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Abstract

The purpose of this paper is to introduce the notions of gw-continuous

and gw∗-continuous functions induced by gw-open sets in associated w-

spaces, and to study some properties and the relationships among such

notions and other continuity.
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1 Introduction

Siwiec [20] introduced the notions of weak neighborhoods and weak base in a

topological space. We introduced the weak neighborhood systems defined by

using the notion of weak neighborhoods in [11]. The weak neighborhood system

induces a weak neighborhood space which is independent of neighborhood

spaces [4] and general topological spaces [2]. The notions of weak structure,
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w-space, W -continuity and W ∗-continuity were investigated in [12]. In [13],

The notions of associated w-spaces, WO-continuity and WK-continuity were

investigated. Levine [5] introduced the notion of g-closed subsets in topological

spaces. In fact, the set of all g-closed subsets is a kind of weak structure.

In the same way, we introduced the notions of gw-closed sets [15] and gwτ -

closed sets [16] in weak spaces, and investigated some basic properties of such

notions. The notions of gW -continuous, gW ∗-continuous, gW -irresolute, and

gW ∗-irresolute functions induced by gw-open sets introduced in [18], and also

the notions of gwτW -continuous, gwτW
∗-continuous, gwτW -irresolute, and

gwτW
∗-irresolute functions investigated in [18]. The purpose of this note is

to introduce the notions of gw-continuity and gw∗-continuity and to study

the relationships among such notions and the other continuity in associated

w-spaces.

2 Preliminaries

Let X be a nonempty set. A subfamily wX of the power set P (X) is called a

weak structure [12] on X if it satisfies the following:

(1) ∅ ∈ wX and X ∈ wX .

(2) For U1, U2 ∈ wX , U1 ∩ U2 ∈ wX .

Then the pair (X,wX) is called a w-space on X. Then V ∈ wX is called a w-

open set and the complement of a w-open set is a w-closed set. The collection

of all w-open sets (resp., w-closed sets) in a w-space X will be denoted by

W (X) (resp., WC(X)). We set W (x) = {U ∈ W (X) : x ∈ U}.
Let S be a subset of a topological space X. The closure (resp., interior) of

S will be denoted by clS (resp., intS). A subset S of X is called a preopen

set [9] (resp., α-open set [19], semi-open [6]) if S ⊂ int(cl(S)) (resp., S ⊂
int(cl(int(S))), S ⊂ cl(int(S))). The complement of a preopen set (resp., α-

open set, semi-open) is called a preclosed set (resp., α-closed set, semi-closed).

The family of all preopen sets (resp., α-open sets, semi-open sets) in X will

be denoted by PO(X) (resp., α(X), SO(X)). We know the family α(X) is a

topology finer than the given topology on X. And a subset A of X is said to

be g-closed [5] (resp., gp-closed [7], gs-closed [1, 3] ) if cl(A) (resp., pCl(A),

sCl(A)) ⊂ U whenever A ⊂ U and U is open in X.

Then the family τ , GO(X), gαO(X), and gα∗O(X), are all weak structures

on X. But PO(X), GPO(X) and SO(X) are not weak structures on X. A

subfamily mX of the power set P (X) of a nonempty set X is called a minimal

structure on X [8] if ∅ ∈ wX and X ∈ wX . Thus clearly every weak structure

is a minimal structure.
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For a subset A of X, the w-closure of A and the w-interior of A are defined

as follows in [12]:

(1) wC(A) = ∩{F : A ⊆ F,X − F ∈ wX}.
(2) wI(A) = ∪{U : U ⊆ A,U ∈ wX}.

Theorem 2.1 ([12]). Let (X,wX) be a w-space and A ⊆ X.

(1) x ∈ wI(A) if and only if there exists an element U ∈ W (x) such that

U ⊆ A.

(2) x ∈ wC(A) if and only if A ∩ V 6= ∅ for all V ∈ W (x).

(3) If A ⊆ B, then wI(A) ⊆ wI(B); wC(A) ⊂ wC(B).

(4) wC(X − A) = X − wI(A); wI(X − A) = X − wC(A).

(5) If A is w-closed (resp., w-open), then wC(A) = A (resp., wI(A) = A).

Let (X,wX) be a w-space and A ⊆ X. Then A is called a generalized

w-closed set (simply, a gw-closed set) [15] if wC(A) ⊆ U , whenever A ⊆ U

and U is w-open. Then the union of two gw-closed sets is a gw-closed set, but

the intersection of two gw-closed sets is not always gw-closed. The family of

all w-closed sets (resp., gw-closed sets, gw-open sets) in X will be denoted by

WC(X) (resp., GWC(X), GW (X)). We set gW (x) = {U ∈ GW (X) : x ∈ U}.
And A is called a generalized w-open set (simply, a gw-open set) if X − A is

gw-closed. Then A is gw-open if and only if F ⊆ wI(A) whenever F ⊆ A and

F is w-closed. For a subset A of X, gw-closure of A and gw-interior [15] of A

are defined as the following:

(1) gwC(A) = ∩{F : A ⊆ F, F is gw-closed}.
(2) gwI(A) = ∪{U : U ⊆ A,U is gw-open}.

