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Abstract

In this paper, we reprove the principal result of a paper by H-O
Kreiss and Jens Lorenz from a “different approach” than the method
proposed in their paper. More precisely, we consider the Cauchy prob-
lem for the incompressible Navier-Stokes equations in Rn for n ≥ 3 with
non-decaying initial data and derive a priori estimates of the maximum
norm of all derivatives of the solution in terms of the maximum norm of
the initial data. This paper is also an extension of their paper to higher
dimension.
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1 Introduction

We consider the Cauchy problem of the Navier-Stokes equations in Rn for
n ≥ 3:

ut + u · ∇u+∇p = 4u, ∇ · u = 0, (1.1)
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with initial condition

u(x, 0) = f(x), x ∈ Rn, (1.2)

where u = u(x, t) = (u1(x, t), · · ·un(x, t)) and p = p(x, t) stand for the un-
known velocity vector field of the fluid and its pressure, while f = f(x) =
(f1(x), · · · fn(x)) is the given initial velocity vector field. In what follows, we
will use the same notations for the space of vector-valued and scalar functions
for convenience in writing.

There is a large literature on the existence and uniqueness of solution of
the Navier-Stokes equations in Rn. For given initial data solutions of (1.1)
and (1.2) have been constructed in various function spaces. For example, if
f ∈ Lr for some r with 3 ≤ r < ∞, then it is well known that there is a
unique classical solution in some maximum interval of time 0 ≤ t < Tf where
0 < Tf ≤ ∞. But for the uniqueness of the pressure one requires |p(x, t)| → 0
as |x| → ∞. See [6] and [9] for r = 3 and [1] for 3 < r <∞.

If f ∈ L∞ then existence of a regular solution follows from [2]. The solution
is only unique if one puts some growth restrictions on the pressure as |x| →
∞. A simple example of non-uniqueness is demonstrated in [7] where the
velocity u is bounded but |p(x, t)| ≤ C|x|. In addition, an estimate |p(x, t)| ≤
C(1 + |x|σ) with σ < 1 ( see [3] ) implies uniqueness. Also, the assumption
p ∈ L1

loc(0, T ;BMO) (see [4]) implies uniqueness.

In this paper we are interested in reproving the results of a paper by H-O
Kreiss and J. Lorenz (see [8]) for the initial data f ∈ L∞(Rn) for n ≥ 3 using
different approach than theirs in terms of dealing with the pressure term in the
Navier-Stokes equations. The approach in this paper, to prove the principal
result of the Kreiss and Lorenz paper, is more “functional analytic” approach
in which the role of “the Leray projector” is being implemented to get rid of
the pressure term from the Navier-Stokes equations. As a consequence of that,
the details and techniques in obtaining some significantly complicated results
related to the pressure part in the Kreiss and Lorenz paper are being avoided
which makes this paper different and simpler in that sense. At the same time,
this paper is also an extension of the work by Kreiss and Lorenz to the higher
space dimension whereas such generalization, in the Kreiss and Lorenz paper
by their approach, seems complicated because of the non-local nature of the
pressure term in the Navier-Stokes equations. Since the main source of this
paper is the Kreiss and Lorenz paper, it is appropriate to give some insight of
their work in this paper as well. Before we start outlining some key aspects
of their paper, we introduce the following notations and will be using them
throughout this paper.

|f |∞ = sup
x
|f(x)| with |f(x)|2 =

∑
i

f 2
i (x),
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and Dα = Dα1
1 · · ·Dαn

n , Di = ∂/∂xi for a multiindex α = (α1, · · · , αn). In
what follows, if |α| = j, for any j = 0, 1, · · · , then we will denote Dα =
Dα

1 · · ·Dαn
n by Dj. We also set

|Dju(t)|∞ := |Dju(·, t)|∞ = max
|α|=j
|Dαu(·, t)|∞.

Clearly, |Dju(t)|∞ measures all space derivatives of order j in maximum norm.

Following theorem is the main result of the paper by Kreiss and Lorenz [8]
for n = 3 which is also the principal result of this paper for n ≥ 3.

