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1 Introduction
Given a positive real number r and a positive integer m, the classical modulus
of smoothness is defined for a function f ∈ L2(R) by

wm(f, r) = sup0<h≤r ‖ 4m
h ‖2

where
4m
h = (τh − I)mf,

I being the unit operator and τh stands for the usual translation operator
given by τhf(x) = f(x+h).While the classical K-functional, introduced in [4],
is defined by

Km(f, r) = inf{‖ f − g ‖2 +r ‖ Dmg ‖2; g ∈ Wm
2 },

where Wm
2 be the Sobolev space constructed by the operator D = d

dx
,

Wm
2 = {f ∈ L2(R) : Djf ∈ L2(R), j = 1, .....,m}.



8 Sami Rebhi

An oustanding result of the theory of approximation of functions on R, which
establishes the equivalence between modulus of smoothness andK−functionals,
can be formulated as follows:

Theorem 1.1. (see[1]) There are two positive constants c1 and c2 such that
for all f ∈ L2(R) and r > 0:

c1wm(f, r) ≤ Km(f, rm) ≤ c2wm(f, r)

IN the classical theory of approximation of functions on R, the modu-
lus of smoothness are basically built by means of the translation operators
f −→ f(x + y). The translation operator is used for the the construction of
modulus of continuity and smoothness which are the fundamental elements of
direct and inverse theorems in the approximation theory.
Many generalized modulus of smoothness are often more convenient than the
usual ones for the study of the connection between the smoothness properties
of a function and the best approximations of this function in weight functional
spaces (see[5]− [8]).
In addition to modulus of smoothness, the K-functionals introduced by J.Peetre
[4] have turned out to be a simple efficient tool for the description of smooth-
ness properties of functions. The study of the connection between these two
quantities is one of the main problems in the theory of approximation of func-
tions. In the classical setting, the equivalence of modulus of smoothness these
problems are studied, for example , in [1].
The present paper is organized as follows: In Section 2, we present some pre-
liminary results and notations that will be useful in the sequel and we establish
some results associated with the q-Dunkl operator. In section 3, the main re-
sult is the proof of the theorem on the equivalence of a K−functional and the
modulus of smoothness constructed by the q-Dunkl oprtator.

2 Preliminaries
Throughout this paper, we assume 0 < q < 1.
In this section , we provide some facts about harmonic analysis related to
the q-Dunkl Operator Λα,q. We cite here, as briefly as possible, only those
properties actually required for the discussion. For more details we refer to
[2].
We put Rq = {±qn : n ∈ Z}, R̂q = Rq ∪ {0}.
For a ∈ C , the q-shifted factorials are defined by

(a; q)0 = 1; (a; q)n =
n−1∏
k=0

(1− aqk), n = 1, 2, ....; (a; q)∞ =
∞∏
k=0

(1− aqk)
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We also denote

[x]q =
1− qx

1− q
, x ∈ C, and [n]q! =

(q; q)n
(1− q)n

, n ∈ N

A q-analogue of the classical exponential function is given by (see[6, 7])

e(z; q2) = cos(−iz; q2) + isin(−iz; q2)

where

cos(x; q2) =
∞∑
n=0

(−1)nqn(n+1) x
2n

[2n]q!
, sin(x; q2) =

∞∑
n=0

(−1)nqn(n+1) x2n+1

[2n+ 1]q!

These three functions are entire on C and when q tends to 1, they tend to the
corresponding classical ones pointwise and uniformly on compacts.
The q-Jackson integrals are defined by (see[3]).∫ b

a

f(x)dqx = (1− q)b
∞∑
n=0

qnf(bqn)− (1− q)a
∞∑
n=0

qnf(aqn)

and ∫ +∞

−∞
f(x)dqx = (1− q)

∞∑
n=−∞

qnf(qn) + (1− q)
∞∑

n=−∞

qnf(−qn).

Notation 2.1. We denote by
•Sq(Rq) the space of functions f defined on Rq satisfying, for all m,n non
negative integers,

Pm,n,q(f) = sup
x∈Rq
| xmδnq f(x) |<∞

and
lim
x−→0

δnq f(x) (in Rq) exists

•S ′q(Rq) the space of tempered distributions on Rq. It is the topological dual of
Sq(Rq).

•Lpq(Rq) = {f : ‖f‖p,q = (
∫ +∞
−∞ |f(x)|pdqx)

1
p <∞}.

•L∞q (Rq) = {f : ‖f‖∞,q = supx∈Rq | f(x) |<∞}.

