Int. Journal of Math. Analysis, Vol. 7, 2013, no. 13, 625 - 635 HIKARI Ltd, www.m-hikari.com

Comments on 'Fixed Point Theorems for φ -Contraction in Probabilistic Metric Space'

Abderrahim Mbarki

National school of Applied Sciences P.O. Box 669, Oujda University, Morocco MATSI Laboratory ambarki@ensa.univ-oujda.ac.ma

Abdelhak Benbrik

Department of Mathematics
Oujda university, 60000 Oujda, Morocco
MATSI Laboratory
benbrik@sciences.univ-oujda.ac.ma

Abedelmalek Ouahab

Department of Mathematics Oujda university, 60000 Oujda, Morocco MATSI Laboratory ouahab05@yahoo.fr

Wafa Ahid

Department of Mathematics
Oujda university, 60000 Oujda, Morocco
MATSI Laboratory
ahid.wafa@gmail.com

Tahiri Ismail

Department of Mathematics
Oujda university, 60000 Oujda, Morocco
MATSI Laboratory
tahiri.ismail@mail.com

Abstract

In this work we have shown that an affirmative answer was already given in [1, 5] to the question raised in [4] and have extended a fixed point theorem by L. Ćirić [4] to a larger class of PM spaces. In the final part of the paper we have shown that the result can be yet improved by a common fixed point theorem for a semigroups of φ -probabilistic contractions.

Mathematics Subject Classification: Primary 47H10. Secondary 54H25, 34B15

Keywords: Fixed point, Probabilistic metric space, φ -probabilistic contractions

1 Introduction

The notion of φ -probabilistic contractions were first defined and studied by Mbarki et al. [1, 5]. Moreover, in [5] he found that the φ' - contraction mappings are a particular type of φ -probabilistic contractions and gave the relationship between φ and φ' .

In this paper, we have shown that an affirmative answer was already given in [1, 5] to the question "Whether the Banach fixed point principle for k-probabilistic contractions is also true for φ -probabilistic contractions without the hypothesis that $\varphi \in \left\{ \varphi : [0, \infty) \to [0, \infty) \middle| \sum_{i=0}^{\infty} \varphi^i(t) < +\infty \text{ for all } t > 0 \right\}$? "raised by L. Ćirić in [4]. This is done with the help of "A Picard iterates of φ -probabilistic contractions is a Cauchy sequence iff it is bounded sequence". In particular, we extend a recent result of L. Ćirić [4] who formulated a new general class of φ -probabilistic contractions.

2 Basic concepts and lemmas

we briefly recall some definitions and known results in probabilistic metric space. As in [6] a nonnegative real function f defined on $[0, \infty]$ is called a distance distribution function (briefly, a d.d.f) if it is nondecreasing, left continuous on $(0, \infty)$, with f(0) = 0 and $f(\infty) = 1$. The set of all d.d.f's will be denoted by Δ^+ ; and the set of all $f \in \Delta^+$ for which $\lim_{s\to\infty} f(s) = 1$ by D^+ .

Example 2.1 For $a \in [0, \infty]$, the unit step at a is the function ϵ_a defined as

$$\epsilon_a(x) = \begin{cases} 0, & \text{if } x \le a, \text{ for } 0 \le a < \infty \\ 1, & \text{if } x > a \end{cases}$$

and

$$\epsilon_{\infty}(x) = \begin{cases}
0, & \text{if } 0 \le x < \infty, \\
1, & \text{if } x = \infty
\end{cases}$$

Definition 2.2 We say that τ is a triangle function on Δ^+ if assigns a d.d.f. in Δ^+ to every pair of d.d.f's in $\Delta^+ \times \Delta^+$ and satisfies the following conditions:

$$\begin{array}{rcl} \tau(F,G) & = & \tau(G,F), \\ \tau(F,G) & \leq & \tau(K,H) & \textit{whenever } F \leq K, G \leq H, \\ \tau(F,\epsilon_0) & = & F, \\ \tau(\tau(F,G),H) & = & \tau(F,\tau(G,H)). \end{array}$$