Theorem 1.1. Consider the Cauchy problem for the Navier-Stokes equa-
tions (1.1), (1.2), where f ∈ L∞(Rn) and ∇ · f = 0 is understood in the sense
of distribution. There is a constant c0 > 0 and for every j = 0, 1, · · · there is
a constant Kj so that

tj/2|Dju(t)|∞ ≤ Kj|f |∞ for 0 < t ≤ c0
|f |2∞

. (1.3)

The constants c0 and Kj are independent of t and f .

Let us briefly discuss some key ideas of the Kreiss and Lorenz paper.
Rewrite (1.1) as

ut = 4u+Q

where

Q = −∇p− u · ∇u.

Applying Dj for j ≥ 0 and using Duhamel’s principle, one obtains

v(t) = Dje4tf +

∫ t

0

e4(t−s)DjQ(s)ds, v := Dju. (1.4)

Roughly speaking, obtaining the desired result of the Kreiss and Lorenz pa-
per is a twofold in view of equation (1.4): first, estimates on the solution of
the heat equation. Second, estimates on the derivatives of Q. Also, notice in
(1.4), one can move one derivative D to the heat semi-group and consequently
requiring an estimate for |Dj−1Q|∞ to estimate |v(t)|∞. Clearly, it is neces-
sary to determine the pressure term p of the Navier-Stokes equations so that
(u, p) solves (1.1) and (1.2); the estimate of the derivatives of p is being used
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to estimate |Dj−1Q|∞. To proceed towards obtaining the required estimates
on the pressure, Kreiss and Lorenz determine the pressure from the Poisson
equation

4p = −∇ · (u · ∇)u (1.5)

which is given by

p =
∑
i,j

RiRj(uiuj), (1.6)

where Ri = (−4)−1/2Di is the ith Riesz transform. Since the Riesz transforms
are not bounded in L∞(Rn), the pressure term p ∈ L1

loc(0, T ;BMO) where
BMO is the space of functions of bounded mean oscillation. Because of the
non-local nature of the pressure, the proof of Theorem 1.1 of the Kreiss and
Lorenz paper is complicated, however. This is where the method proposed
in this paper deviates significantly from the approach adopted by Kreiss and
Lorenz in their paper [8].

For the purpose of proving Theorem 1.1 for n ≥ 3, we start by transforming
momentum equation of the Navier-Stokes equations into the abstract ordinary
differential equation for u

ut = 4u− P(u · ∇)u (1.7)

by eliminating the pressure, where P is the Leray projector defined by

P = (Pij)1≤i,j≤n, Pij = δij +RiRj;

where Ri is as in (1.6) and δij is the Kronecker delta function. Note that the
equation (1.7) is obtained from (1.1 ) by applying the Leray projector with
the properties P(∇p) = 0,P(4u) = 4u, since ∇ · u = 0. We use the solution
operator e4t of the heat equation to transform the abstract differential equation
into an integral equation

u(t) = e4tf −
∫ t

0

e4(t−s)P(u · ∇u)(s)ds t > 0. (1.8)

In a paper by Giga and others [5] for n ≥ 2, they consider the initial
data f ∈ BUC(Rn) which is the space of all bounded uniformly continuous
functions or in L∞(Rn) which is the space of all essentially bounded functions,
and construct a unique local in time solution of (1.8). Such solution of (1.8) is
called mild solution of (1.1) and (1.2). They later proved in the same paper that



L∞-norm estimates 95

such mild solution is indeed a strong solution of the Navier-Stokes equations
(1.1) and (1.2) in some maximum interval of time. In addition, for essentially
bounded initial data, existence and uniqueness of a solution of (1.1) and (1.2)
is also proved in [2]; however, Giga and others in [5] claim that their approach
is simpler than the method proposed in [2]. In the same paper [5], while
constructing such mild solution of (1.1) and (1.2), it requires to obtain the
estimate t1/2|∇u|∞ ≤ C|f |∞ for some constant C > 0 independent of t and f
in some maximum interval of time. However, such maximum norm estimates
for higher order derivatives of the velocity field had not been achieved until
H-O Kreiss and J. Lorenz obtained in [8] for f ∈ L∞(R3).

