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Abstract

In this paper, we introduce new types of generalized convex functions
including locally B-(Hp, r, α)-preinvex functions and B̄- (Hp, r, α)-invex
functions based on Hp-invex set. Some properties of these new classes of
functions and sets are established. We also present the optimality con-
ditions for mathematical programming problems in which the functions
considered belong to the classes of functions introduced in this paper.

Keywords: Hp-invex set, B-(Hp, r, α)-preinvex functions, B̄- (Hp, r, α)-
invex functions

1 Introduction

Convexity plays a central role in many aspects of mathematical program-
ming including analysis of stability, sufficient optimality conditions and du-
ality. Based on convexity assumptions, nonlinear programming problems can
be solved efficiently. There have been many attempts to weaken the convex-
ity assumptions in order to treat many practical problems. Therefore, many
concepts of generalized convex functions have been introduced and applied to



168 X. L. Liu and X. Liu

mathematical programming problems in the literature [1, 2, 3]. One of these
concepts, invexity, was introduced by Hanson in [4]. Hanson has shown that
invexity has a common property in mathematical programming with convex-
ity that Karush Kuhn Tucker conditions are sufficient for global optimality of
nonlinear programming under the invexity assumptions. Ben-Israel and Mond
[5] introduced the concept of pre-invex functions which is a special case of
invexity.

Recently, Antczak [6] introduced new definitions of p-invex sets and (p, r)-
invex functions which can be seen as generalization of invex functions. He also
discussed nonlinear programming problems involving the (p, r)-invexity-type
functions in [2, 7]. On the other hand, Kaul et al. [8] introduced the classes of
locally connected sets which generalizes the arcwise connected sets [9] and lo-
cally star-shaped sets [10]. Yuan et al. introduced the definition of a new class
of sets, locally Hp-invex sets, and definitions of classes of generalized convex
functions called locally (Hp, r, α)-preinvex functions in [11]. Basing on locally
Hp-invex sets, we discussed the programming involving locally differentiable
(Hp, r)-invex functions[12].

In this paper, motivated by [13], we present new classes of generalized con-
vex functions including B-(Hp, r, α)-preinvex functions and B̄-(Hp, r, α)-invex
functions. Based on these definitions of classes of generalized convex functions,
we have managed to deal with nonlinear programming problems under some
assumptions. The rest of the paper is organized as follows: In Section 2, we dis-
cuss concepts and properties regarding locally B-(Hp, r, α)-preinvex functions.
In Section 3, we give the definition of locally B̄-(Hp, r, α)-invex function, dis-
cuss the properties regarding this type of functions. In Section 4, we present
the optimality conditions for mathematical programming problems involving
B-(Hp, r, α)-preinvex functions and B̄-(Hp, r, α)-invex functions, respectively.

2 Locally B-(Hp, r, α)-Preinvex Functions

Let Rn be the n-dimensional Euclidean space, Rn
+ = {x ∈ Rn|x ≥ 0} and

Ṙn
+ = {x ∈ Rn|x > 0}. In this section, we give definitions of locally Hp-

invex set. As we mentioned before, the notion of p-invex set was introduced
by Antczak in [6] and the notion of a locally connected set was introduced
by Kaul et al. in [8]. Basing on these concepts, we introduced the following
concept of a locally Hp-invex set in [11].

Definition 2.1. [11] Let p be real number. The set S ⊂ Rn is a locally
Hp-invex set if and only if, for any x, u ∈ S, there exist a maximum positive
number a(x, u) ≤ 1 and a vector function Hp : S × S × [0, 1]→ Rn, such that

Hp(x, u; 0) = eu, Hp(x, u;λ) ∈ Ṙn
+, ln (Hp(x, u;λ)) ∈ S, ∀ 0 < λ < a(x, u).
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and Hp(x, u;λ) is continuous on the interval (0, a(x, u)), where the logarithm
and the exponentials appearing in the relation are understood to be taken com-
ponentwise.

With the aid of locally Hp-invex set and the notation Mr(a, b;λ)(see [6]),
we give below a new class of functions, locally B-(Hp, r, α)-preinvex functions,
in this section.