The q-Dunkl operator is defined by

Λα,q = δq[fe + q2α+1fo](x) + [2α + 1]q
f(x)− f(−x)

2x
, (1)
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with fe, fo are respectively the even and odd parts of f and δq is the q2−analogue
differential operator constructed by R. L. Rubin. It is shown in [1] that for all
λ ∈ C, the differential-difference equation

Λα,q(f) = iλf, f(0) = 1, (2)

admits a unique C∞ solution on R, denoted by Ψα,q
λ given by

Ψα,q
λ (x) = jα(λx; q2) +

iλx

[2α + 2]q
jα+1(λx; q2) (3)

with jα(λx; q2) is the normalized third Jackson’s q−Bessel function given by:

jα(λx; q2) =
+∞∑
n=0

(−1)n
Γq2(α + 1)qn(n+1)

Γq2(α + n+ 1)Γq2(α + 1)
(

x

1 + q
)2n.

The q− Dunkl kernel Ψα,q
λ admits the following properties

Proposition 2.1. For all x, a, λ ∈ R and a ∈ C, we have

i) Ψα,q
λ (x) = Ψα,q

x (λ), Ψα,q
aλ (x) = Ψα,q

λ (ax).

ii) If α = −1
2
, then Ψα,q

λ (x) = e(iλx; q2).
For α > −1

2
, Ψα,q

λ has the following q−integral representation of Mehler
type

Ψα,q
λ (x) =

(1 + q)Γq2(α + 1)

2Γq2(
1
2
)Γq2(α + 1

2
)

∫ 1

−1

(t2q2; q2)∞
(t2q2α+1; q2)∞

(1+t)e(iλxt; q2)dqt. (4)

iii) For all λ ∈ Rq, Ψα,q
λ is bounded on R̂q and we have

| Ψα,q
λ (x) |≤ 4

(q; q)∞
∀x ∈ R̂q

Lemma 2.1. for all x ∈ Rq

1. | jα(x, q2) |≤ 2
(q;q)∞

.

2. | 1−Ψα,q
λ |≤| λx | .

3. There is c1 > 0 such that |1−Ψα,q
λ | ≥ c1 with |x| ≥ 1.

Proof. Analog of lemma 2.9 in [8]
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For α ≥ −1
2
, the q−Dunkl transform is defined on L1

α,q(Rq) by

F
α,q
D (f)(λ) = cα,q

∫ +∞

−∞
f(x)Ψα,q

−λ(x) | x2α+1 | dqx, λ ∈ R̂q, (5)

where cα,q = (1+q)−α

2Γq2 (α+1)

Proposition 2.2. i) If f ∈ L1
α,q(Rq) then F

α,q
D (f) ∈ L1

α,q(Rq),

‖ Fα,qD (f) ‖∞,q≤
4cα,q

(q; q)∞
‖ f ‖1,α,q (6)

ii) Let f ∈ L1
α,q(Rq) and µ ∈ S ′q(Rq), then for n = 1, 2, ... we have

F
α,q
D (Λn

α,qf)(λ) = (iλ)nFα,qD (f)(λ) (7)

F
α,q
D (Λn

α,qµ) = (−iλ)nFα,qD (µ) (8)

iii) For all f ∈ L1
α,q(Rq), we have

∀x ∈ Rq, f(x) = cα,q

∫
R
F
α,q
D (f)(λ)Ψα,q

λ (x) | λ |2α+1 dqλ. (9)

Theorem 2.1. i) For α ≥ −1
2
, the q−Dunkl transform F

α,q
D is an isomor-

phism from Sq(Rq) onto itself. Moreover, for all f ∈ Sq(Rq), we have

‖ Fα,qD (f) ‖2,α,q=‖ f ‖2,α,q . (10)

ii) The q−Dunkl transform can be uniquely extended to an isometric iso-
morphism on L2

α,q(Rq). Its inverse transform (Fα,qD )−1 is given by:

(Fα,qD )−1(f)(x) = cα,q

∫ +∞

−∞
f(x)Ψα,q

λ (x) | λ2α+1 | dqλ = (Fα,qD )(f)(−x)

The generalized q−Dunkl translation operator is defined for f ∈ L2
α,q(Rq)

and x, y ∈ Rq by

Tα;q
y (f)(x) = cα,q

∫ +∞

−∞
F
α,q
D (f)(λ)ψα,qλ (x)ψα,qλ (y) | λ |2α+1 dqλ,

Tα;q
0 (f) = f.