The main work of this paper will focus on deriving estimate (1.3) of The-
orem 1.1 by a “different approach” in a few ways than that of the Kreiss and
Lorenz paper adopts. At the same time, this paper will also demonstrate
the fact, the absence of the pressure term in the transformed abstract differ-
ential equation (1.7) eliminates significant amount of work of the paper by
Kreiss and Lorenz while obtaining the uniform estimates of the pressure and
its derivatives. However, there are some intriguing developments in the work
of this paper due to the application of the Leray projector in our “different
approach”.

Major difficulty in proving Theorem 1.1 lies in the fact that the Leray
projector P is not a bounded operator in L∞(Rn), since the Riesz transforms
are not bounded in this space although they are bounded in Lr(Rn) for 1 < r <
∞. To overcome the difficulty, we obtain an uniform bound on the composite
operator Dje4tP for j = 0, 1 · · · in section 2.

This paper is organized in the following ways: In section 2, we introduce a
few estimates for the solution of the heat equations. In the same section, we
also state and prove a few known results which will be used later in sections
3 and 4. In section 3, we introduce an analogous system of (1.1) for the
illustrative purpose, introduce the analogous theorem 3.1 of Theorem 1.1 and
provide proof of Theorem 3.1. In section 4, we prove Theorem 1.1 using the
same techniques as in the proof of Theorem 3.1 of section 3. Finally, in section
5 we outline remarks on the use of the estimate (1.3) obtained in Theorem 1.1.

2 Some auxiliary results

Let us consider f ∈ L∞(Rn). The solution of

ut = 4u, u = f at t = 0,
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is denoted by

u(t) := u(·, t) = e4tf = θ ∗ f

where θ(t) := θ(x, t) = 1/(4πt)n/2e−|x|
2/4t, t > 0 is the n dimensional heat

kernel in Rn and ∗ is the convolution operator. It is well known that

|e4tf |∞ ≤ |f |∞, t ≥ 0 (2.1)

and

|Dje4tf |∞ ≤ Cjt
−j/2|f |∞, t > 0, j = 1, 2, · · · (2.2)

Here, and in the following C,Cj, c, etc are positive constants that are indepen-
dent of t and the initial function f .

Lemma 2.1. Let θ(t) = θ(x, t) be the n-dimensional heat kernel in Rn.
Then, for every j = 1, 2 · · · and every t > 0, Djθ(t) belongs to the Hardy space
H1(Rn) and

||Djθ(t)||H1(Rn) ≤ Cjt
−j/2. (2.3)

for some constant Cj.

Proof. First, let us recall the definition of the Hardy space H1(Rn).

H1(Rn) = {u ∈ L1(Rn) s.t sup
s>0
|hs ∗ u| ∈ L1(Rn)}

for some Schwartz class function h where hs(x) = s−nh(x
s
), s > 0 such that

0 ≤ h ≤ 1 and
∫
h = 1. We may endow H1(Rn) with the norm

||u||H1(Rn) = ||u||L1(Rn) + || sup
s>0
|hs ∗ u|||L1(Rn).

For any j = 0, 1, · · · , we want to prove Djθ(t) ∈ H1(Rn), that means, it suffices
to show that sups>0 |hs ∗ Djθ(t)| ∈ L1(Rn). For that, we take h(x) = θ(x, 1)
and notice

|hs ∗Djθ(t)(x)| = |Djθ(t+ s, x)|

so that

sup
s>0
|hs ∗Djθ(t)| = |Djθ(t)| ∈ L1(Rn).

Finally, we arrive at

||Djθ(t)||H1(Rn) ≤ Cjt
−j/2, t > 0.
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Lemma 2.2. For any f ∈ L∞(Rn). Let j ≥ 1, there is a constant Cj such
that

|Dje4tPf |∞ ≤ Cjt
−j/2|f |∞ for 0 < t ≤ T. (2.4)

Proof. For 1 ≤ i ≤ n and t > 0, by the definition of the Leray projector, we
write

(Dje4tPf)i = Dje4tfi +
n∑
l=1

Dje4tRiRlfl

= Djθ(t) ∗ fi +
n∑
l=1

DjRiRlθ(t) ∗ fl

=
n∑
l=1

(δil +RiRl)((D
jθ(t)) ∗ fl)

=
n∑
l=1

kil(t) ∗ fl

where the kernel kil(t) = (δil + RiRl)(D
jθ(t)). Since the Riesz transforms are

bounded in H1(Rn) and || · ||L1(Rn) ≤ || · ||H1(Rn), we have

||kil(t)||L1(Rn) ≤ ||kil(t)||H1(Rn)

≤ ||Djθ(t)||H1(Rn).