Definition 2.2. Let S ⊂ Rn be locally Hp-invex set and b : S×S× [0, 1]→
R+, and let r be real number. A function f : S → R is said to be locally
B-(Hp, r, α)-preinvex on S if, for any x, u ∈ S, there exists a maximum positive
number a(x, u) ≤ 1 such that

f (ln (Hp(x, u;λ))) ≤ ln
(
Mr

(
ef(x), ef(u); (λb(x, u;λ))α

))
,

0 ≤ λb(x, u;λ) ≤ 1,∀ 0 < λ < a(x, u)

where the logarithm and the exponentials appearing on the left-hand side of the
inequality are understood to be taken componentwise. If u is fixed, then f is
said to be locally B-(Hp, r, α)-preinvex at u.

Remark 2.3. Obviously, locally (Hp, r, α)-preinvex functions are (p, r)-pre-
invex[6] if Hp(x, u;λ) = Mp(e

η(x,u)+u, eu;λ) and a(x, u) = 1 for all x, u. In
general case, there exist locally B-(Hp, r, α)-preinvex functions which are not
(p, r)-pre-invex. For example, let S be a locally Hp-invex set given by Remark
1 in [11], and the function f be given by

f(x) = 1, ∀ x = (x1, x2) ∈ S;

b(x, u;λ) = 1, ∀x, u ∈ S, λ ∈ [0, 1].

Certainly, for any real number r, f is a locally B-(Hp, r, 1)-preinvex function
which is not (p, r)-pre-invex only if η(x, u) not always zero for any x, u ∈ S,
since S is not p-invex.

Remark 2.4. If the direction of inequality in Definition 2.2 is changed to
the opposite one, we say that a function f is B-(Hp, r, α)-preincave. We say
that a function f : S → R defined on a Hp-invex set S ⊂ Rn is strictly
B-(Hp, r, α)-preinvex(strictly B-(Hp, r, α)-preincave) on S if the inequality in
definition of B-(Hp, r, α)-preinvex function(B-(Hp, r, α)-preincave function) is
sharp and it holds for all x 6= u, 0 ≤ λb(x, u;λ) ≤ 1 and any λ ∈ (0, a(x, u)).

Definition 2.5. [11] A function f : S → R defined on a locally Hp-invex set
S ⊂ Rn is said to be locally (Hp, r, α)-prequasiinvex on S if, for any x, u ∈ S,
there exists a maximum positive number a(x, u) ≤ 1 such that

f (ln (Hp(x, u;λ))) ≤ max{f(x), f(u)}, ∀ 0 < λ < a(x, u)
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where the logarithm and the exponentials appearing on the left-hand side of the
inequality are understood to be taken componentwise. If u is fixed, then f is
said to be locally (Hp, r, α)-prequasiinvex at u.

Remark 2.6. By the definition of locally (Hp, r, α)-prequasiinvex function,
it is easy to show that locally B-(Hp, r, α)-preinvex function is locally (Hp, r, α)-
prequasi-invex. However, locally (Hp, r, α)-prequasiinvex functions are not al-
ways locally B-(Hp, r, α)-preinvex.

We now introduce the definition of a locally (Hp, r, B, α)-invex set, which
will enable us to give a geometric property of locally B-(Hp, r, α)-preinvex
functions defined by Definition 2.2.

Definition 2.7. Assume that p and r are two given real numbers. Let
X ∈ Rm, Y ∈ Rn, Hp : X × X × [0, 1] → Rm be a vector function.Then
X × Y = {(x, y) : x ∈ X, y ∈ Y } is said to be a locally (Hp, r, B, α)-invex set
if, for any (x1, y1), (x2, y2) ∈ X × Y , there exist a maximum positive number
a(x2, x1) ≤ 1 and a function b : X ×X × [0, 1]→ R+ such that

Hp(x
2, x1; 0) = ex

1
, Hp(x

2, x1;λ) ∈ Ṙm
+ ,

ln (Hp(x
2, x1;λ)) ∈ X, ∀ 0 < λ < a(x2, x1)

and (
ln
(
Hp(x

2, x1;λ)
)
, ln
[
Mr

(
ey

2
, ey

1
; (λb(x2, x1;λ))α)

)])
∈ X × Y,

0 ≤ λb(x2, x1;λ) ≤ 1,∀ 0 < λ < a(x2, x1).

