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Abstract

This paper is concerned with some asymptotic properties of maxi-
mum likelihood estimator of multivariate parameter for stable nonlinear
autoregresssive .Under suitable assumptions,the consistency normality
and the rate of convergence in distribution (O(n~'/2)) are settled. This

rate is the same as in idd case.
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1 Introduction
Let (X,)nen beamnon linear autoregressive process defined by:

Xo=20, X 1=01.,...X g=2 411
Xy = f(Xn—len—% 70) +én
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X0, T_1,...,T_gr1,are real numbers, the parameter 6 lies on
. !
the compact parametric set © € R?.
(en)nen 1s a sequence of unobserved real valued random variables

on the probability space (2, A, P) . (X,)nen are observed.

We are interested by asymptotic properties of the maximum likelihood
estimators.

Under suitable assumptions, the consistency, the asymptotic
normality and the rate of convergence in distribution

o(n~Y/2) are settled. This rate is the same that in i-d-d case.

Let us denote (Y,,),en the d.dimensional random vector
Y, =" (X0, X1, ooy Xn—ds1)

Yo =yo =" ($0,$71, -'-,flf—dﬂ)

e="(1,0,....,0) € R

Y, = F(Y,- 70 n
Therefore { ( 10)+e

Yo =wo
where F(y,0) = (f(x1,...,24,0), 21, ..., Tg_1)
y =" (21, ..., tq)

P,y the distribution of (Y,,),en on RY of the chain (Y;,)nen
with Yy = yo.The transition probability of (Y},),en is defined by:

P(y,dz) = g(za — f(y,0))dzq0y,3dza—1...0 101 (d21)

0, 1s the Dirac measure in x.
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Part 1

Probabilistic Study

2 Assumptions (HP)

(1) (en)nen are real valued , i.d.d , centred random variables defined

on the the space probability (2, A, P) with distribution G admitting a
density

g with respect to Lebesgue measure on R.
(ii) g is positive on R
(iii) A positive real number § can be found such that

/ le]’ g(e)de <
R

(iv) f: R*x © — R is continous , satisfies the following condition:

There exist two positive real numbers aq, as, ..., aq verifying
d

Z~ L < p? such that for any vector 6
1=

f(z,0) < M + ay|z1] + ag |za| + ... + aq|z4]

(v) There exist two real numbers Ay and ag such that

/ exp(Ag |g|*)g(e)de < o0
R
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3 Assumptionsl (HP)

(1) (en)nen are real valued , idd, centred random variables defined on

the probability space (2, A, P) with distribution G admitting a

density g with respect to the Lebesgue measure on R.
(ii) gis positive on R.
(iii) Limic—ocg(e) =0

(iv) A positive number § can be found such that

/\dég(e)dg < 00

4 Theoreml

Under assumptions (HP), the markov chain (Y},),en is ergodic,
aperiodic, Harris recurrent with an invariant measure of probability
vgequivalent to Lebesgue measure [®f RA.

Moreover this invariant measvre vghas a finite moment of order 9.

4.1 Proof

Condition(C) [Mok]

For any compact in K in R%nd any borelian set B in R?
with [®4(B) > 0,there exists an integer ng such that
inf e P™(y, B) > 0

We use the framework of [Mokh] .

The transition probability satisfies [M ok]condition C.
Let k a positive integer and Z,, = Y,4
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The transition probability P*¢(., dz)of thischain is equivalent

to the Lebesgue measure 199,

If k is such that (kd + 1)°~1p*% < 1.

(Zn)nen is an Harris recurrent, ergodic and

geometrically ergodic chain with stationnary distribution
equivalent to the Lebesgue measure and admitting a finite moment

of order 4.

4.2 Definition

Let v a positive o — finite measure on (E, Bg) a Markov chain (Z,),ey on

(E, Bg) is said to
(i) be v —irreductible if :
VB € Bpv(B) <0 — P(U,cn(Zn € B)/Zy=2)>0,Vz € E

(ii) be Harris recurrent if

vg(B) >0 — P(U,en(Zn€ B)/Zy =x) =1,Vz € &

Then(Yy)nen can be shown to be an harris recurrent
aperiodic chain.

Using the Orey theorem [Revuz|,the geometric ergodicity
of the chain can be proved in the following way:

Given any positive integer n, let us set:
n=qd+r;0<r<d-1

|7 — o] < 2= v = || Pp, = oo <

[P {2 = well <

<P | P — o] < