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Abstract

For a,b € R we study binomial sums of the form Y~ (}) a®o"*Bjim
and > _o () a"0" K Cjtsm, where (By)n>0 and (Cp)p>0 are Balancing
and Lucas-Balancing numbers, respectively. We provide closed form so-
lutions for many types of these sums. We also express these sums in a
different combinatorial way. This enables us to state new combinatorial
expressions for B,, and C,,.
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1 Introduction and Preliminaries

In 1999, Behera and Panda [1] introduced the notion of Balancing numbers
(Bn)n>0 as solutions to a certain Diophantine equation. They have shown
that a Balancing number B, satisfies the recurrence relation B, ; = 6B, —
B,_1,n > 1, with initial terms By = 0 and B; = 1. Another result about
Balancing numbers is, that B, is a Balancing number, if and only if B2 is
a triangular number, i.e., 8B + 1 is a perfect square. The sequence C, =
\/8B2 + 1 is called a Lucas-Balancing number. It satisfies the same recurrence

'Disclaimer: Statements and conclusions made in this article are entirely those of the
author. They do not necessarily reflect the views of LBBW.
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relation as B,: C,41 = 6C, — C,,_1,n > 1, with initial terms Cy = 1 and
C}1 = 3. The Binet forms for B,, and C,, are given by, respectively,

AT — A3
A1 — Ao
with \; =3+ V8 and Ay = 3 — V8.

Ab initio, both B,, and C), have gained popularity and are still the subject
of research (see for instance [2], [4]-[10] and [12]-[16]). (B,)n>0 is sequence
A001109 in the OEIS [17], whereas (C}),>0 has the id-number A001541 in
OEIS.

Expressions for binomial sums involving B,, and C, may be derived using
their Binet forms. The maybe most obvious examples are

“ n - n
Z </{j) B2k+m = Gan+m and Z (kj) C2k+m = 6”Cn+m (1)

k=0 k=0

1
B, = and = (N + ),

Other examples appear in [8] and [16]. Some hybrid variants are stated in [6].
In this article, we study the four parameter sums

. — (n _
,(8) = Sy jom) = 3 ()0 B, )
k=0
and .
5,(0) = $u(Ciatigom) = 3 () a1 Con, ®
k=0

where a,b € R and j,m € N.

2 A First Result

The first theorem may be seen as an analogue of results from [3]. See also [11].
The theorem answers the following question: Take two integers p and ¢ with
p # q. For what values of a and b does the identity

n n -
Z (k) a*b kquer = Dpn+m
k=0

hold? We also find the answer if B, is replaced by C,. We will need the
following lemmas:

Lemma 2.1. The generating functions for the sequences (Bjnim)n>0 and
(Cjnsm)n>0 are given by

Bm + Bj_mﬂf

i - B‘n m "= P2 4
fBJn-‘rm('Z‘) nz_o Jn+ z 1_20]1._'_1;2 ( )
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and
Om - Cj_ml’

fesnim(®) = nZ:O Cnem®” = 17 2Cjx + o )

PROOF: The proof is obvious using the Binet forms and the geometric
series. Another proof can be found in [8]. O

Lemma 2.2. The generating functions for S,(B) and S,(C) are

> B+ (aBj_, — bBy,)x
— B n _ J
fs.(3)(2) 7; Su(B)x 1 — (2b+ 2aCy)x + (a® + 2Cjab + b?)x?’ (6)

and

B o9 - Cm — (aCj_m + me)a:
fs.(c)(T) = nz_o Sn(C)a" = — @+ 9aC)r + (a2 3 2C.ab T I (7)

PROOF: Applying Theorem 1 from [11] it follows that

e (725)

fsum)(x) =

and
1

axr
Finie®) = T owen (T275)