A t-norm is a binary operation on [0,1] which is associative, commutative, nondecreasing in each place and has 1 as identity. Among the most important Examples of t-norms we point out:

$$T_L(a,b) = \max\{a+b-1,0\}, \quad T_n(a,b) = ab \text{ and } T_M(a,b) = Min(a,b),$$

and for any t-norm T we have $T \leq T_M$. If more T is left-continuous the operation $\tau_T : \Delta^+ \times \Delta^+ \to \Delta^+$ such that

$$\tau_T(f,g)(t) = \sup\{T(f(u),g(v)) : u+v=t\},\$$

is a triangle function.

Lemma 2.3 [6] If T is continuous, then τ_T is continuous.

If T is a t-norm, $x \in [0,1]$ and $n \in \mathbb{N}$ then we shall write

$$T^{n}(x) = \begin{cases} 1 & \text{if } n = 0, \\ T(T^{n-1}(x), x) & \text{otherwise.} \end{cases}$$

Definition 2.4 A t-norm T is of H-type if the family $(T^n(x))_{n\in\mathbb{N}}$ is equicontinuous at the point x=1, i.e.,

$$\forall \epsilon \in (0,1) \ \exists \lambda \in (0,1): \ t > 1 - \lambda \Rightarrow T^n(t) > 1 - \epsilon \ \text{for all} \ n \ge 1.$$

A trivial Example of a t-norm of H-type is T_M for more Examples (see, e.g., [2]).

Definition 2.5 A probabilistic metric space (briefly,PM space) is a triple (M, F, τ) where M is a nonempty set, F is a function from $M \times M$ into \triangle^+ , τ is a triangle function, and the following conditions are satisfied for all p, q, r in M,

- (i) $F_{pq} = \epsilon_0$ iff p = q,
- (ii) $F_{pq} = F_{qp}$,
- (iii) $F_{pq} \geq \tau(F_{pr}, F_{rq})$.

If $\tau = \tau_T$ for some t-norm T, then (M, F, τ) is called a Menger space.

Let (M, F) be a probabilistic semimetric space (i.e. (i) and (ii) are satisfied). The (ϵ, λ) -topology in (M, F) is generated by the family of neighborhoods

$$\mathcal{N} = \{ N_p(\epsilon, \lambda) : p \in M, \epsilon > 0 \text{ and } \lambda > 0 \},$$

where

$$N_p(\epsilon, \lambda) = \{ q \in M : F_{pq}(\epsilon) > 1 - \lambda \},$$

and if the triangle function τ is continuous, then the (ϵ, λ) -topology is a Hausdorff topology [6].

Here and in the sequel, when we speak about a probabilistic metric space (M, F, τ) , we always assume that τ is continuous and M be endowed with the (ϵ, λ) -topology.

Definition 2.6 Let (M, F, τ) be a PM space. Then

- (i) A sequence (x_n) in M is said to be convergent to $x \in M$ (we write $(x_n) \to x$) if for any given $\epsilon > 0$ and $\lambda > 0$, there exists a positive integer $N = N(\epsilon, \lambda)$ such that $F_{x_n x}(\lambda) > 1 \epsilon$ whenever $n \geq N$.
- (ii) A sequence (x_n) in M is said to be strong Cauchy sequence if for any $\epsilon > 0$ and $\lambda > 0$, there exists a positive integer $N = N(\epsilon, \lambda)$ such that $F_{x_n x_m}(\lambda) > 1 \epsilon$ whenever n, m > N.
- (iii) A PM space (M, F, τ) is said to be complete if each Cauchy sequence in M is convergent to some point in M.

Definition 2.7 Let A be a nonempty subset of a PM space (X, F, τ) . The probabilistic diameter of A is the function D_A defined on $[0, \infty]$ by

$$D_A(s) = \begin{cases} \lim_{t \to s^-} \varphi_A(t) & \text{for } 0 \le s < \infty \\ 1 & \text{for } s = \infty, \end{cases}$$

where

$$\varphi_A(t) = \inf\{F_{pq}(t)|p,q \quad in \quad A\}.$$

It is immediate that D_A is in \triangle^+ for any $A \subseteq X$, and for all p, q in $A, F_{pq} \ge D_A$. A nonempty set A in a PM space is bounded if D_A is in D^+ .