Thus, from previous Lemma 2.1 we obtain

||kil(t)||L1(Rn) ≤ Cjt
−j/2 for t > 0.

Finally, by the Young’s inequality of convolution we estimate as

|(Dje4tPf)i|∞ ≤
n∑
l=1

|kil ∗ fl|∞

≤ C||kil(t)||L1(Rn)|fl|∞
≤ Cjt

−j/2|fl|∞.

Hence Lemma 2.2 is proved.

Corollary 2.3. Let F ∈ L∞(Rn × [0, T ]) then the solution of

ut = 4u+DiPF, u = 0 at t = 0 (2.5)

satisfies

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|F (s)|∞, 0 < t ≤ T (2.6)

for some T > 0.
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Proof. The solution of (2.5) is given by

u(t) =

∫ t

0

e4(t−s)DiPF (s)ds, 0 < t ≤ T

and

|u(t)|∞ ≤
∫ t

0

|e4(t−s)DiPF (s)|∞ds.

Since Di commutes with the heat semi-group, applying Lemma 2.2 for j = 1
yields

|u(t)|∞ ≤ max
0≤s≤t

|F (s)|∞
∫ t

0

(t− s)−1/2ds.

Hence we obtain

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|F (s)|∞.

3 Estimates for the system ut = 4u +DiPg

In this section, we state and prove an analogous theorem of Theorem 1.1 for
the solution of an analogous system of the Navier-Stokes equations (1.1) and
(1.2). For that purpose, let us recall P(u · ∇)u =

∑
iDiP(uiu) for 1 ≤ i ≤ n.

Therefore, it is appropriate to consider the illustrative system to be

ut = 4u+DiPg(u(x, t)), x ∈ Rn, t ≥ 0 (3.1)

with initial function

u(x, 0) = f(x) where f ∈ L∞(Rn). (3.2)

Here g : Rn → Rn is assumed to be quadratic in u. We will prove the maximum
norm estimates of the derivatives of the solution of (3.1) and (3.2) by the
maximum norm estimate of the initial function f . It is well-known that the
solution is C∞ in a maximal interval 0 < t < Tf where 0 < Tf ≤ ∞.

Theorem 3.1. Under the assumptions on f and g mentioned above, the
solution of (3.1) and (3.2) satisfies the following:
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(a) There is a constant c0 > 0 with

Tf >
c0
|f |2∞

and

|u(t)|∞ ≤ 2|f |∞ for 0 ≤ t ≤ c0
|f |2∞

. (3.3)

(b) For every j = 1, 2, · · · , there is a constant Cj > 0 with

tj/2|Dju(t)|∞ ≤ Cj|f |∞ for 0 < t ≤ c0
|f |2∞

. (3.4)

The constants c0 and Cj are independent of t and f .

Proof of part (a) will be given in the following lemma. Subsequently, we
will also derive the estimate (3.4) of part (b). Consider u as the solution of
the inhomogeneous heat equation ut = 4u+DiPF where

F (x, t) := g(u(x, t)) for x ∈ Rn, 0 ≤ t < Tf .

Since g is quadratic in u, there is a constant Cg such that we have the following:

|g(u)| ≤ Cg|u|2, |gu(u)| ≤ Cg|u| for all u ∈ Rn. (3.5)

Next lemma estimates the maximum norm of u.