Proposition 2.3. i) For f ∈ L2
α,q(Rq), x, y ∈ Rq, we have

F
α,q
D (Tα;q

y f)(λ) = ψα,qλ (y)Fα,qD (f)(λ). (11)
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ii) For f ∈ Sq(Rq) and y ∈ Rq, we have

Λα,qT
α;q
y f = Tα;q

y Λα,qf. (12)

iii) If f ∈ L2
α,q(Rq) (resp.Sq(Rq)) then Tα;q

y (f) ∈ L2
α,q(Rq) (resp.Sq(Rq)) and

we have
‖ Tα;q

y (f) ‖2,α,q≤
4

(q; q)∞
‖ f ‖2,α,q (13)

Notation 2.2. From now on assume m = 1, 2, ... Let Wm
2,α,q be the Sobolev

type space constructed by the q−Dunkl operator Λα,q, i.e.,

Wm
2,α,q = {f ∈ L2

α,q(Rq) : Λj
α,qf ∈ L2

α,q(Rq), j = 1, 2...,m}

More explicitly, f ∈ Wm
2,α,q if and only if for each j = 1, 2...,m, there is a

function in L2
α,q(Rq) abusively denoted by Λj

α,qf , such that Λj
α,qT

α;q
f = Tα;q

Λjα,qf

Proposition 2.4. For f ∈ Wm
2,α,q we have

F
α,q
D (Λm

α,qf)(λ) = (−iλ)mFα,qD (f)(λ). (14)

Proof. using proposition 5.7 in [2]

3 Equivalence of K-Functionnals and Modulus
of Smoothness

Definition 3.1. Let f ∈ L2
q(Rq) and r > 0. Then

• The generalized modulus of smoothness is defined by

wm(f, r)2,α,q = sup0<h≤r ‖ 4m
h f ‖2,α,q

where
4m
h f = (Tα;q

h − I)mf,

I being the unit operator.
• The generalized K-functional is defined by

Km(f, r)2,α,q = inf{‖ f − g ‖2,α,q +r ‖ Λm
α,qg ‖2,α,q; g ∈ Wm

2,α,q}.

The following theorem establishes the equivalence of the modulus of Smooth-
ness and the K-functional.

Theorem 3.1. There are two positive constants c1 and c2 such that

c1wm(f, r)2,α,q ≤ Km(f, rm)2,α,q ≤ c2wm(f, r)2,α,q,

for all f ∈ L2
q(Rq) and r > 0.
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In order to prove Theorem 3.1, we shall need some preliminary results.

Lemma 3.1. Let f ∈ L2
q(Rq) and h > 0. Then

‖ 4m
h f‖2,α,q ≤

4m

(q; q)m∞
‖f‖2,α,q (15)

F
α,q
D (4m

h f)(λ) = (ψα,qλ (h)− 1)mFα,qD (f)(λ). (16)

Proof. The result follows easily by using (11), (13), and an induction on m.

Lemma 3.2. Let f ∈ Wm
2,q, r > 0. The following inequality is true:

wm(f, r)2,α,q ≤ c2r
m‖Λm

α,qf‖2,α,q

Proof. Assume that h ∈]0, r]. By (14), (16) and theorem 2.1 we have

‖ 4m
h f‖2

2,α,q = ||Fα,qD (4m
h f)(λ)||22,α,q

= ||(1− ψα,qλ (h))mFα,qD (f)(λ)||22,α,q

= h2m|| (1−ψ
α,q
λ (h))m

(hiλ)m
(iλ)mFα,qD (f)(λ)||22,α,q

According to Lemma 2.1, with all l ∈ R̂q we have the inequality
| (1−ψ

α,q
λ (l))m

lm
| ≤ (βλ)m, where β ∈ R. Then we deduce

‖4m
h f‖2

2,α,q ≤ h2mβ2m||(iλ)mFα,qD (f)(λ)||22,α,q = h2mβ2m||Fα,qD (Λm
α,qf)(λ)||22,α,q =

h2mβ2m||Λm
α,qf ||22,α,q.

Calculating the supremum with respect to all h ∈]0, r], we obtain
wm(f, r)2,α,q ≤ c2r

m‖Λm
α,qf‖2,α,q, where c2 = βm.

Definition 3.2. For any function f ∈ L2
q(Rq) and any number ν > 0 let us

define the function

Pν(f)(x) := cα,q

∫ ν

−ν
F
α,q
D (f)(λ)Ψα,q

λ (x)dqλ = (Fα,qD )−1(Fα,qD (f)χν(x)),

where χν(λ) is the characteristic function of the segment [−ν, ν], (Fα,qD )−1 is
the inverse Fourier transform. One can easily prove that the function Pν(f) is
infinitely differentiable and belongs to all classes Wm

2,α,q,m ∈ N.

