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Abstract

In this paper, we employ a mapping method to solve fractional Os-
trovski equation. We derive Jacobi elliptic function solutions and de-
duce the trigonometric function solutions, solitary wave solutions and
the singular wave solutions when the modulus of the elliptic functions
approach 0 or 1. The solitary wave solutions and singular wave solu-
tions have been plotted for different values of the parameters for both
the Fractional Ostrovski equation as well as the Ostrovsky equation.
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1 Introduction

One of the hot topics of research in applied mathematics is the study of non-
linear phenomena in different physical situations. There has been a signifi-
cant progress in research on exact solutions of nonlinear evolution equations
(NLEEs) [4,5,6,8,11,20] in the past few decades. NLEEs are the governing
equations in various areas of physical, chemical, biological and geological sci-
ences. For example in physics, NLEEs appear in the study of nonlinear optics,
plasma physics, fluid dynamics etc. and in geological sciences in the dynamics
of magma.
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The important question that arises is about the integrability of these NLEEs.
Several methods have been developed for finding exact solutions. Some of
these commonly used techniques are tanh method [12], extended tanh method
[1,19], exponential function method [18], G′/G expansion method [2,16,17],
Mapping methods [9,14,15].

In this paper, we derive periodic wave solutions (PWSs) of a fractional Ostro-
vsky equation in terms of Jacobi elliptic functions (JEFs) [10] and deduce their
infinite period counterparts in terms of hyperbolic functions such as solitary
wave solutions (SWSs) and singular wave solutions using a mapping method.
We also derive trigonometric functions solutions (TFSs) as a special case of
the PWSs. The mapping method employed in this paper give a variety of
solutions which other methods cannot.

The paper is organised as follows: In section 2, we give a definition of Riemann-
Liouville fractional derivative [7], a mathematical analysis of the mapping
method and also an introduction to JEFs. In section 3, we solve the frac-
tional Ostrovski equation using the mapping method and obtain a variety of
PWSs and their special cases such as TFSs, SWSs and singular wave solutions.

2 Mathematical analysis

In this section, we give an analysis of the mapping method which will be em-
ployed in this paper.

We consider the nonlinear FPDE

F (u,Dα
t u,D

α
xu,D

2α
x u,D

3α
x u, ...) = 0, 0 < α ≤ 1. (1)

where the unknown function u depends on the space variable x and time vari-
able t.

Here, the Riemann-Liouville fractional derivatives are given by

Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α, Dα

xx
r =

Γ(1 + r)

Γ(1 + r − α)
xr−α. (2)

We consider the TWS in the form

u(x, t) = u(ξ), ξ =
xα

Γ(1 + α)
− c tα

Γ(1 + α)
, (3)

where c is the wave speed.
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Substituting eq. (3) into eq. (1), the PDE reduces to an ODE and then
we search for the solution of the ODE in the form

u(ξ) =
n∑
i=0

Aif
i(ξ), (4)

where n is a positive integer which can be determined by balancing the linear
term of the highest order with the nonlinear term. Ai are constants to be
determined.

Here, f satisfies the equation

f ′
2

= pf + qf 2 + rf 3, (5)

where p, q, r are parameters to be determined.

After substituting eq. (4) into the reduced ODE and using eq. (5), the con-
stants Ai, p, q, r can be determined.

The mapping relation is thus established through eq. (4) between the so-
lution to eqn. (5) and that of eq. (1).

The motivation for the choice of f is from the fact that the squares of the
first derivatives of JEFs satisfy eq. (5) and so we can express the solutions of
eq. (1) in terms of those functions.

Some of the properties of JEFs with modulus m(0 < m < 1) are as follows:

sn2ξ + cn2ξ = 1, dn2ξ +m2sn2ξ = 1

ns ξ =
1

sn ξ
, nc ξ =

1

cn ξ
, nd ξ =

1

dn ξ

sc ξ =
sn ξ

cn ξ
, sd ξ =

sn ξ

dn ξ
, cd ξ =

cn ξ

dn ξ

cs ξ =
cn ξ

sn ξ
, ds ξ =

dn ξ

sn ξ
, dc ξ =

dn ξ

cn ξ
(6)