Lemma 3.2. Let Cg denote the constant in (3.5) and let C denote the
constant in (2.6); set c0 = 1

16C2C2
g
. Then we have Tf > c0/|f |2∞ and

|u(t)|∞ < 2|f |∞ for 0 ≤ t <
c0
|f |2∞

. (3.6)

Proof. Suppose (3.6) does not hold, then we can find the smallest time t0 such
that |u(t0)|∞ = 2|f |∞. Since t0 is the smallest time so we have t0 < c0/|f |2∞.
Now by (2.1) and (2.6) we have

2|f |∞ = |u(t0)|∞
≤ |f |∞ + Ct

1/2
0 max

0≤s≤t0
|g(s)|∞

≤ |f |∞ + CCgt
1/2
0 max

0≤s≤t0
|u(s)|2∞

≤ |f |∞ + CCgt
1/2
0 4|f |2∞.
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This gives

1 ≤ 4CCgt
1/2
0 |f |∞,

therefore t0 ≥ 1/(16C2C2
g |f |2∞) = c0/|f |2∞ which is a contradiction. Therefore

(3.6) must hold. The estimate Tf > c0/|f |2∞ is valid since lim supt→Tf |u(t)|∞ =
∞ if Tf is finite.

Now, we prove estimate (3.4) of Theorem 3.1 by induction on j. Let j ≥ 1
and assume

tk/2|Dku(t)|∞ ≤ Kk|f |∞, for 0 ≤ t ≤ c0
|f |2∞

and 0 ≤ k ≤ j − 1. (3.7)

where c0 is the same constant as in the previous lemma. Next, we begin by
applying Dj to the equation ut = 4u+DiPg(u) to obtain

vt = 4v +Dj+1Pg(u), v := Dju,

v(t) = Dje4tf +

∫ t

0

e4(t−s)Dj+1(Pg(u))(s)ds.

Using (2.2) we get

tj/2|v(t)|∞ ≤ C|f |∞ + tj/2
∣∣∣∣∫ t

0

e4(t−s)Dj+1(Pg(u))(s)ds

∣∣∣∣
∞
. (3.8)

We split the integral into ∫ t/2

0

+

∫ t

t/2

=: I1 + I2

and obtain

|I1(t)| =
∣∣∣∣∫ t/2

0

Dj+1e4(t−s)(Pg(u))(s)ds

∣∣∣∣
∞

≤
∫ t/2

0

|Dj+1e4(t−s)(Pg(u))(s)ds|∞ds.

Using the inequality in Lemma 2.2, we get

|I1(t)|∞ ≤ C

∫ t/2

0

(t− s)−(j+1)/2|g(u(s))|∞ds

≤ C|f |2∞t(1−j)/2.
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The integrand in I2 has singularity at s = t. Therefore, we can move only one
derivative from Dj+1Pg(u) to the heat semigroup.( If we move two or more
derivatives then the singularity becomes non-integrable.) Thus, we have

|I2(t)|∞ =

∣∣∣∣−∫ t

t/2

De4(t−s)(DjPg(u))(s)ds

∣∣∣∣
∞
.

Since the Leray projector commutes with any derivatives, therefore

|I2(t)|∞ =

∣∣∣∣− ∫ t

t/2

De4(t−s)(PDjg(u))(s)ds

∣∣∣∣
∞
.

If we use Lemma 2.2 for j = 1, we obtain

|I2(t)|∞ ≤ C

∫ t

t/2

(t− s)−1/2|Djg(u(s))|∞ds. (3.9)

Since g(u) is quadratic in u, therefore

|Djg(u)|∞ ≤ C|u|∞|Dju|∞ +

j−1∑
k=1

|Dku|∞|Dj−ku|∞.

By induction hypothesis (3.7) we obtain

j−1∑
k=1

|Dku(s)|∞|Dj−ku(s)|∞ ≤ Cs−j/2|f |2∞. (3.10)

Integral (3.9) can be estimated as below:

|I2(t)|∞ ≤ C

∫ t

t/2

(t− s)−1/2
(
C|u(s)|∞|Dju(s)|∞ +

j−1∑
k=1

|Dku(s)|∞|Dj−ku(s)|∞
)
ds

= J1 + J2.

Using (3.10), and since
∫ t
t/2

(t− s)−1/2s−j/2ds = Ct(1−j)/2, where C is indepen-

dent of t, we obtain |J2(t)|∞ ≤ C|f |2∞t(1−j)/2.
For J1, we have

|J1(t)|∞ = C

∫ t

t/2

(t− s)−1/2|u(s)|∞|Dju(s)|∞ds

≤ C|f |∞
∫ t

t/2

(t− s)−1/2s−j/2sj/2|Dju(s)|∞ds

≤ C|f |∞t(1−j)/2 max
0≤s≤t

{sj/2Dju(s)|∞}.
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We use these bounds to bound the integral in (3.8). We have v = Dju. Then
maximizing the resulting estimate for tj/2|Dju(t)|∞ over all derivatives Dj of
order j and setting

φ(t) := tj/2|Dju(t)|∞

and from (3.8), we obtain the following estimate

φ(t) ≤ C|f |∞ + Ct1/2|f |2∞ + C|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0
|f |2∞

.