Theorem 2.8. Let S be a locally Hp-invex set, then f : S → R is locally
B-(Hp, r, α)-preinvex function if and only its epigraph E(f) = {(x, y) : x ∈
S, f(x) ≤ y} is a locally (Hp, r, B, α)-invex set.

Proof. “if” part. Obviously, (x, f(x)), (u, f(u)) ∈ E(f). Therefore, by the
definition of locally (Hp, r, B, α)-invex set, there exists a maximum positive
number a(x, u) ≤ 1 such that

Hp(x, u; 0) = eu, Hp(x, u;λ) ∈ Ṙm
+ , ln (Hp(x, u;λ)) ∈ S, ∀ 0 < λ < a(x, u)

and (
ln (Hp(x, u;λ)) , ln

[
Mr

(
ef(x), ef(u); (λb(x, u;λ))α)

)])
∈ E(f),

0 ≤ λb(x, u;λ) ≤ 1, ∀ 0 < λ < a(x, u).

By the definition of E(f), the last relation means

f (ln (Hp(x, u;λ))) ≤ ln
[
Mr

(
ef(x), ef(u); (λb(x, u;λ))α)

)]
,

0 ≤ λb(x, u;λ) ≤ 1,∀ 0 < λ < a(x, u).
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Therefore, f is a locally B-(Hp, r, α)-preinvex function.
Moreover the above steps are invertible, hence the “only if ” part is true.

Therefore, the result follows.

Theorem 2.9. Let S be a locally Hp-invex set. If f : S → R is B-(Hp, r, α)-
preinvex function, then the level set Lβ = {x ∈ S : f(x) ≤ β} is a locally
Hp-invex for every β ∈ R.

Proof. By Corollary 3 in [14] and Remark 2.6, we get the desired result.

Theorem 2.10. Let S ⊂ Rn be a Hp-invex set and f : S → R be a
B-(Hp, r, α)-preinvex function on S. For any given pair x, u ∈ S, assume
that Hp(x, u;λ) is continuous on the interval [0, a(x, u)) and is not constant in
any subinterval contained in [0, a(x, u)). Then each point of a local minimum
of the function f is its point of global minimum, and the set of points which
are global minima of f is a Hp-invex set.

Proof. The theorem will be proved only in the case when r 6= 0( the other
case when r = 0 can be dealt with likewise).

Assume that u ∈ S is a point of local of f which is not a point of global
minimum. Hence, there exists a pointx̄ ∈ S such that f(x̄) < f(u). By
assumption, f : S → R is B-(Hp, r, α)-preinvex function on S. Thus by
definition, for all x, u ∈ S, there exists positive a(x, u) ≤ 1 such that

f (ln(Hp(x, u;λ))) ≤ ln
(
[λb(x, u;λ)]αerf(x) + (1− [λb(x, u;λ)]α)erf(u)

) 1
r ,

0 ≤ λb(x, u;λ) ≤ 1,∀ 0 ≤ λ ≤ a(x, u).

In particular, the above inequality holds also in the case when x = x̄.
Taking into account the fact that f(x̄) < f(u), we get

f (ln(Hp(x̄, u;λ))) ≤ ln
(
[λb(x̄, u;λ)]αerf(x̄) + (1− [λb(x̄, u;λ)]α)erf(u)

) 1
r

< f(u), 0 ≤ λb(x, u;λ) ≤ 1,∀ λ ∈ (0, a(x̄, u)).

Thus, we have show that

f (ln(Hp(x̄, u;λ))) < f(u),∀ λ ∈ (0, a(x̄, u)).