The derivatives of JEFs are given by

(sn ξ)′ = cn ξ dn ξ, (cn ξ)′ = −sn ξ dn ξ, (dn ξ)′ = −m2sn ξ cn ξ. (7)

When m→ 0, the JEFs degenerate to the triangular functions, that is,

sn ξ → sin ξ, cn ξ → cos ξ, dn ξ → 1 (8)

and when m→ 1, the JEFs degenerate to the hyperbolic functions, that is,

sn ξ → tanh ξ, cn ξ → sech ξ, dn ξ → sech ξ. (9)
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3 Fractional Ostrovski equation

The Ostrovski equation [3,13](
ut − λuxxx + (u2)x

)
x

= µu (10)

is a model equation for the unidirectional propagation of weakly nonlinear long
surface and internal waves of small amplitude in a rotating fluid. In this equa-
tion, u(x, t) represents the surface of the incompressible and inviscid liquid, λ
and µ measure the effect of dispersion and rotation respectively.

The fractional Ostrovski equation can be written as

Dα
x

(
Dα
t u− λD3α

x u+Dα
x (u2)

)
= µu. (11)

Substituting the TWS given by eq. (3) into eq. (11), we obtain the ODE

−c d
2u

dξ2
− λ d

4u

dξ4
+ 2u

d2u

dξ2
+ 2

(
du

dξ

)2

= µu. (12)

Substitution of eq. (4) into the above ODE and balancing the highest order
linear term with the nonlinear terms, we get n = 1.

So, we can assume the solution of eq. (12) in the form

u(ξ) = A0 + A1f (13)

where f and its higher order derivatives are given by

f ′
2

= pf + qf 2 + rf 3, (14)

f ′′ =
p

2
+ qf +

3

2
rf 2 (15)

f (4) =
pq

2
+

(
q2 +

9

2
pr

)
f +

15

2
qrf 2 +

15

2
r2f 3. (16)

Substituting eq. (13) into eq. (12) and using eqs. (14 - 16), we arrive at an
algebraic equation in powers of f . Equating the coefficients of powers of f on
both sides leads us to a set of algebraic equations given by

−15

2
λA1r

2 + 5A2
1r = 0, (17)

−3

2
cA1r −

15

2
λA1qr + 2A2

1q + 3A0A1r + 2A2
1q = 0, (18)
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−cA1q − λA1

(
q2 +

9

2
pr

)
+ 2A0A1q + 3A2

1p = µA1, (19)

− c
2
A1p−

λ

2
A1pq + A0A1p = µA0. (20)

Eqs. (17) and (18) give

A0 =
c+ λq

2
, A1 =

3

2
λr. (21)

Substituting for A0 and A1 in eq. (19), we can easily see that µ = 0. So, the
solutions we derive in this paper are all for the case of no rotation. Eq. (20)
also gives the same A0 as given above.

So, our equation under consideration reduces to

Dα
x

(
Dα
t u− λD3α

x u+Dα
x (u2)

)
= 0. (22)

Case 1 : p = 4, q = −4(1 +m2), r = 4m2.

Eq. (5) has two solutions f(ξ) = sn2(ξ) and f(ξ) = cd2(ξ). So, we obtain
the PWSs of eq. (22) as

u(x, t) =
c− 4λ(1 +m2)

2
+ 6m2λ sn2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(23)

and

u(x, t) =
c− 4λ(1 +m2)

2
+ 6m2λ cd2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (24)

As m→ 1, eqs. (23) will give rise to the SWS

u(x, t) =
c+ 4λ

2
− 6λ sech2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (25)

Case 2 : p = 4(1−m2), q = 4(2m2 − 1), r = −4m2.

Here, eq. (5) has the solution f(ξ) = cn2(ξ). So, we have the PWS of eq.
(22) as

u(x, t) =
c+ 4λ(2m2 − 1)

2
− 6m2λ cn2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (26)

As m→ 1, eq. (26) leads us to the same SWS given by eq. (25).
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Case 3 : p = 4(m2 − 1), q = 4(2−m2), r = −4.

In this case, eq. (5) has the solution f(ξ) = dn2(ξ). So, we have the PWS of
eq. (22) as

u(x, t) =
c+ 4λ(2−m2)

2
− λ dn2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (27)

In the infinite period limit, eq. (27) leads us to the same SWS as eq. (25).