3 φ -probabilistic contraction mapping

Throughout this paper, (M, F) be a probabilistic semimetric space and f is a selfmap on M. Power of f are defined by $f^0x = x$ and $f^{n+1}x = f(f^nx)$, $n \ge 0$. When there is no risk of ambiguity, we will use the notation $x_n = f^nx$, in particular $x_0 = x$, $x_1 = fx$. The set $\{f^nx : n = 1.2.3...\}$ is called an orbit

(starting at x) and denoted $\mathcal{O}_f(x)$.

The letter Ψ denotes the set of all function $\varphi:[0,\infty)\to[0,\infty)$ such that

$$\varphi(0) = 0$$
, $\varphi(t) < t$ and $\liminf_{r \to t^+} \varphi(r) < t \quad \forall t > 0$.

We denote by Φ the set of functions $\phi:[0,\infty)\to[0,\infty)$ such that

$$\phi(0) = 0$$
, $\phi(t) < t$ and $\limsup_{r \to t} \phi(r) < t \quad \forall t > 0$.

Clearly, $\Phi \subset \Psi$.

The letter Ω will be reserved for the set of functions satisfying:

 (Ω_1) $\delta:[0,\infty]\to[0,\infty]$ is lower semi-continuous from the left, nondecreasing and $\delta(0)=0$;

 (Ω_2) For each $t \in (0, \infty)$, $\delta(t) > t$ and $\delta(+\infty) = +\infty$.

Given a function : $\varphi:[0,\infty)\to [0,\infty)$ such that $\varphi(t)< t$ for t>0, and a selfmap f of a probabilistic semimetric space (M,F), we say that f is φ -probabilistic contraction if

$$F_{fpfq}(\varphi(t)) \ge F_{pq}(t).$$
 (1)

for all $p, q \in M$ and t > 0,

Follows [5], we also have the following Definition

Definition 3.1 Let (M, F, τ) be a PM space. For $\delta \in \Omega$, a mapping $f: M \to M$ is called δ -probabilistic contraction in the sense of Mbarki if

$$F_{fpfq}(t) \ge F_{pq}(\delta(t)).$$
 (2)

for all $p, q \in M$ and t > 0.

Next, we show the following

Lemma 3.2 Every φ -probabilistic contraction with $\varphi \in \Phi$ is δ -probabilistic contraction in the sense of Mbarki

Proof. Let f be a φ -probabilistic contraction with $\varphi \in \Phi$. By [3, Lemma 1], there exists a strictly increasing and continuous function $\phi : [0, \infty) \to [0, \infty)$ such that

$$\varphi(t) < \phi(t) < t$$

for all t > 0. Hence, it is easy to check that f is a δ -probabilistic contraction in the sense of Mbarki where δ defined as

$$\delta(t) = \begin{cases} \phi^{-1}(t), & \text{if } 0 \le t < \lim_{t \to \infty} \phi(t), \\ +\infty, & \text{if } t \ge \lim_{t \to \infty} \phi(t) \end{cases}$$

We shall make frequent use of the followings Lemmas

Lemma 3.3 [4] If a function $\varphi \in \Psi$, then

$$\lim_{n\to\infty} \varphi^n(t) = 0 \text{ for all } t > 0.$$

Lemma 3.4 [4] Let (M, F, τ) be a PM space where $RanF \subset D^+$. Let $x, y \in M$, if there exist $\varphi \in \Psi$ such that

$$F_{xy}(\varphi(t)) = F_{xy}(t)$$
 for all $t > 0$,

then x = y.

4 Fixed point theorems

We begin with two auxiliary results concerning the orbit of φ -probabilistic contraction mappings.

Lemma 4.1 Let (M, F, τ) be a PM space such that $RanF \subset D^+$. Every Cauchy sequences is bounded sequence.