Since t1/2|f |∞ ≤
√
c0 then Ct1/2|f |2∞ ≤ C

√
c0|f |∞. Therefore

φ(t) ≤ Cj|f |∞ + Cj|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0/|f |2∞. (3.11)

Let us fix Cj so that the above estimate holds and set

cj = min

{
c0,

1

4C2
j

}
.

First, let us prove the following

φ(t) < 2Cj|f |∞ for 0 ≤ t <
cj
|f |2∞

.

Suppose there is a smallest time t0 such that 0 < t0 < cj/|f |2∞ with φ(t0) =
2Cj|f |∞. Then using (3.11) we obtain

2Cj|f |∞ = φ(t0) ≤ Cj|f |∞ + 2C2
j |f |2∞t

1/2
0 ,

thus

1 ≤ 2Cj|f |∞t1/20 gives t0 ≥ cj/|f |2∞

which contradicts the assertion. Therefore, we proved the estimate

tj/2|Dju(t)|∞ ≤ 2Cj|f |∞ for 0 ≤ t ≤ cj/|f |2∞. (3.12)

If

Tj :=
cj
|f |2∞

< t ≤ c0
|f |2∞

=: T0 (3.13)

then we start the corresponding estimate at t−Tj. Using Lemma 3.2, we have
|u(t− Tj)|∞ ≤ 2|f |∞ and obtain

T
j/2
j |Dju(t)|∞ ≤ 4Cj|f |∞. (3.14)
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Finally, for any t satisfying (3.13)

tj/2 ≤ T
j/2
0 =

(
c0
cj

)j/2
T
j/2
j

and (3.14) yield

tj/2|Dju(t)|∞ ≤ 4Cj

(
c0
cj

)j/2
|f |∞.

This completes the proof of Theorem 3.1.

4 Estimates For the Navier-Stokes Equations

Recall the transformed abstract ordinary differential equation (1.7)

ut = 4u− P(u · ∇u), ∇ · u = 0 (4.1)

with

u(x, 0) = f(x). (4.2)

Solution of (4.1) and (4.2) is given by

u(t) = e4tf −
∫ t

0

e4(t−s)P(u · ∇u)(s)ds. (4.3)

Using the solution (4.3) with previous estimates (2.1),(2.2) and (2.4), we prove
the following lemma.

Lemma 4.1. Set

V (t) = |u(t)|∞ + t1/2|Du(t)|∞, 0 < t < T (f). (4.4)

There is a constant C > 0, independent of t and f , so that

V (t) ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(t), 0 < t < T (f). (4.5)

Proof. Using estimate (2.1) of the heat equation in (4.3), we obtain

|u(t)|∞ ≤ |f |∞ +

∣∣∣∣ ∫ t

0

e4(t−s)P(u · ∇u)(s)ds

∣∣∣∣
∞
.
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Apply identity P(u · ∇u) =
∑

iDiP(uiu) with the fact, heat semi-group com-
mutes with Di, then use of the inequality (2.4) in Lemma 2.2 for j = 1 to
proceed

|u(t)|∞ ≤ |f |∞ + C

∫ t

0

(t− s)−1/2|u(s)|2∞ds

= |f |∞ + C

∫ t

0

(t− s)−1/2s−1/2s1/2|u(s)|2∞ds

≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}
∫ t

0

(t− s)−1/2s−1/2ds.