Using the equations for fp, . . (2) and fc, ., (z) form the first Lemma and

simplifying proves the relations. 0

Theorem 2.3. We have
n n -
Z (k’) akbn kBQker = Bpn+m (8)
k=0
if and only if a = B,/B, and b= B,_,/B,. Analogously, it holds that
n n -
Z (k) akbn kCQker = LUpn+m (9)
k=0
if and only if a = B,/B, and b= B,_,/B,.
PROOF: Comparing (4) with (6) we get the following system of equations:
C, = b+aCy,

B, ., = aB,_,, —bB,,
1 = a®+2C;ab+ b
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The first two equations produce

_ Byn+GCyB, B,
" Bym+CyBn B,

where we have used B,,_,, = B,C,, — C, B,,. This gives

B, B,
b=Cp— Cyt = 2.
q q

The verification of the third equation leads to B — B2 = By, pB,y_p, which is
known as the Catalan identity for Balancing numbers. The proof of the second
part of the theorem is very similar and omitted. 0

Choosing p = 1 and ¢ = 2 gives (1). For p =2 and ¢ = 1 we obtain

. n _ n
(l{j) (—6)k3k+m = (—]_)nBQTH_m and E (k‘) (—6)k0k+m = <_1)n02n+m'
k=0 k=0

(10)
The first example in (10) appears in [16]. It is worth to remark that the
candidates in (1) and (10) are connected via the binomial transform. As a
further example, we choose ¢ = 3 and p = 1 and the result is

i (Z) <%)kB3k+m - (%5)”13”% and kz; (Z) (é)kc?)mm = <%>n0n+m.

) (11)

3 Some Special Sums
From (6) and (7) evaluations of some special binomial sums can be inferred.

Theorem 3.1. We have

J

82 B,, <&>n if n is even

"\ /n 1\*
> (@) st w
k=0 J -8z Cy, (—j) if n is odd.
Especially,
n 0 if n is even
n 1\*%
~1)*(=) Bjr = 1 /AT 13
=0 (k>( ) <Cj> " 87 (g—j) if n s odd. (13)
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PROOF: If we choose a = —b/C}, then (20 + 2aC;)x vanishes from (6).
Next,

b (1 — C? ]2
a® +2C;ab + b* = % = _bZC’_;’
J J
and e
Hence,
- 8B\ n > B.C,, /8B*\n
ot =55 () e S B (e
n=0 J n=0 J j
Comparing the coefficients of 2™ proves the stated identity. O

The companion result for Lucas-Balancing numbers is stated without proof.

Theorem 3.2. We have

" RN 820, B—j>n if nis even
> () () G o (14)
k=0 —STBm(C—;) if n is odd.
Especially,
(Z) (_1)k(i)k0jk _ 8 (q—) if n is even (15)
k=0 G 0 if n is odd.

Theorem 3.3. Forn > 1 the following identities are valid:

> () UM B = VR o)

and

i (n) (=) A Bjm = —(2V8)" A" By (17)

k
k=0

PROOF: To derive the identities we choose a such that a* +2C;ab+b* = 0
in (6). We have

ar2(j,b) = b(—Cj £ ,/C? — 1) = b(—C; + V8B;).
Thus, ai1(j,b) = —bX, and ay(j,b) = —bX]. Also,

2b + 2a41 (4, b)C; = b2v/IX,B;,
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and ‘
2b + 2a5(j,b)C; = —b2vV/8N B,;.
This gives
() a0 0D Bya” = B
n=0 k=0
+ 3 (1" VBB B, + B+ X By ) 2VEN By )va,
n=1

and

n

n , _ "
( k) (a1 (b, )0 By ™ = Bua®
n=0 k=0
+

n=1

(2V8BuNB; — By — A;Bj_m)(zﬁAgBj)"*)bW.

VRS

Finally, the Binet form for B,, can be used to show that
2V8B N, B;j + By, + N, Bj_p = N7 B,

and . ‘ .
2V8B N,Bj — By, — NyBj_p = =N, " B;.

