1tj−i+1 ; θzj+1 , θzj+1t

)
+ Âj+3

1

(
z, t; θt, · · · , θtj+3 ; θzi+1 , · · · ,

θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2
)
θ +OA,kj+3

(θ2),

(64)

where OA,km(θn) means an expression of the form θnR(z, θ, · · · ,D(β)θ), with
|β| 6 km, 3 6 km 6 j + 3, and R is analytic in all variables.
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We remark that θzi+1tq , θzj+1tq are resonance derivatives and cannot be de-
termined.

5. Conversion of higher-order regular partial differential
equation

In order to find the regular partial differential equation, we first differentiate
(5) with respect to z and get

2θθz θz3 + θ2 θz4 = g1(z, θ, θz, θt, θz2 , θzt, θz3),

θ2 θz4 = ḡ1(z, θ, θz, θt, θz2 , θzt, θz3),

where g1 (and hence ḡ1) is analytic in all variables. Using the same idea, we
differentiate (5) with respect to z by j + 1 times and eventually get

θ2 θzj+4 = G
(
z, θ, θz, θt, θz2 , θzt, · · · , θzj+2 , θzj+1t, θzj+3

)
, (65)

where G is analytic in all variables. The analytic function G in (65) contains
derivative functions (except the resonances θzi+1 , θzi+1t, θzj+1 , θzj+1t) which can
be replaced by (61)–(64), we then have

θ2 θzj+4 = Ĝ
(
z, θ; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,
θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2

)
+OA,j+3(θ

2),

where θzi+1tq , θzj+1tq are viewed as arbitrary functions, and Ĝ is analytic in all
variables. By dividing θ2 on both sides, we rewrite the above equation into

θzj+4 = Ḡ
(
z, θ; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,
θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2

)
+OA,j+3(1),

(66)

where Ḡ is analytic in z and meromorphic in θ. Since Ḡ is meromorphic in θ,
we have the following Laurent series near θ = 0

Ḡ = H
(
z, θ; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,
θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2

)
+ θ−1 Ḡ0

(
z; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,

θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2
)

+ θ−2 Ḡ1

(
z; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,

θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2
)
,

(67)

where Ḡ0, Ḡ1 and H are all analytic. As formal solution, the series (9) must
satisfy (66) with Ḡ given by (67). Therefore, we substitute the series into the
equation and expand both sides into Laurent series of powers of z−ψ(t). One
can see that the left side is formally analytic. In the limit z → ψ, we have

0 = Ḡ0

(
ψ; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,

θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2
)
a1(ψ)−1,

(68)
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0 = Ḡ1

(
ψ; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,

θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2
)
a1(ψ)−2,

(69)

respectively. The derivative functions appear in (68)–(69) are functions of r
and s. Thus when a1(ψ) 6= 0, we must have

Ḡ0,1

(
ψ; θt, θt2 , · · · , θtj+3 ; θzi+1 , θzi+1t, · · · ,

θzi+1tj−i+2 ; θzj+1 , θzj+1t, θzj+1t2
)

= 0

for all ψ, r and s. Since ψ, r and s, and so all resonance derivatives, are all
arbitrary, we find that Ḡ0 ≡ Ḡ1 ≡ 0 and therefore

Ḡ = H is analytic. (70)

The equation (66) is now reduced to

θzj+4 = H +OA,j+3(1).

Now we can conclude that θ satisfies a (j+ 4)-order regular partial differential
equation where j is the largest resonance in the Painlevé test. For a n-order
partial differential equation, we can expect to get a regular differential equation
of order (j + n+ 1).

We offer several examples below to list the results of the converted regular
differential equations near non-characteristic, movable singularity manifolds.

The Korteweg-de Vries equation
For the KdV equation

ut + 6uux + uxxx = 0, (71)

we substitute the dominant behaviour u ∼ u0φ
k near a non-characteristic,

movable singular manifold φ = 0 and solve the dominant equation to have
k = −2. As a result, we proved that the function θ, defined by

u(x, t) =
1

θ(x, t)2
, (72)

satisfies a 10th-order regular partial differential equation near θ = 0.

The modified Korteweg-de Vries equation
For the mKdV equation

ut − 6u2ux + uxxx = 0, (73)

we substitute the dominant behaviour u ∼ u0φ
k near a non-characteristic,

movable singular manifold φ = 0 and solve the dominant equation to have
k = −1. As a result, we proved that the function θ, defined by

u(x, t) =
1

θ(x, t)
, (74)

satisfies a 8th-order regular partial differential equation near θ = 0.
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The Burgers’ equation
For the Burgers’ equation

ut + uux + uxx = 0, (75)

we substitute the dominant behaviour u ∼ u0φ
k near a non-characteristic,

movable singular manifold φ = 0 and solve the dominant equation to have
k = −1. As a result, we proved that the function θ, defined by

u(x, t) =
1

θ(x, t)
, (76)

satisfies a 5th-order regular partial differential equation near θ = 0.