Theorem 2.2 ([15]). Let (X,wX) be a w-space and A ⊆ X.

(1) If A is gw-open (gw-closed), then gwI(A) = A (gwC(A) = A).

(2) If A ⊆ B, then gwI(A) ⊆ gwI(B); gwC(A) ⊆ gwC(B).

(3) gwC(X − A) = X − gwI(A); gwI(X − A) = X − gwC(A).

(4) x ∈ gwI(A) iff there exists a gw-open set U containing x such that

U ⊆ A.

(5) x ∈ gwC(A) iff A ∩ V 6= ∅ for all gw-open set V containing x.

3 Main Results

First, we recall that: Let X be a nonempty set and let (X, τ) be a topological

space. A subfamily w of the power set P (X) is called an associated weak

structure (simply, wτ ) [13] on X if τ ⊆ w and w is a weak structure. Then the

pair (X,wτ ) is called an associated w-space with τ .
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Definition 3.1. Let f : X → Y be a function in two associated w-spaces.

Then f is said to be

(1) gw-continuous if for x ∈ X and for each open set V containing f(x),

there is a gw-open set U containing x such that f(U) ⊆ V :

(2) gw∗-continuous if for every open set V in Y , f−1(V ) is a gw-open set

in X.

Obviously we obtain the following theorem:

Theorem 3.2. Every gw∗-continuous function is gw-continuous.

The following example supports that the converse of the above theorem is

not true in general.

Example 3.3. Let X = {a, b, c, d}, a topology τ = {∅, {a, c}, X} and an

associated w-structure w = {∅, {a, c}, {a}, {b}, {c}, {a, d}, X} in X. Then

for the power set P (X) of X, GW (X) = P (X) − {{b, c, d}, {b, d}} is the set

of all gw-open sets. Consider a function f : (X,w) → (X,w) defined by

f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is gw-continuous. For an open

set {a, c}, f−1({a, c}) = {b, d} is not gw-open, and so f is not gw∗-continuous.

We recall that: Let (X,wτ ) be an associated w-space with a topology τ

and A ⊆ X. Then A is called a generalized wτ -closed set (simply, gwτ -closed

set) [16] if cl(A) ⊆ U , whenever A ⊆ U and U is w-open.

Let f : X → Y be a function in two associated w-spaces w-spaces. Then

f is said to be

(1) gwτ -continuous [17] if for x ∈ X and for each open set V containing

f(x), there is a gwτ -open set U containing x such that f(U) ⊆ V :

(2) gw∗
τ -continuous [17] if for every open set V in Y , f−1(V ) is a gwτ -open

set in X.

Obviously, the following things are obtained:

Theorem 3.4. (1) Every gwτ -continuous function is gw-continuous.

(2) Every gw∗
τ -continuous function is gw∗-continuous.

Proof. Since every gwτ -open set is gw-open, the things are obvious.

The following example supports that the converses of the above theorem

are not true in general.

Example 3.5. Let X = {a, b, c, d}, a topology τ = {∅, {a}, {a, b}, X} and

wX = {∅, {a}, {a, b}, {a, c}, {a, d}, {a, b, d}, X} be a w-structure in X. Note

that:
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WC(X) = {∅, {b, c, d}, {c, d}, {b, d}, {b, c}, {c}, X};
GWτC(X) = {∅, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}, X};
GWτ (X) = {∅, {a}, {b}, {d}, {a, b}, {a, d}, X};
GWC(X) = {∅, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {a, b, c},

{a, c, d}, {b, c, d}, X};
GW (X) = {∅, {a}, {b}, {d}, {a, d}, {a, c}, {a, b}, {a, b, c},

{a, c, d}, {a, b, d}, X}.
Consider a function f : X → X defined as: f(a) = f(c) = a; f(b) =

b; f(d) = d. Then f is gw-continuous and gw∗-continuous. But for an open set

{a}, f−1({a}) = {a, c} is not gwτ -open. So f is not neither gwτ -continuous

nor gw∗
τ -continuous.

Let f : X → Y be a function in two associated w-spaces w-spaces. Then

f is said to be

(1) WO-continuous [13] if for x ∈ X and for each open set V containing

f(x), there is a w-open set U containing x such that f(U) ⊆ V ;

(2) WK-continuous [13] if for every open set V in Y , f−1(V ) is a w-open

set in X.

Obviously, the following things are obtained:

Theorem 3.6. (1) Every WO-continuous function is gw-continuous.

(2) Every WK-continuous function is gw-continuous.

Proof. Since every w-open set is gw-open, they are obtained.

The following example supports that the converses of the above theorem

are not true in general.

Example 3.7. Consider the function f defined in Example 3.5. Then f

is gw-continuous and gw∗-continuous but neither WO-continuous nor WK-

continuous.

Let f : X → Y be a function on w-spaces. Then f is said to be

(1) gW -continuous [18] if for x ∈ X and for each w-open set V containing

f(x), there is a gw-open set U containing x such that f(U) ⊆ V ;

(2) gW ∗-continuous [18] if for every w-open set V in Y , f−1(V ) is a gw-open

set in X.