This is a contradiction to the fact that u is a local minimum point.
Now, Denote by E the set of points of global minimum of f . Let x and u

be arbitrary points belonging to E. We prove that ln(HP (x, u;λ)) ∈ E. Since
x and u belong to E, then f(x) = f(u). Again, f : S → R is B-(Hp, r, α)-
preinvex function on S. Hence, there exists a maximum positive number a(x, u)
such that

f (ln(Hp(x, u;λ))) ≤ ln
(
[λb(x, u;λ)]αerf(x) + (1− [λb(x, u;λ)]α)erf(u)

) 1
r

≤ f(u), 0 ≤ λb(x, u;λ) ≤ 1,∀ λ ∈ (0, a(x, u)))
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That is
f (ln(Hp(x, u;λ))) = f(u),∀ λ ∈ (0, a(x, u))

Therefore, ln(Hp(x, u;λ)) ∈ E,∀ λ ∈ (0, a(x, u)). By Definition 2.1, E is
Hp-invex set.

Corollary 2.11. Let S ⊂ Rn be a Hp-invex set and f : S → R be a
B-(Hp, r, α)-preinvex function on S. For any given pair x, u ∈ S, assume
that Hp(x, u;λ) is differentiable on the interval [0, a(x, u)) and its derivative
is not zero in any subinterval contained in [0, a(x, u)). Then each point of a
local minimum of the function f is its point of global minimum, and the set of
points which are global minima of f is Hp-invex set.

Proof. If the assumptions of corollary 1 hold, then the assumptions of
Theorem 2.10 is true. By Theorem 2.10, the results follows.

3 B̄-(Hp, r, α)-invex functions

Motivated by [13], we present the concept B̄-(Hp, r, α)-invex functions in this
section. For the convenience, we use the following notations.

Definition 3.1. Let a, b, r be real number. Then the generalized difference
of a and b with respect to r, ∇r(a, b), is defined by

∇r(a, b)=

{
era − erb for r 6= 0
a− b for r = 0

Definition 3.2. Let ξ, x, u ∈ Rn and η: Rn × Rn → Rn, and let p be
an arbitrary real number. Then the p-inner product of ξ and η(x, u) denoted
〈ξ, η(x, u)〉∗ can be defined as follows:

〈ξ, η(x, u)〉∗ =

{
1
p
ξ T
(
epη(x,u) − 1

)
, for p 6= 0

〈ξ, η(x, u)〉 for p = 0

where 1 = (1, · · · , 1) ∈ Rn, epη(x,u) =
(
epη1(x,u), · · · , epηn(x,u)

)
.

Definition 3.3. Let p, r, α be real number such that 0 < α ≤ 1, and let
f : Rn → R. Then the right super order α-(p, r) differential of f at u with
respect to Hp(x, u;λ), d α

(p,r)f(u;Hp(x, u; 0+)) is defined by

d α
(p , r)f(u;Hp(x, u; 0+)) =


lim
λ↓0

sup ∇r(f(ln(Hp(x,u;λ))), f(u))

λα
, r ≥ 0

lim
λ↓0

inf ∇r(f(ln(Hp(x,u;λ))), f(u))

λα
, r < 0

.
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Again let η : Rn×Rn → Rn be a continuous vector function and Hp(x, u;λ) =
Mp(e

η(x,u)+u, eu;λ). Then the differentiable dα(p,r)f(u;Hp(x, u; 0+)) is denoted

by dα(p,r)f(u; η(x, u)), and the order α-(p, r) subgradient set of f at u, ∂ α
(p,r)f(u; η(x, u)),

can be defined as follows:

∂ α
(p , r)f(u; η(x, u)) =

 {ξ|〈ξ, η(x, u)〉∗ ≤ d α
(p , r)f(u; η(x, u)),∀x ∈ S}, r ≥ 0

{ξ|〈ξ, η(x, u)〉∗ ≥ d α
(p , r)f(u; η(x, u)), ∀x ∈ S}, r < 0

.

