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Abstract 

 

We introduce some sets of spectral synthesis in some commutative Banach 

algebras of integrable functions on the Heisenberg group.  
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1. Introduction and Preliminaries  
 

Consider the Heisenberg group H as the set {(z, t): z ϵ ₵, t ϵ ℝ} with the group 

operation (z, t) • (w, s) = (z + w, t + s + 2Im z w). Let us denote by L1
0 (H) the 

integrable functions on H which are radial on ₵: L1
0 (H) = {f ϵ L1  (H): f(z, t) = 

f( z ,t) }. It is well-known that L1
0 (H) is a commutative Banach algebra under the 

convolution f*g(z, t) =  f (z-w, t - s - 2 Im z w )g(s,w)dsdw where dw is 

Lebesgue measure on ₵ ([2]). The regular maximal ideals of L1
0 (H) are the 

annihilators of the spherical functions 

 ,   ϵ ℝ,  0,  {0, 1, 2, . . .} (the 

Laguerre part) and B , 0  (the Bessel part) where  
 (z,t) = 

)z4(Le ze
2ti

2

 
  where )xe(

dx

d

!

e
L

x
x






  (the Laguerre 

polynomials) and B (z) = )z(J0   where J0  is the Bessel function of the first 

kind of order 0. Hulanicki and Ricci showed that Wiener Tauberian theorem holds 
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for L1
0 (H) ([4]). That it, every proper closed ideal is contained in some regular 

maximal ideal. 

The dual space of L1
0 (H) is L0

 (H) = {f ϵ L (H): f(z, t) = f( z , t)}. By duality, 

Weiner theorem  implies that for  every f ϵ L0
  (H)  , f   0,  the subspace  V(f) =  

w*- closure of {f* h: h ϵ L1
0 (H)} contains a spherical function. The spectrum of f 

is defined as Spe (f) = { }{( , )} when B  and 

  belong  to  V( f). The 

basic "radial translate" of a function f in L0
  (H) is T s,r  (f)(z, t) = 

2

1

2

0

f(z - 

rei , t - s -2Im (z re i ))d  and then V(f) is the w*- closed subspace spanned 

by all "radial translates" of f . 

For f ϵ L (ℝ) its spectrum is defined as the set of   ϵ ℝ such that e ti belongs 

to the translation invariant  w*-  closed subspace generated by f ([5]). 

The purpose of this note is to study some sets of spectral synthesis in L0
  (H) and 

to give a simple proof to Wiener theorem for )H(L
1
00 introduced in [1]. 

 

 

2. Main results 
 

Theorem 1.  Each point is a set of spectral synthesis. That is, if I is a proper 

closed ideal in L1
0 (H) which is contained in exactly one regular maximal ideal M 

then I = M.  By duality, for f ϵ L0
  (H) if Spe (f) = { } then  f(z, t) = 

C  )z(J0   and if  Spe (f ) = {(  ,  )} then  f(z ,t) = C  
  (z, t). 

 

Proof:   

Suppose first that Spe (f )= { } for some  ≥ 0 and assume that f  is continuous. 

We claim that f (z, t) = f (z)  for each  t ϵ ℝ  and z ϵ ₵ . Suppose that k(t) = 

f( t,z0 ) ≠ C for some z0ϵ ₵. Since the singleton {0} is a set of spectral synthesis 

in L (ℝ) ([5]) there exists 0  0 in the spectrum of k. Let  ϵ L
1

(ℝ) so that 

̂   is supported in (0 - ,0 + ) and k *  0. 

 

Then F (z, t) =  f (z, t-s)  (s) ds  0 , F ϵ V(f) and for each z the spectrum of  

F(z,  ) lies in (0 -  , 0 +  ). 
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For each fixed   let P (z, t) = F(z – rei , t – s – 2Im(z r e
i

)). The function  

P(z, )  is a translate  in  t  of  F(z - rei ,  )  implying that the spectrum of  P(z ,  )  
lies in (0 -  , 0 +  ) for each z. Taking average over   preserve this property 

implying that each " radial translate"  T s,r F and  hence each function in V(F) 

shares this property. So V(F) cannot contain a spherical Bessel function and by 

Wiener theorem there exists ( ,  ) in Spe (F)   Spe (f) contradicting that  

Spe (f) = { } proving that f (z, t) = f (z)  t ϵ ℝ and z ϵ ₵ . 