Since
∫ t
0
(t− s)−1/2s−1/2ds = C > 0 which is independent of t, we have the

following estimate

|u(t)|∞ ≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}

|u(t)|∞ ≤ |f |∞ + Ct1/2 max
0≤s≤t

V 2(s). (4.6)

Apply Di to (4.1), then by the Duhamel’s principle gives

v(t) = Die
4tf −

∫ t

0

e4(t−s)DiP(u · ∇)u(s)ds. (4.7)

We can estimate the integral in (4.7) using Lemma 2.2 for j = 1 in the following
way:∣∣∣∣− ∫ t

0

Die
4(t−s)P(u · ∇u)(s)ds

∣∣∣∣ ≤ ∫ t

0

|Die
4(t−s)P(u · ∇u)(s)|ds

≤ C

∫ t

0

(t− s)−1/2|u(s)|∞|Du(s)|∞ds

= C

∫ t

0

(t− s)−1/2s−1/2s1/2|u(s)|∞|Du(s)|∞ds

≤ C max
0≤s≤t

{s1/2|u(s)|∞|Du(s)|∞}
∫ t

0

(t− s)−1/2s−1/2ds

≤ C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}.

Therefore, we arrive at

|v(t)|∞ ≤ Ct−1/2|f |∞ + C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}

t1/2|Du(t)|∞ ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(t). (4.8)

Using (4.6) and (4.8), the lemma is proved.
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Lemma 4.2. Let C > 0 denote the constant in estimate (4.5) and set

c0 =
1

16C4
.

Then Tf > c0/|f |2∞ and

|u(t)|∞ + t1/2|Du(t)|∞ < 2C|f |∞ for 0 ≤ t <
c0
|f |2∞

. (4.9)

Proof. We prove this lemma by contradiction after recalling the definition of
V (t) in (4.4). Suppose that (4.9) does not hold, then denote by t0 the smallest
time with V (t0) = 2C|f |∞. Use (4.5) to obtain

2C|f |∞ = V (t0)

≤ C|f |∞ + Ct
1/2
0 4C2|f |2∞,

thus

1 ≤ 4C2t
1/2
0 |f |2∞,

therefore t0 ≥ c0/|f |2∞. This contradiction proves (4.9) and Tf > c0/|f |2∞.

Lemma 4.2 proves Theorem 1.1 for j = 0 and j = 1. By an induction
argument as in the proof of Theorem 3.1 one proves Theorem 1.1 for any
j = 0, 1, · · ·

5 Remarks

We can apply estimate (1.3) of Theorem 1.1 for

c0
2|f |2∞

≤ t ≤ c0
|f |2∞

(5.1)

and obtain

|Dju(t)|∞ ≤ Cj|f |j+1
∞ (5.2)

in interval (5.1). Starting the estimate at t0 ∈ [0, Tf ) we have

|Dju(t0 + t)|∞ ≤ Cj|u(t0)|j+1
∞ (5.3)

for

c0
2|u(t0)|2∞

≤ t ≤ c0
|u(t0)|2∞

. (5.4)
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Then, if t1 is fixed with

c0
2|f |2∞

≤ t1 < Tf , (5.5)

we can maximize both sides of (5.3) over 0 ≤ t0 ≤ t1 and obtain

max

{
|Dju(t)|∞ :

c0
2|f |2∞

≤ t ≤ t1 + τ

}
≤ Cj max{|u(t)|j+1

∞ : 0 ≤ t ≤ t1}

(5.6)

with

τ =
c0

|u(t1)|2∞

Estimate (5.6) says, essentially, that the maximum of the j-th derivatives
of u measured by |Dju|∞ , can be bounded in terms of |u|j+1

∞ . Clearly, a
time interval near t = 0 has to be excluded on the left-hand side of (5.6) for
smoothing to become effective. The positive value of τ on the left-hand side
of (5.6) shows that |u|j+1

∞ controls |Dju|∞ for some time into the future.

As is well known, if (u, p) solves the Navier-Stokes equations and λ > 0 is any
scaling parameter, then the functions uλ, pλ defined by

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t)

also solve the Navier-Stokes equations. Clearly,

|uλ(t)|∞ = λ|u(λ2t)|∞, |Djuλ(t)|∞ = λj+1|Dju(λ2t)|∞.

Therefore, |Dju|∞ and |u|j+1
∞ both scale like λj+1, which is, of course, consistent

with the estimate (5.6). We do not know under what assumptions |u|j+1
∞ can

conversely be estimated in terms of |Dju|∞.
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