Remark 3.4. Note that f(x) = ex is differentiable, the right super order
α-(p, r) differential, can be rewritten as follows:

d α
(p,r)f(u;Hp(x, u; 0+)) =



rerf(u) lim
λ↓0

sup f(ln(Hp(x,u;λ)))−f(u)

λα
, r > 0

lim
λ↓0

sup f(ln(Hp(x,u;λ)))−f(u)

λα
, r = 0

rerf(u) lim
λ↓0

inf f(ln(Hp(x,u;λ)))−f(u)

λα
, r < 0

.

Definition 3.5. Let S ⊂ Rn be a locally Hp-invex set, the function f : S →
R is said to be B̄-(Hp, r, α)-invex at u ∈ S if there exists function b̄ : S×S → R
such thatthe inequalities

b̄α(x, u)∇r (f(x), f(u)) ≥ d α
(p , r)f(u;Hp(x, u; 0+)), r ≥ 0,

b̄α(x, u)∇r(f(x), f(u)) ≤ d α
(p , r)f(u;Hp(x, u; 0+)), r < 0.

hold for all x ∈ S. f is said to B̄-(Hp, r, α)-invex on S if it is B̄-(Hp, r, α)-invex
at each u ∈ S.

Theorem 3.6. Let S ⊂ Rn be a locally Hp-invex set and f : S → R be a
locally B-(Hp, r, α)-preinvex at u, then, for all x ∈ S, the inequalities

b̄α(x, u)∇r (f(x), f(u)) ≥ d α
(p , r)f(u;Hp(x, u; 0+)), r ≥ 0,

b̄α(x, u)∇r(f(x), f(u)) ≤ d α
(p , r)f(u;Hp(x, u; 0+)), r < 0.

where b̄(x, u) = lim
λ↓0

sup b(x, u;λ) when r ≥ 0 and b̄(x, u) = lim
λ↓0

inf b(x, u;λ)

when r < 0.

Proof. Let f :S → R be defined on a locally Hp-invex S ⊂ Rn. Moreover,
we assume that f is a locally B-(Hp, r, α)-preinvex function at u and r ≥ 0
(the proof in the case when r < 0 is analogous). Hence, we have{

f (ln (Hp(x, u;λ))) ≤ ln
(
Mr(e

f(x), ef(u); (λb(x, u;λ))α)
)
, p 6= 0

f ((Hp(x, u;λ))) ≤ ln
(
Mr(e

f(x), ef(u); (λb(x, u;λ))α)
)
, p = 0
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for any 0 < λ < a(x, u). That is{
erf(ln(Hp(x,u;λ))) − erf(u) ≤ (λb(x, u;λ))α

(
erf(x) − erf(u)

)
, r > 0;

f (ln (Hp(x, u;λ)))− f(u) ≤ (λb(x, u;λ))α (f(x)− f(u)) , r = 0

when p 6= 0 and{
erf(Hp(x,u;λ)) − erf(u) ≤ (λb(x, u;λ))α

(
erf(x) − erf(u)

)
, r > 0

f (Hp(x, u;λ))− f(u) ≤ (λb(x, u;λ))α (f(x)− f(u)) , r = 0

when p = 0, for any 0 < λ < a(x, u). Therefore,{
erf(ln(Hp(x,u;λ)))−erf(u)

λα
≤ bα(x, u, λ)

(
erf(x) − erf(u)

)
, for r > 0;

f(ln(Hp(x,u;λ)))−f(u)

λα
≤ bα(x, u, λ)(f(x)− f(u)), for r = 0,

when p 6= 0 and{
erf(Hp(x,u;λ))−erf(u)

λα
≤ bα(x, u, λ)

(
erf(x) − erf(u)

)
, for r > 0;

f(Hp(x,u;λ))−f(u)

λα
≤ bα(x, u, λ)(f(x)− f(u)), for r = 0

when p = 0, for any 0 < λ < a(x, u). By the Definition 3.1 and Definition 3.3,
we deduce that,

b̄α(x, u)∇r (f(x), f(u)) ≥ d α
(p , r)f(u;Hp(x, u; 0+)), r ≥ 0,

for any x ∈ S.

Remark 3.7. By Theorem 3.6, we know that locally B-(Hp, r, α)-preinvex
function is B̄-(Hp, r, α)-invex.