Corollary 3.4. Forn > 1 we have

Z (n>(_1)kB, B. . 2(2\/§)n72B§LCjn+m if n is even (18)
g e _(2\/§)n_1-B?Bjn+m if n is odd,

k=0

n

and
i (n>(—1)kC~ B B %(2\/§)nB}?Bjn+m if n is even (19)
k S —(2\/5)"’1B§L0jn+m if n is odd.

k=0

The analogue results for C,, can be inferred from (7) and are stated without
proof.

Theorem 3.5. For n > 1 the following identities are valid:

S (1), - Slemmpre e

k
k=0

and

Zn: <”) (=1 A Clpeym = %(2\/§)"Ag”+m3;. (21)
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Corollary 3.6. Forn > 1 we have

i (n) (—1)kBjkOjk+m _ { %(2\/g>nB;LBjn+m if n is even )

o \F —(2\/§)"_lBijn+m if n is odd,
and
i (n) (—1)5C4C B %(2\/§)"B]”C’jn+m if n is even (23)
o \F s —%(2\/§)”+1B?Bjn+m if n is odd.
Note that

kio (Z) (—1)*Cjk Bjom = Zn: (Z) (—1)* B Cipsm. (24)

k=0

4 Combinatorial Identities for S,(B) and S, (C)

Theorem 4.1. The following combinatorial identity is valid

5]
Su(B) = d(n)+ Y (" - 1) (—1)l(v+bu)lu“—1—%(L(b+acj)3m+acm3j),

l n —2[
1=0
(25)
where u = 2(b+ aC}), v = a* — b* and
sty — { BrOE @00l ipnis even 0
0 if n1s odd.

PROOF'": For notational brevity we set w = aB;_,, — bB,,. Then, again
from (6) we have

foup(@) = (Bm+wz)> a"(u—(v+bu)r)"

n=0

’I’L> (—1)8(?] + bu)sunfsanrS

)(-1)8(1) + bu)sun—sxn—i—s—&—l
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Comparing the coefficients gives the relation

SuB) = )+ > (-1)l(v+bu)lu"*2l*1(u3m (” . l) +w<" _ll_ 1))

where d(n) is defined above. We have w = —iuB,, + aC,,, B;. The statement

now follows since
n—I _n—l n—1[1-—1
l n—2l l ’

()T ()

The analogue result for 5,,(C) is stated without proof.

and

Theorem 4.2. The following combinatorial identity is valid

7|
S, (C) = 8 (n)+ Z <” -l 1) (—1)l(v+bu)lu”—1—2l(L(b+a0j)cm+8aBmBj),

l n — 21
1=0
(27)
where u = 2(b+ aC}), v = a* — b* and
5*(n) = Cin(—1) 5] (v + bu) 5] if nis even (28)
0 if n is odd.

Identities (25) and (27) contain a range of combinatorial formulas for B,
and C), as special cases. We give three examples of such formulas: From
Sn(B;1,1,2,0) we can easily deduce the known identity

B, = (n - 5 N 1) (—1)'62-1, (29)

=0

Similarly, S, (C;1,1,2,0) gives

=), )
Co=3Y (” f 1)(—1)16““m+d(n), (30)

where
d(n) (—1) [5]if n is even
0 if n is odd.
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Also, using the relations (see [8])

2" /2n 2" (on

Z ( A ) (-1)*By=4"B,  and Z ( . ) (-D*C, =4"C,, (31)
k=0 k=0

we get from S,(B;1,—1,1,0) and S,(C;1,—1,1,0) the combinatorial results
(n>1)

L2n2—1J
m—1—1
=0
and
|25 ]
m—1—1
Co=1+2 (” z )4"—1-1%. (33)
=0

Finally, S,,(B;3,—1,1,0) and S, (C;3,—1,1,0) can be combined with two
other identities from [8] to get

L%;J 2n—1—1
By, =3 ( , )2“"‘”‘47 (34)
=0
" (on—1 2n+1
B — 25(n—l)—
Sy 2n — 1 —1 93(n—1)—1 n
Con= z —+ 1 (36)
=0
and
~ (20— 5(n—1)
02n+1=32( z )2 . (37)
(=0
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