Proof. Let $\{x_n\}$ be a Cauchy sequence. Given $\epsilon > 0$, then for t > 0 there is N such that

$$F_{x_n x_m}(t) > 1 - \epsilon, \tag{3}$$

whenever $n, m \geq N$.

Since $RanF \subset D^+$, there exists t' > t such that

$$F_{x_n x_m}(t') > 1 - \epsilon \text{ for all } n, m < N.$$
(4)

So from (3) and (4), we have

$$F_{x_n x_m}(t') \geq F_{x_n x_m}(t')$$

 $> 1 - \epsilon,$

for all $n, m \in \mathbb{N}$. So

$$\varphi_{\mathcal{O}(x)}(t') > 1 - \epsilon.$$

Next, for s > t'

$$\varphi_{\mathcal{O}(x)}(s') \geq \varphi_{\mathcal{O}(x)}(t') > 1 - \epsilon.$$

for all s' such that s > s' > t'. Letting $s' \to s$ we obtain

$$D_{\mathcal{O}(x)}(s) > 1 - \epsilon.$$

Since this for an arbitrary $\epsilon > 0$, there is s > 0 such that

$$D_{\mathcal{O}(x)}(s) > 1 - \epsilon.$$

Hence

$$D_{\mathcal{O}(x)}(s) \to 1 \text{ as } s \to \infty.$$

This completes the proof.

Conversely, we have the following

Lemma 4.2 Let (M, F, τ) be a PM space where $RanF \subset D^+$ and f is a φ -probabilistic contraction mapping on M with $\varphi \in \Psi$. If the orbit $\mathcal{O}_f(x)$ for some $x \in M$ is bounded, then $\{f^n(x)\}$ is a Cauchy sequence.

Proof. Let $n, m \in \mathbb{N}$ such that m > n and t > 0.

$$F_{x_n x_m}(\varphi^n(t)) \geq F_{x_{n-1} x_{m-1}}(\varphi^{n-1}(t))$$

$$\vdots$$

$$\geq F_{x_0 x_{m-n}}(t)$$

$$\geq D_{\mathcal{O}_f(x)}(t).$$

Let $\lambda > 0$ and $\epsilon \in (0,1)$ be given, since $D_{\mathcal{O}_f(x)}(t) \to 1$ as $t \to \infty$ there exist $t_0 > 0$ such that

$$D_{\mathcal{O}_f(x)}(t_0) > 1 - \epsilon.$$

Since $\varphi^n(t_0) \to 0$ as $n \to \infty$, there is $N \in \mathbb{N}$ such that

$$\varphi^n(t_0) < \lambda$$
 whenever $n \ge N$,

then

$$F_{x_n x_m}(\lambda) \geq F_{x_n x_m}(\varphi^n(t_0))$$

$$\geq D_{\mathcal{O}_f(x)}(t_0)$$

$$> 1 - \epsilon.$$

Thus we proved that for each $\lambda > 0$ and $\epsilon \in (0,1)$ there exists a positive integer N such that

$$F_{x_n x_m}(\lambda) > 1 - \epsilon$$
 for all $n, m \ge N$.

This means that $\{x_n\}$ is a Cauchy sequence.

As consequence of Lemma 4.1 we have

Lemma 4.3 Let (M, F, T) be a Menger space where $RanF \subset D^+$ and f is a φ -probabilistic contraction mapping on M with $\varphi \in \Psi$. If the t-norm T is the H-type, then for all $x \in M$, the orbit $\mathcal{O}_f(x)$ is bounded.

Proof. Using the same arguments as in the proof of [4, Theorem 12], we show that $\{x_n\}$ is a Cauchy sequence. Hence and by Lemma 4.1, we concluded that $\mathcal{O}_f(x)$ is bounded.

Next, recall the main result of [1]

Theorem 4.4 Let (M, F, τ) be a complete PM space where $RanF \subset D^+$ and f is a δ -probabilistic contraction mapping on M in the sense of Mbarki. If the orbit $\mathcal{O}_f(x)$ for some $x \in M$ is bounded, then f has a unique fixed point z, moreover, the sequence $\{f^nx\}$ converges to z.