Obviously, the following things are obtained:

Theorem 3.8. (1) Every gW -continuous function is gw-continuous.

(2) Every gW ∗-continuous function is gw∗-continuous.
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Proof. Since every open set is w-open, the things are obtained.

The following example supports that the converses of the above theorem

are not true in general.

Example 3.9. (1) The function f defined in Example 3.5 is obviously gw∗-

continuous but not gW ∗-continuous.

(2) In Example 3.5, consider a function g : X → X defined by g(a) =

b; g(b) = a; g(c) = c; g(d) = d. Then g is gw-continuous. For a w-open set

V = {a, c} and for g(c) = c ∈ U , there is no any gw-open set U containing c

such that g(U) ⊆ V . So, g is not gW ∗-continuous.

Let f : (X,wτ )→ (Y,wµ) be a function on two associated w-spaces with τ

and µ. Then f is said to be

(1) gW -irresolute [18] if for x ∈ X and for each gw-open set V containing

f(x), there is gw-open set U containing x such that f(U) ⊆ V ;

(2) gW ∗-irresolute [18] if for every gw-open set V in Y , f−1(V ) is gw-open

in X.

In [18], we showed that every gW -irresolute is gW -continuous and very

gW ∗-irresolute function is gW ∗-continuous. From Theorem 3.4, the following

theorem is directly obtained:

Theorem 3.10. (1) Every gW -irresolute is gw-continuous.

(2) Every gW ∗-irresolute function is gw∗-continuous.

Remark 3.11. For a function from an associated w-space to an associated

w-space, we have the following diagram:

Continuity → WK-conti. → WO-conti.

↘ ↙
gw∗-conti. → gw-conti.

↖ ↗
gw∗

τ -conti.→ gwτ -conti.

↑ ↑ ↑ ↑ ↑ ↑
gwτW

∗-conti.→ gwτW -conti.

↙ ↘
gW ∗-conti. → gW -conti.

↗ ↖
W ∗-conti. → W -conti.

Continuity −→ gw∗
τ -continuity−→ gwτ -continuity
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Theorem 3.12. Let f : X → Y be a function on w-spaces. Then f is gw∗-

continuous if and only if for every closed set F in Y , f−1(F ) is gw-closed in

X.

Proof. It is obvious.

Theorem 3.13. Let f : X → Y be a function on w-spaces. Then the following

statements are equivalent:

(1) f is gw-continuous.

(2) f(gwC(A)) ⊆ cl(f(A)) for A ⊆ X.

(3) gwC(f−1(V )) ⊆ f−1(cl(V )) for V ⊆ Y .

(4) f−1(int(V )) ⊆ gwI(f−1(V )) for V ⊆ Y .

Proof. Obvious.

Corollary 3.14. Let f : X → Y be a function on w-spaces. Then the following

statements are equivalent:

(1) f is gw-continuous.

(2) f−1(V ) = gwI(f−1(V )) for every open set V ∈ Y .

(3) f−1(B) = gwC(f−1(B)) for every closed set B ⊆ Y .

Proof. From Theorem 2.2 and Theorem 3.13, it is obvious.

Let (X,w) be a w-space. Let gW (x) (resp., W (x)) denote the set of all

gw-open (resp., w-open) set containing x in X. A collection H of subsets of

X is called an m-family [10] on X if ∩H 6= ∅. Let H be an m-family on X.

Then we say that an m-family H gw-converges (resp., converges) to x ∈ X if

H is finer than gW (x) (resp., O(x)) i.e., gW (x) ⊆ H (resp., O(x) ⊆ H). Let

f : X → Y be a function; then it is obvious f(H) = {f(F ) : F ∈ H} is an

m-family on Y .

Theorem 3.15. Let f : X → Y be a function on w-spaces. If f is gw-

continuous, then for an m-family H gw-converging to x ∈ X, an m-family

< f(H) >= {F : H ⊆ F for some H ∈ f(H)} converges to f(x).

Proof. Let f be gw-continuous and let H be an m-family gw-converging to

x ∈ X. By gw-continuity, for an open set V containing f(x), there exists a

gw-open set U containing x such that f(U) ⊆ V . Since f(gW (x)) ⊆ f(H),

V ∈< f(H) >, and so O(f(x)) ⊆< f(H) >. Hence the m-family < f(H) >

converges to f(x).
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Theorem 3.16. Let f : X → Y be a bijective function on w-spaces. Then f

is gw∗-continuous iff for an m-family H gw-converging to x ∈ X, the m-family

f(H) converges to f(x).

Proof. Suppose f is gw∗-continuous and H is an m-family gw-converging to

x ∈ X. By hypothesis and surjectivity, O(f(x)) ⊆ f(gW (x)) ⊆ f(H), and so

the m-family f(H) converges to f(x).

For the converse, let U ∈ O(f(x)) for U ⊆ Y . Since the family gW (x)

clearly gw-converges to x, by hypothesis, we get O(f(x)) ⊆ f(gW (x)) for

x ∈ X. Since f is injectivity, f−1(U) ∈ gW (x).
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