In this case V (f) is the w*- closure of {f * h: h radial in L
1 (ℝ2 )}. Since, as 

proved by Hertz ([He]), the circle C= (z ϵ ₵: z  = } is a set of spectral 

synthesis, each radial bounded function on ℝ
2

 with spectrum C  is of the form 

C )z(J0   which proves the first part of the theorem. 

Suppose now that Spe (f) = {(0 ,0 )}. We claim that for each z the spectrum of 

f(z,  ) is {0 }. Suppose that for some z0  the spectrum of f (z0 , ) contains   

 0 . Let   ϵ L
1

(ℝ) such that ̂  is supported in U = [ - , + ] so that  

0  U and g (z, t) =  f(z, t -s)  (s)ds   0. The function g ϵ V(f) and for each 

z the spectrum of g(z,  ) is contained in U. This property is shared by all functions 

in V(g)   V(f). By Wiener theorem Spe (g) contains some ( ,  ) with    0 , 

contradicting our assumption. 

Since the point {0 } is of spectral synthesis we obtain f(z, t) = e
ti 0  (z), for 

some     0.  

It remains to show that  (z) = W 0
0




 (z) = )
2

04( zLe 0

2
0 z




 . 

We consider W 0


 as a finite singular measure on H supported on ₵. Hence      

E(z, t) ϵ V(f ) where 

E(z, t) =  (e
ti 0  (z)) * W 0


                                       

=  e
)wz2t(i Im0    (z-w) W 0


(w)dw 

= e
ti 0  (  

0

*


W 0


)(z)   = e
ti 0 ( W 0



0

*


 )(z) 

=  (e
ti 0  W 0


) *   

= e
ti 0  W 0


 <  , W 0


>  since e

ti 0 W 0


 is a character. 
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     Here f  



*  h denotes the twisted convolution of functions on ₵. But Spe (f) = 

{(0
, 0

)} implying that <  , W 0


> = 0 for all   0  and it follows that   = 

C W 0
0




  . 

 

Corollary. The set B = { ≥ 0} is a set of spectral synthesis. That is, if Spe (f) = 

B then f is contained in the w* - closure of the subspace spanned by 

{ )z(J0  : ≥ 0}. 

 

Proof: 

As in the first part of the proof of Theorem 1 it follows that f (z, t) = f ( z )   

implying that f is contained in the w* - closure of the subspace spanned by 

{ )z(J0  : ≥ 0}. 

 

Let us denote by )H(L
1
00  the closed sub-algebra of L

1
0 (H) defined by )H(L

1
00  

= {f ϵ L
1
0 (H):  f(z, t)dt = 0,  z ϵ ₵}. In the following we give a simple proof to 

Theorem 4.7 in [1]. 

 

Theorem 2. Wiener Tauberian theorem holds for )H(L
1
00 . That is, each proper 

closed ideal is contained in a maximal regular ideal which is in the Laguerre part 

of the maximal ideal space of L1
0 (H).  

 

Proof: 

Let f (z, t) be a continuous function in L0
 (H) which is not a function of z only.  

Let Q(f) = the  w* - closure of {f * h: h ϵ )H(L
1
00 }. By duality, we have to show 

that Q(f) contains a function e
ti

W


for some   ϵ ℝ\{0} and integer  . 

Suppose that f(z0 ,  )   C .  

Let 0  be in the spectrum of f(z0 , ) and  ϵ L
1 (ℝ)  with ̂  (0 )    0, ̂ ( ) 

= 0  in U = [ - ϵ, ϵ ], 0U . 

 

Let F(z, t ) =  f(z, t-s) (s) ds  0 and F ϵ V(f). Then for each z the spectrum of 

F(z, )   ℝ \ U  and all functions in V(F) share this property as shown in the 

proof of Theorem 1. By Wiener Tauberian theorem for L1
0 (H) the subspace V(F) 

and hence V(f) contains a spherical function which cannot be in the Bessel part 
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implying that e
ti

W


ϵ V(f) for some   ϵ ℝ \ {0} and integer  . It remains to 

show that e
ti

W


ϵ Q(f ).  

We know that there exists a net g
ϵ L1

0 (H) such that f* g
 e

ti
W


in w*. 

Let   ϵ L
1 (ℝ), ̂  (0) = 0 and ̂  ( ) = 1. Then  (f* g

)(z, t-s) (s)ds 

 e
ti

W


 in  w*. 

 

By Fubini, it follows that f* E    e
ti

W


 in w* where E (w, ) =  g
 

(w, s) (+ s)ds satisfy  E (w, )d= 0. Hence E )H(L
1
00 , and e

ti
W


 

ϵ Q(f) which completes the proof of the theorem.    
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