Lemma 3.3. There is a positive constant c3 such that

‖f − Pν(f)‖2,α,q ≤ c3‖ 4m
1/ν f‖2,α,q

for any f ∈ L2
q(Rq) and ν > 0.
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Proof. Using the Plancherel formula, we obtain

‖f − Pν(f)‖2
2,α,q = ‖Fα,qD (f − Pνf)‖2

2,α,q

= ‖(1− χν(λ))Fα,qD (f)(λ)‖2
2,α,q

=
∫
R | 1− χν(λ) |2| Fα,qD (f)(λ) |2 dqλ

By lemma 2.1 there is a constant c1 > 0 such that

| 1−Ψα,q
λ/ν(x) |≥ c1,

for all λ ∈ R with | λ |≥ ν. From this, (16) we get

‖f − Pν(f)‖2
2,α,q ≤ c−2m

1

∫
|λ|≥ν | 1−Ψα,q

λ (x/ν) |2m| Fα,qD (f)(λ) |2 dqλ

= c−2m
1

∫
R | F

α,q
D (4m

1/νf)(λ) |2m dqλ

= c−2m
1 ‖ 4m

1/ν f‖2
2,α,q.

We get the inequality ‖f −Pν(f)‖2,α,q ≤ c3‖4m
1/ν f‖2,α,q, where c3 = 1

(c1)m
.

Corollary 3.1. There is a positive constant c3 such that

‖f − Pν(f)‖2,α,q ≤ c3wm(f, 1/ν)2,q

for any f ∈ L2
q(Rq) and ν > 0.

Lemma 3.4. There is a positive constant c4 such that

‖Λm
α,q(Pν(f))‖2,α,q ≤ c4ν

m‖ 4m
1/ν f‖2,α,q

for any f ∈ L2
q(Rq) and ν > 0.

Proof.

‖Λm
α,q(Pν(f))‖2,α,q = ‖Fα,qD (Λm

α,q(Pν(f)))‖2,α,q

= ‖(iλ)mχν(λ)Fα,qD (f)(λ)‖2,α,q

= ‖λmχν(λ)Fα,qD (f)(λ)‖2,α,q

= ‖ λmχν(λ)
(1−Ψα,q

λ/ν
)m

(1−Ψα,q
λ/ν)

mF
α,q
D (f)(λ)‖2,α,q

Note that supλ∈R
λmχν(λ)
|1−Ψα,q

λ/ν
|m = νm sup|λ|≤ν

(λ/ν)m

|1−Ψα,q
λ/ν
|m = νm sup|t|≤1

tm

|1−Ψα,qt |m

Let c4 = sup|t|≤1
tm

|1−Ψα,qt |m
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Corollary 3.2. There is a positive constant c4 such that

‖Λm
α,q(Pν(f))‖2,α,q ≤ c4ν

mwm(f, 1/ν)2,α,q

for any f ∈ L2
q(Rq) and ν > 0.

Proof. of Theorem 3.1

1. Let h ∈]0, r], g ∈ Wm
2,α,q. Using lemma 3.2 and lemma 3.1, we have

‖4m
h f‖2,α,q = ‖4m

h (f − g + g)‖2,α,q

≤ ‖4m
h (f − g)‖2,α,q + ‖4m

h (g)‖2,α,q

≤ 2m‖f − g‖2,α,q + c2h
m‖Λm

α,q(g)‖2,α,q

≤ c5(‖f − g‖2,α,q + rm‖Λm
α,q(g)‖2,α,q),

where c5 = max{2m, c2}. Calculating the supremum with respect to h ∈
]0, r] and the infimum with respect to all possible functions g ∈ Wm

2,α,q,
we obtain

wm(f, r)2,α,q ≤ c5Km(f, rm)2,α,q.

2. Since Pν(f) ∈ Wm
2,α,q, by the definition of a K− functional we have

Km(f, rm)2,α,q ≤ ‖f − Pν(f)‖2,α,q + rm‖Λm
α,q(Pν(f))‖2,α,q

Using Corollaries 3.1 and 3.2, we get

Km(f, rm)2,α,q ≤ c3wm(f, 1/ν)2,α,q + c4(rν)mwm(f, 1/ν)2,α,q.

Since ν is an arbitrary positive value, choosing r = 1
ν
, we obtain

Km(f, rm)2,α,q ≤ c6wm(f, 1/ν)2,α,q,

where c6 = c3 + c4. This concludes the proof.
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