6. Convergence result for PDEs

In general, if n is the order of the equation, and θzj+1 is the highest-order
resonance derivative, then we would expect a regular (n+ j + 1)-order regular
equation for θ. Note that the higher-order equation we get for the KdV equa-
tions and the Burgers’ equation are in the form that we can directly apply the
Cauchy-Kowalevski theorem. Consequently, we have provided a direct method
to prove that the formal Laurent series solutions for these equations are always
convergent. However, one obvious drawback of this method is its complexity.
As a matter of fact, we can hardly write explicitly the whole regular equation.
To overcome this technical issue, in the following, we also demonstrated an
alternative algorithm that the target equation can be converted to a regular
mirror system. The Cauchy-Kowalevski theorem is always applicable in this
case. As a result, we always have a routine conceptual proof of the convergence
of the Laurent series obtained from the Painlevé test.

We shall use the Burgers’ equation as an example for illustration. The
system (75) has the associated space-evolution equations

ux = v, vx = −ut − uv (77)

which passes the Painlevé test and has the principal balance given by

u =
2

x− ψ(t)
+ ψ′(t) + r2(t)

(
x− ψ(t)

)
− ψ′′(t)

4

(
x− ψ(t)

)2
+ · · · , (78)

where ψ and r2 are arbitrary functions of t. Next, we shall construct the mirror
system for (77). By introducing the indicial normalization

u = θ−1(x, t), v = v2(x, t) θ
−2(x, t),

one can find the Laurent θ-series

θx =
1

2
+ 2θt θ − r̄2 θ2 +

(
4r̄2θt − 8θtt

)
θ3 + · · · ,

v = − 1

2θ2
− 2θt

θ
+ r̄2 +

(
− 4r̄2 θt + 8θtt

)
θ + · · · ,
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where r̄2 is an arbitrary (resonance) function. We then truncate the θ-series
of v at θ0 (where the resonance parameter r̄2 first appears) by introducing a
new variable η to have the transformation (u, v)←→ (θ, η):

u =
1

θ
, v = − 1

2θ2
− 2θt

θ
+ η. (79)

By substituting (79) into (77), we obtain a regular (mirror) system of the form

θx =
1

2
+ 2θt θ − η θ2, ηx = −2η θt + 4θtt − 2ηt θ,

in which the time-derivatives of θ and η appear in right hand side of the mirror
system.

In fact, the mirror system for Burgers’ equation is not suitable for applying
the Cauchy-Kowalevski theorem, because of the second-order derivative θtt on
the right side. By introducing a new variable α = θt, we may extend the mirror
system to 

θx =
1

2
+ 2α θ − η θ2,

ηx = −2α η + 4αt − 2ηt θ,

αx = 2α2 + 2
(
αt − αη

)
θ − ηt θ2,

(80)

in which we use αx = (θx)t to find the third equation. The extended mirror
system is now suitable for applying the Cauchy-Kowalevski theorem.

The next thing we should do is to convert the series (78) into an equivalent
initial value condition for (80) along the singularity manifold x = ψ(t). From
(78) and θ = u−1, we obtain

θ =
1

2

(
x− ψ(t)

)
− ψ′

4

(
x− ψ(t)

)2
+
(ψ′2

8
− r2

4

)
(x− ψ(t))3 + · · · . (81)

Taking derivative of this with respect to t, we have

α = −ψ
′

2
+
ψ′2

2

(
x− ψ(t)

)
+
(3r2 ψ

′

4
− 3ψ′3

8
− ψ′′

4

)(
x− ψ(t)

)2
+ · · · .

Substituting the series for θ and α into the first equation in (80) and solving
for η, we have

η = 3r2 +
3

2
ψ′2 +

(
3r2 ψ

′ − ψ′3

2
− 2ψ′′

)(
x− ψ(t)

)
+ · · · .

From these power series, we find the following initial data for the mirror system
along the singularity

θ = 0, η = 3r2 +
3

2
ψ′2, α = −ψ

′

2
, at x = ψ(t). (82)

Now, the convergence of (78) follows immediately. By the Cauchy-Kowalevski
theorem, the extended mirror system (80) with the initial data (82) has a
unique analytic solution

(
θ(x, t), η(x, t), α(x, t)) near x = ψ(t). Then u = θ−1

is a solution of Burgers’ equation near x = ψ(t). Moreover, from the usual
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power series method, we find the expansion for θ is indeed (81). Then an easy
calculation reveals that the Laurent series of u = θ−1 is exactly (78).

7. Conclusion

An algorithm of converting any third-order evolution equations to regular
higher-order partial differential equations was presented. As an immediate
consequence, the regularity of the higher-order equations enables us to use the
Cauchy-Kowalevski theorem to prove the convergence of the Laurent series
obtained from the Painlevé test. An alternative algorithm using the mirror
method was also presented. We used the Burgers’ equation as an example to
illustrate the steps: Find the mirror system and if necessary, extend the system
so that the Cauchy-Kowalevski theorem is applicable; Use the given resonance
functions to find an initial condition for the (extended) mirror system; Use the
standard power series method to find the series solution of the initial value
problem (with all resonance functions appear); Verify that the inverse indicial
normalization converts the series obtained from the mirror system into the
Laurent series expected from the Painlevé test. For ODEs, the right side of
the mirror system involves no derivatives. Therefore, the Cauchy-Kowalevski
theorem is always applicable. As a result, we always have a routine conceptual
proof of the convergence of the series from the Painlevé test.
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Stockholm, delivered in 1895) (Hermann, Paris, 1897). Reprinted, Œuvres de Paul
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