Case 4 : p = 4m2, q = −4(1 +m2), r = 4.

Thus eq. (5) has two solutions f(ξ) = ns2(ξ) and f(ξ) = dc2(ξ). So, the
PWSs of eq. (22) are

u(x, t) =
c− 4λ(1 +m2)

2
+ 6λ ns2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(28)

and

u(x, t) =
c− 4λ(1 +m2)

2
+ 6λ dc2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (29)

As m→ 0, eqs. (28) and (29) lead us to the TFSs

u(x, t) =
c− 4λ

2
+ 6λ csc2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(30)

and

u(x, t) =
c− 4λ

2
+ 6λ sec2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (31)

As m → 1, eqs. (28) gives rise to the singular wave solution along the curve
xα = c tα given by

u(x, t) =
c+ 4λ

2
+ 6λ csch2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (32)

Case 5 : p = −4m2, q = 4(2m2 − 1), r = 4(1−m2).

Here, eq. (5) has the solution f(ξ) = nc2(ξ). So, the PWS of eq. (22)
is,

u(x, t) =
c+ 4λ(2m2 − 1)

2
+ 6λ(1−m2) nc2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(33)
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which as m→ 0 gives rise to the TFS (31).

Case 6 : p = −4, q = 4(2−m2), r = 4(m2 − 1).

Thus eq. (5) has the solution f(ξ) = nd2(ξ). In this case, the PWS of eq.
(22) is,

u(x, t) =
c+ 4λ(2−m2)

2
+ 6λ(m2 − 1) nd2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(34)

which gives rise to only trivial solutions in the limiting cases.

Case 7 : p = 4, q = 4(2−m2), r = 4(1−m2).

Here, eq. (5) has the solution f(ξ) = sc2(ξ). So, the PWS of eq. (22) is,

u(x, t) =
c+ 4λ(2−m2)

2
+ 6λ(1−m2) sc2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(35)

which gives the solution (31) when m→ 0.

Case 8 : p = 4(1−m2), q = 4(2−m2), r = 4.

Thus eq. (5) has the solution f(ξ) = cs2(ξ). In this case, the PWS of eq.
(22) is,

u(x, t) =
c+ 4λ(2−m2)

2
+ 6λ cs2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (36)

As m→ 0, eq. (36) will give rise to the TFS

u(x, t) =
c+ 4λ

2
+ 6λ cot2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(37)

and as m→ 1, eq. (36) will degenerate to the singular wave solution (32).

Case 9 : p = 4, q = 4(2m2 − 1), r = −4m2(1−m2).

Here, eq. (5) has the solution f(ξ) = sd2(ξ). Thus the PWS of eq. (22)
is,

u(x, t) =
c+ 4λ(2m2 − 1)

2
− 6λm2(1−m2) sd2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(38)

which gives trivial constant solutions in both limiting cases.
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Case 10 : p = −4m2(1−m2), q = 4(2m2 − 1), r = 4.

Thus eq. (5) has the solution f(ξ) = ds2(ξ). In this case, the PWS of eq.
(22) is,

u(x, t) =
c+ 4λ(2m2 − 1)

2
+ 6λ ds2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
. (39)

As m→ 0, eq. (39) will lead to the TFS

u(x, t) =
c− 4λ

2
+ 6λ csc2

(
xα

Γ(1 + α)
− c tα

Γ(1 + α)

)
(40)

and as m→ 0, eq. (39) will give rise to the singular wave solution (32).

4 Conclusion

The fractional Ostrovski equation has been solved using a mapping method
which involves JEFs. When the modulus m of the elliptic functions approaches
0, it gives rise to TFSs and when m approches 1, it leads to SWSs as well as
singular wave solutions. However, since the solutions are in terms of squared
JEFs, the equation under consideration cannot lead to shock wave solutions.
Also, the solutions obtained are for the case of no rotation. The effect of
rotation is worth investigating in the future.

Figure 1: Solitary wave solution (25) with α = 0.5, λ = 0.5, c = 2
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Figure 2: Solitary wave solution (25) with α = 1, λ = 0.5, c = 2

Figure 3: Singular wave solution (32) with α = 0.5, λ = 1, c = 1
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Figure 4: Singular wave solution (32) with α = 1, λ = 1, c = 1
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