Corollary 3.8. Let S ⊂ Rn be a locally Hp-invex set and f : S → R be
a locally B-(Hp, r, α)-preinvex at u, and let Hp(x, u;λ) = Mp(e

η(x,u)+u, eu;λ),
then, for all x ∈ S

b̄α(x, u)∇r (f(x), f(u)) ≥ 〈ξ, η(x, u)〉∗, ∀ ξ ∈ ∂ α
(p,r)f(u; η(x, u)), r ≥ 0,

b̄α(x, u)∇r(f(x), f(u)) ≤ 〈ξ, η(x, u)〉∗, ∀ ξ ∈ ∂ α
(p,r)f(u; η(x, u)), r < 0.

Proof. Using the Definition 3.3 and Theorem 3.6, we can derive the result.

4 Optimality Conditions

In this section, we present the optimality conditions for mathematical pro-
gramming problems in which the functions considered belong to the classes of
functions introduced earlier in this paper.
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Consider the following form of optimization problem

(P )
min f(x)

g(x) ≤ 0, x ∈ S,

where S ⊂ Rn, f : S → R, g : S → Rm.

Let us denote by E the set of feasible solutions of (P), i.e., the set of the
form E := {x ∈ S|g(x) ≤ 0}.

Theorem 4.1. Suppose that the following three statements

(a) E is a Hp-invex set;

(b) f is strictly B-(Hp, r, α)-preincave on E;

(c) for any y ∈ intE, there exists point x ∈ E, x 6= y, and λ̄ ∈ (0, a(x, y))
such that

ln
(
Hp(x, y; λ̄)

)
∈ E (1)

Then there are no interior points of E which are solutions of (P); i.e., if u is
a solution of (P), then u is a boundary point of E.

Proof. If the feasible solution set E of (P) is empty, or int E is empty, the
proof is obvious. Assume that u is a solution of (P), and u ∈ int E. By (c),
there exist x,∈ E, x 6= u, and λ̄ ∈ (0, a(x, u)) such that (1) holds. Hence, by
(b), we have

(i) in the case r 6= 0:

f(u) = f
(
ln
(
Hp(x, u; λ̄)

))
> ln

(
(λ̄b)αerf(x) + (1− (λ̄b)α)erf(u)

) 1
r ≥ f(u)

(ii) in the case r = 0:

f(u) = f
(
ln
(
Hp(x, u; λ̄)

))
> (λ̄b)αf(x) + (1− (λ̄b)α)f(u) ≥ f(u).

This contradiction leads us to the conclusion that u is not a solution of (P).
The proof is complete.

Theorem 4.2. Suppose that the following four statements

(a) E is a Hp-invex set;

(b) f is strictly B-(Hp, r, α)-preinvex on E;

(c) u ∈ E is a local minimum of (P);

(d) for any positive real number ε and any point x ∈ E, there exists λ̄ ∈
(0, a(x, u)) such that

ln
(
Hp(x, u; λ̄)

)
∈ B(u, ε).

Then u is a strict global minimum of (P).



176 X. L. Liu and X. Liu

Proof. By assumption (a), the set E is Hp-invex set and therefore, for any
x ∈ E, there exists a maximum positive number a(x, u) ≤ 1 such that

ln (Hp(x, u;λ)) ∈ E.

Since u is a local minimum of (P), there exists ε̄ > 0 such that the inequality
f(x) ≥ f(u) holds for any x ∈ B(u, ε) ∩ E. Now, let x be a point of E such
that x 6= u. By assumption (d) and (b), with ε = ε̄, we get

f(u) ≤ f
(
ln
(
Hp(x, u; λ̄)

))
is true for some λ̄ ∈ (0, a(x, u)). By (c) and [6, Lemma 40], we have

(i) in the case of r 6= 0:

f(u) ≤ f
(
ln
(
Hp(x, u; λ̄)

))
< ln

(
(λ̄b)αerf(x) + (1−

(
λ̄b)α

)
erf(u)

) 1
r ≤ max{f(x), f(u)}

(ii) in the case of f = 0:

f(u) ≤ f
(
ln
(
Hp(x, u; λ̄)

))
< (λ̄b)αf(x) +

(
1− (λ̄b)α

)
f(u) ≤ max{f(x), f(u)}

Obviously, max{f(x), f(u)} 6= f(u)(otherwise, we obtain the contradict in-
equality f(u) < f(u)). Therefore, f(u) < f(x). Since x is an arbitrary point
of E, the proof of the theorem is complete.

