International Journal of Mathematical Analysis Vol. 13, 2019, no. 1, 1 - 5 HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/ijma.2019.81179

Spectral Synthesis in the Heisenberg Group

Yitzhak Weit

Department of Mathematics, University of Haifa, Israel

Copyright © 2019 Yitzhak Weit. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce some sets of spectral synthesis in some commutative Banach algebras of integrable functions on the Heisenberg group.

Mathematics Subject Classification: 43A45, 43A70

Keywords: spectral synthesis, Heisenberg group

1. Introduction and Preliminaries

Consider the Heisenberg group H as the set $\{(z,t)\colon z\in\mathbb{C},\,t\in\mathbb{R}\}$ with the group operation (z,t) • $(w,s)=(z+w,\,t+s+2\mathrm{Im}\,z\,w)$. Let us denote by $L_0^1(H)$ the integrable functions on H which are radial on $\mathbb{C}\colon L_0^1(H)=\{f\in L^1(H)\colon f(z,t)=f(|z|,t)\}$. It is well-known that $L_0^1(H)$ is a commutative Banach algebra under the convolution $f^*g(z,t)=\iint f(z-w,\,t-s-2\mathrm{Im}\,z\,\overline{w})g(s,w)\mathrm{d}s\mathrm{d}w$ where $\mathrm{d}w$ is Lebesgue measure on \mathbb{C} ([2]). The regular maximal ideals of $L_0^1(H)$ are the annihilators of the spherical functions ψ_v^λ , $\lambda\in\mathbb{R}$, $\lambda\neq 0$, $\nu=\{0,1,2,\ldots\}$ (the Laguerre part) and B_ρ , $\rho\geq 0$ (the Bessel part) where $\psi_v^\lambda(z,t)=e^{i\lambda t}\cdot e^{-|\lambda||z|^2}L_\nu(4\pi\,|\lambda|\,|z|^2)$ where $L_v=\frac{e^x}{v!}\frac{\mathrm{d}v}{\mathrm{d}x^v}(e^{-x}\,x^v)$ (the Laguerre polynomials) and $B_\rho(z)=J_0(\rho|z|)$ where J_0 is the Bessel function of the first kind of order 0. Hulanicki and Ricci showed that Wiener Tauberian theorem holds

2 Yitzhak Weit

for $L_0^1(H)$ ([4]). That it, every proper closed ideal is contained in some regular maximal ideal.

The dual space of $L_0^1(H)$ is $L_0^\infty(H)=\{f\in L^\infty(H): f(z,t)=f(\left|z\right|,t)\}$. By duality, Weiner theorem implies that for every $f\in L_0^\infty(H)$, $f\neq 0$, the subspace $V(f)=w^*$ -closure of $\{f^*h: h\in L_0^1(H)\}$ contains a spherical function. The spectrum of f is defined as Spe $\{f\}=\{\rho\}\cup\{(\lambda,\nu)\}$ when B_ρ and ψ_{ν}^{λ} belong to V(f). The basic "radial translate" of a function f in $L_0^\infty(H)$ is $T_{r,s}(f)(z,t)=\frac{1}{2\pi}\int\limits_0^{2\pi}f(z-t)dt$

 $re^{i\theta},\,t$ - s -2Im $(z\,re^{-i\theta}))d\theta$ and then V(f) is the $\mathit{w*-}$ closed subspace spanned by all "radial translates" of f .

For $f \in L^{\infty}(\mathbb{R})$ its spectrum is defined as the set of $\lambda \in \mathbb{R}$ such that $e^{i\lambda t}$ belongs to the translation invariant w^* - closed subspace generated by f([5]).

The purpose of this note is to study some sets of spectral synthesis in L_0^{∞} (H) and to give a simple proof to Wiener theorem for L_{00}^{1} (H) introduced in [1].

2. Main results

Theorem 1. Each point is a set of spectral synthesis. That is, if I is a proper closed ideal in $L_0^1(H)$ which is contained in exactly one regular maximal ideal M then I = M. By duality, for $f \in L_0^{\infty}(H)$ if Spe $(f) = \{\rho\}$ then $f(z, t) = C \cdot J_0(\rho|z|)$ and if Spe $(f) = \{(\lambda, \nu)\}$ then $f(z, t) = C \cdot \psi_{\nu}^{\lambda}(z, t)$.

Proof:

Suppose first that Spe $(f) = \{ \rho \}$ for some $\rho \ge 0$ and assume that f is continuous. We claim that f(z, t) = f(z) for each $t \in \mathbb{R}$ and $z \in \mathbb{C}$. Suppose that $k(t) = f(z_0, t) \ne C$ for some $z_0 \in \mathbb{C}$. Since the singleton $\{0\}$ is a set of spectral synthesis in $L^{\infty}(\mathbb{R})$ ([5]) there exists $\lambda_0 \ne 0$ in the spectrum of k. Let $\phi \in L^1(\mathbb{R})$ so that $\hat{\phi}$ is supported in $(\lambda_0 - \epsilon, \lambda_0 + \epsilon)$ and $k * \phi \ne 0$.