As consequences of Theorem 4.4, Lemma 3.2 and Lemma 4.3, we have the following

Corollary 4.5 Let (M, F, T) be a complete Menger space where $RanF \subset D^+$ under a t-norm T of H-type and f is a φ -probabilistic contraction mapping on M with $\phi \in \Phi$. Then f has a unique fixed point z, moreover, the sequence $\{f^nx\}$ converges to z.

In view of above Corollary it is very much clear that Theorem 4.4 give an affirmative answer raised by L. Ćirić in [4]. We also have the following result.

Theorem 4.6 Let $Let(M, F, \tau)$ be a complete PM space where $RanF \subset D^+$ and f is a φ -probabilistic contraction mapping on M with $\varphi \in \Psi$. If the orbit $\mathcal{O}_f(x)$ for some $x \in M$ is bounded, then f has a unique fixed point z, moreover, the sequence $\{f^nx\}$ converges to z.

Proof. Let $x \in M$ such that $\mathcal{O}_f(x)$ is a bounded sequence, by Lemma 4.2 $\{x_n\}$ is a Cauchy sequence. Since (M, F, τ) is complete, $\{x_n\}$ converges to some $z \in M$.

Now we shall show that z is a fixed point of f.

Let t > 0, then

$$F_{x_n f z}(\varphi(t)) \ge F_{x_{n-1} z}(t),$$

therefore

$$F_{x_n f z}(t) \ge F_{x_{n-1} z}(t),$$

letting $n \to \infty$, we get z = fz.

To complete the proof we need to show that z is unique. Indeed, let u be another fixed point of f and t > 0 then

$$F_{uz}(t) \ge F_{uz}(\varphi(t))$$
 and $F_{fufz}(\varphi(t)) \ge F_{uz}(t)$,

thus $F_{uz}(\varphi(t)) = F_{uz}(t)$. Hence by Lemma 3.4 u = z.

Remark 4.7 Note that the hypothesis "PM space (M, F, τ) has the property that $RanF \subset D^+$ " is a necessary condition for the uniqueness of fixed points when they exist. Indeed consider $M = \{p, q\}$ and $F_{pq} = \frac{1}{2}\epsilon_0 + \frac{1}{2}\epsilon_{\infty}$, then the identity function on M is probabilistic contraction mapping on M with two fixed points.

- The condition-hypothesis that there exist $x \in M$ such that $\mathcal{O}_f(x)$ is bounded it is necessary condition of the existence of fixed point as the following Sherwood's Example [7] shows

Example 4.8 Let G be the distribution function defined by

$$G(t) = \begin{cases} 0, & \text{if } t \le 4, \\ 1 - \frac{1}{n}, & \text{if } 2^n < t \le 2^{n+1} & n > 1. \end{cases}$$

Consider the set $M = \{1, 2, ..., n, ...\}$ and define F on $M \times M$ as follows

$$F_{n,m+n}(t) = \begin{cases} 0, & if \quad t \leq 0, \\ T_L^m(G(2^n t), G(2^{n+1} t), ..., G(2^{n+m} t)), & t > 0. \end{cases}$$

Then $(X; F; T_L)$ is a complete PM space and the mapping g(n) = n + 1 is φ -contractive with $\varphi(t) = \frac{1}{2}t$. But g is fixed point free mapping. Since there does not exist n in X, such that $\mathcal{O}_g(x)$ is bounded.

As direct consequences of Theorem 4.6 and Lemma 4.3, we obtain the following.

Corollary 4.9 [4, Theorem 12]. Let (M, F, T) be a complete Menger space where $RanF \subset D^+$ under a t-norm T of H-type and f is a φ -probabilistic contraction mapping on M. Then f has a unique fixed point z, moreover, the sequence $\{f^nx\}$ converges to z.