Corollary 4.3. Suppose that the following four statements
(a) E is a p-invex set;
(b) f is strictly B-(Hp, r, α)-preinvex on E;
(c) u ∈ E is a local minimum of (P);

Then u is a strict global minimum of (P).

Proof. By Remark 2.3, Remark 2.4, Lemma42 in[6] and Theorem 4.2, we
get the desired result. The corollary is Theorem 43 of [6]. From now on, we
consider the mathematical programming problem (P) with .

Theorem 4.4. Let S be a Hp-invex set. Assume that x̄ ∈ S is feasible for
problem (P), and there exists µ = (µ1, · · · , µm) ≥ 0 such that

d α
(p,r)f(x̄;Hp(x, x̄; 0+)) +

m∑
i=1

µid
α

(p,r)gi(x̄;Hp(x, x̄; 0+)) ≥ 0, r ≥ 0

d α
(p,r)f(x̄;Hp(x, x̄; 0+)) +

m∑
i=1

µid
α

(p,r)gi(x̄;Hp(x, x̄; 0+)) ≥ 0, r < 0
(2)

∑m

i=1
µigi(x̄) = 0. (3)

If f , gi(i = 1, · · · ,m) are B̄-(Hp, r, α)-invex at x̄ on S, then x̄ is a global
minimum point in problem (P).
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Proof. Here we prove only the cases when r ≥ 0(the proof of the case when
r < 0 is similar; the only changes arise from the form of inequalities defining
the class of (Hp, r)-invex functions). Assume that x is an arbitrary feasible
point for problem (P).

By hypothesis, f and gi(i = 1, · · · ,m) are B̄-(Hp, r, α)-invex at x̄ on S;
therefore, for all x ∈ S, the inequalities

b̄α(x, x̄)∇r (f(x), f(x̄)) ≥ d α
(p,r)f(x̄;Hp(x, x̄; 0+)), (4)

b̄α(x, x̄)∇r (gi(x), gi(x̄)) ≥ d α
(p,r)gi(x̄;Hp(x, x̄; 0+)), i = 1, · · · ,m, (5)

are true. Denote I(x̄) = {i|µi > 0, i = 1, · · · ,m}. By (3), we have gi(x̄) = 0
if i ∈ I(x̄) and µi = 0 if gi(x̄) 6= 0, thus gi(x) ≤ gi(x̄) for i ∈ I(x̄). Therefore,
from (5), we have

d α
(p,r)gi(x̄;Hp(x, x̄; 0+)) ≤ 0, i ∈ I(x̄). (6)

Multiplying (6) with µi(i ∈ I(x̄)), respectively, we deduce that∑
i∈I(x̄)

µid
α

(p,r)gi(x̄;Hp(x, x̄; 0+)) ≤ 0.

hence, ∑m

i=1
µid

α
(p,r)gi(x̄;Hp(x, x̄; 0+)) ≤ 0.

This, together with (4), follows

b̄α(x, x̄)∇r (f(x), f(x̄)) ≥ d α
(p,r)f(x̄;Hp(x, x̄; 0+))

+
∑m

i=1
µid

α
(p,r)gi(x̄;Hp(x, x̄; 0+)) (7)

By (3) and (7), we derive ∇r (f(x), f(x̄)) ≥ 0. That is f(x) ≥ f(x̄), which
means that x̄ is an optimal point in problem (P).

The assumption on functions in Theorem 4.4 could also be given in another
form. It is enough to assume that the Lagrange function f +

∑m
i=1 µigi is a

B-(Hp, r, α)-invex function. And so, the following theorem is true. Its proof is
on the same line as Theorem 4.4, therefore we delete it here.
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