Then F (z, t) = $\int f(z, t-s) \phi(s) ds \neq 0$, F \in V(f) and for each z the spectrum of F(z, \cdot) lies in (λ_0 - ϵ , λ_0 + ϵ).

For each fixed θ let $P(z,t) = F(z-re^{i\theta},t-s-2\mathrm{Im}(z\cdot re^{-i\theta}))$. The function $P(z,\cdot)$ is a translate in t of $F(z-re^{i\theta},\cdot)$ implying that the spectrum of $P(z,\cdot)$ lies in $(\lambda_0$ - ϵ , λ_0 + ϵ) for each z. Taking average over θ preserve this property implying that each "radial translate" $T_{r,s}F$ and hence each function in V(F) shares this property. So V(F) cannot contain a spherical Bessel function and by Wiener theorem there exists (λ, ν) in Spe $(F) \subseteq Spe(f)$ contradicting that $Spe(f) = \{\rho\}$ proving that $f(z,t) = f(z) \ \forall \ t \in \mathbb{R}$ and $z \in \mathbb{C}$.

In this case V (f) is the w^* - closure of $\{f^* h: h \text{ radial in } L^1(\mathbb{R}^2)\}$. Since, as proved by Hertz ([He]), the circle $C_{\rho} = \{z \in \mathbb{C}: |z| = \rho\}$ is a set of spectral synthesis, each radial bounded function on \mathbb{R}^2 with spectrum C_{ρ} is of the form $C J_0(\rho|z|)$ which proves the first part of the theorem.

Suppose now that Spe $(f) = \{(\lambda_0, \nu_0)\}$. We claim that for each z the spectrum of $f(z, \cdot)$ is $\{\lambda_0\}$. Suppose that for some z_0 the spectrum of $f(z_0, \cdot)$ contains $\mu \neq \lambda_0$. Let $\phi \in L^1(\mathbb{R})$ such that $\hat{\phi}$ is supported in $U = [\mu - \varepsilon, \mu + \varepsilon]$ so that $\lambda_0 \notin U$ and $g(z, t) = \int f(z, t - s) \phi(s) ds \neq 0$. The function $g \in V(f)$ and for each z the spectrum of $g(z, \cdot)$ is contained in U. This property is shared by all functions in $V(g) \subseteq V(f)$. By Wiener theorem Spe (g) contains some (λ, ν) with $\lambda \neq \lambda_0$, contradicting our assumption.

Since the point $\{\lambda_0\}$ is of spectral synthesis we obtain $f(z,t)=e^{i\lambda_0 t}\chi(z)$, for some $\chi\neq 0$.

It remains to show that
$$\chi\left(z\right)=W_{\nu_{0}}^{\lambda_{0}}\left(z\right)=e^{-\left|\lambda_{0}\right|\left|z\right|^{2}}L_{\nu_{0}}(4\pi\left|\lambda_{0}\right|\left|z\right|^{2})$$
 .

We consider $W_{\nu}^{\lambda_0}$ as a finite singular measure on H supported on \mathbb{C} . Hence $E(z,t)\in V(f)$ where

$$\begin{split} E(z,t) &= (e^{i\lambda_0 t} \; \chi(z)) * \; W_{\nu}^{\lambda_0} \\ &= \int \; e^{i\lambda_0 (t-2I_m z \; \overline{w})} \; \chi(z\text{-}w) \; W_{\nu}^{\lambda_0}(w) dw \\ &= e^{i\lambda_0 t} \; (\chi \stackrel{\lambda_0}{*} \; W_{\nu}^{\lambda_0})(z) \; = e^{i\lambda_0 t} (W_{\nu}^{\lambda_0} \stackrel{\lambda_0}{*} \; \chi)(z) \\ &= (e^{i\lambda_0 t} \; W_{\nu}^{\lambda_0}) * \; \chi \\ &= e^{i\lambda_0 t} \; W_{\nu}^{\lambda_0} < \chi, \; W_{\nu}^{\lambda_0} > \text{ since } e^{i\lambda_0 t} \; W_{\nu}^{\lambda_0} \; \text{ is a character.} \end{split}$$

4 Yitzhak Weit

Here f * h denotes the *twisted* convolution of functions on \mathbb{C} . But Spe (f) = $\{(\chi_0, \, \chi_0)\}$ implying that $<\chi$, $W_{\nu}^{\lambda_0}>=0$ for all $\nu\neq \nu_0$ and it follows that $\chi=\mathbb{C}$ $W_{\nu_0}^{\lambda_0}$.