5 Common fixed point Theorem

Let S be a semigroup of selfmaps on (M, F, τ) . For any $x \in M$, the orbit of x under S starting at x is the set $\mathcal{O}(x)$ defined to be $\{x\} \cup Sx$, where Sx is the set $\{g(x) : g \in S\}$. We say that S is left reversible if, for any f, g in S, there are a, b such that fa = gb. It is obvious that left reversibility is equivalent to the statement that any two right ideals of S have nonempty intersection. Finally, we say that S is φ -probabilistic contraction if there exists a function φ such that for each g in S, g is φ -probabilistic contraction.

Theorem 5.1 Suppose S is a left reversible semigroup of selfmaps on M such that the following conditions (i) and (ii) are satisfied

- i. There exists x in M such that the orbit $\mathcal{O}(x)$ is bounded;
- ii. S is φ -probabilistic contraction with $\varphi \in \Psi$;

then S have a unique common fixed point z and, moreover, the sequence $\{g^nx\}$ converges to z for each g in S.

Proof. It follows from Theorem 4.6 that each g in S has a unique fixed point z_g in M and for any $x \in M$, the sequence of iterates $(g^n x)$ converges to z_g . So, to complete the proof it suffices to show that $z_f = z_g$ for any $f, g \in S$. Let n be an arbitrary positive integer. The left reversibility of S shows that are a_n and b_n in S such that $f^n a_n = g^n b_n$, then

$$F_{z_f z_g} \ge \tau(F_{z_f f^n a_n x}, F_{q^n b_n x z_g}), \tag{5}$$

and

$$F_{z_f f^n a_n x} \ge \tau(F_{z_f f^n x}, F_{f^n x f^n a_n x}). \tag{6}$$

Next we shall show that $F_{f^n x f^n a_n x} \to \epsilon_0$ as $n \to \infty$.

Let $\lambda > 0$ and $\epsilon \in (0,1)$ be given, since $\mathcal{O}(x)$ is bounded, then there is t > 0 such that

$$D_{\mathcal{O}(x)}(t) > 1 - \epsilon$$

and since $\varphi^n(t) \to 0$ as $n \to \infty$ there exists a positive integer N such that

$$\varphi^n(t) > \lambda$$
 whenever $n \geq N$.

So

$$F_{f^n x f^n a_n x}(\lambda) \geq F_{f^n x f^n a_n x}(\varphi^n(t))$$

$$\geq F_{x a_n x}(t)$$

$$\geq D_{\mathcal{O}(x)}(t)$$

$$> 1 - \epsilon.$$

This means that $F_{f^nxf^na_nx} \to \epsilon_0$ as $n \to \infty$. Letting $n \to \infty$ in the inequality (6) we get $F_{z_ff^na_nx} \to \epsilon_0$.

Likewise, we also have $F_{g^nb_nxz_g} \to \epsilon_0$, which implies that, as $n \to \infty$ in (5) we obtain that $z_f = z_g$. This completes the proof of Theorem 5.1.

References

- [1] El Amrani, M.; Mbarki, A.; Mehdaoui, B. Nonlinear contractions and semigroups in general complete probabilistic metric spaces. Panamer. Math. J. 11 (2001), no. 4, 79–87.
- [2] Hadžić, O., Fixed point Theorems for multivalued mappings in probabilistic metric spaces. Fuzzy Sets and Systems 88 (1997), no. 2, 219–226.

- [3] Jachymski, Jacek R., Equivalence of some contractivity properties over metrical structures. Proc. Amer. Math. Soc., 125, 8, (1997), pp. 2327–2335.
- [4] Ljubomir. Ćirić, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Analysis. 72, (2010), pp. 2009–2018.
- [5] Mbarki, A., Quelques aspects de la théorie du point fixe pour les semigroupes, Thése de Doctorat en Sciences, Faculté des Sciences, Oujda, Maroc, No. 36/01.
- [6] Schweizer, B.; A. Sklar, Probabilistic metric spaces. North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York, (1983).
- [7] Sherwood H., Complete probabilistic metric spaces. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971/72), 117–128.

Received: October, 2012