Corollary. The set $B = \{ \rho \ge 0 \}$ is a set of spectral synthesis. That is, if Spe (f) = B then f is contained in the w^* - closure of the subspace spanned by $\{ J_0(\rho |z|) : \rho \ge 0 \}$.

Proof:

As in the first part of the proof of **Theorem 1** it follows that f(z, t) = f(|z|) implying that f is contained in the w^* - closure of the subspace spanned by $\{J_0(\rho|z|): \rho \ge 0\}$.

Let us denote by L_{00}^1 (H) the closed sub-algebra of L_0^1 (H) defined by L_{00}^1 (H) = {f $\in L_0^1$ (H): $\int f(z, t)dt = 0$, $\forall z \in \mathbb{C}$ }. In the following we give a simple proof to Theorem 4.7 in [1].

Theorem 2. Wiener Tauberian theorem holds for L_{00}^1 (H). That is, each proper closed ideal is contained in a maximal regular ideal which is in the Laguerre part of the maximal ideal space of L_0^1 (H).

Proof:

Let f(z,t) be a continuous function in $L_0^\infty(H)$ which is not a function of z only. Let Q(f)= the $\ w^*$ -closure of $\{f^*h: h\in L_{00}^1(H)\}$. By duality, we have to show that Q(f) contains a function $e^{i\lambda t}\ W_{\nu}^{\lambda}$ for some $\lambda\in\mathbb{R}\setminus\{0\}$ and integer ν . Suppose that $f(z_0,\cdot)\neq C$.

Let λ_0 be in the spectrum of $f(z_0,\cdot)$ and $\phi \in L^1(\mathbb{R})$ with $\hat{\phi}(\lambda_0) \neq 0$, $\hat{\phi}(\lambda) = 0$ in $U = [-\epsilon, \epsilon]$, $\lambda_0 \notin U$.

Let $F(z, t) = \int f(z, t-s) \phi(s) ds \neq 0$ and $F \in V(f)$. Then for each z the spectrum of $F(z, \cdot) \subseteq \mathbb{R} \setminus U$ and all functions in V(F) share this property as shown in the proof of Theorem 1. By Wiener Tauberian theorem for $L_0^1(H)$ the subspace V(F) and hence V(f) contains a spherical function which cannot be in the Bessel part

implying that $e^{i\lambda t}$ W^{λ}_{ν} ϵ V(f) for some λ ϵ $\mathbb{R}\setminus\{0\}$ and integer ν . It remains to show that $e^{i\lambda t}$ W^{λ}_{ν} ϵ Q(f).

We know that there exists a net $g_{\tau} \in L_0^1(H)$ such that $f^* g_{\tau} \to e^{i\lambda t} W_{\nu}^{\lambda}$ in w^* . Let $\chi \in L^1(\mathbb{R})$, $\hat{\chi}$ (0) = 0 and $\hat{\chi}$ $(\lambda) = 1$. Then $\int (f^* g_{\tau})(z, t\text{-s}) \chi(s) ds \to e^{i\lambda t} W_{\nu}^{\lambda}$ in w^* .

By Fubini, it follows that $f^* E_{\tau} \to e^{i\lambda t} W_{\nu}^{\lambda}$ in w^* where $E_{\tau}(w,\alpha) = \int g_{\tau}(w,s)\phi(\alpha+s)ds$ satisfy $\int E_{\tau}(w,\alpha)d\alpha=0$. Hence $E_{\tau}\in L^1_{00}(H)$, and $e^{i\lambda t} W_{\nu}^{\lambda}$ $\in Q(f)$ which completes the proof of the theorem.

References

- [1] M. Agranovsky, C. Berenstein and D.C. Chang, Morera thorem for holomorphic Hp spaces in the Heisenberg group, *J. Reine Angew. Math.*, **1993** (1993), no. 443, 49-89. https://doi.org/10.1515/crll.1993.443.49
- [2] S. Helgason, *Groups and Geometric Analysis*, American Marhematical Societty, New York-London-Toronto, 1984. https://doi.org/10.1090/surv/083
- [3] C.S. Herz, Spectral synthesis for the circle, *Ann. of Math.*, **68** (1958), 709-712. https://doi.org/10.2307/1970163
- [4] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for boundary harmonic functions on balls in Cn, *Invent. Math.*, **62** (1980), 325-331. https://doi.org/10.1007/bf01389163
- [5] Y. Katznelson, *An Introduction to Harmonic Analysis*, John Wiley and Sons, Inc, 1968.

Received: December 9, 2018; Published: January 7, 2019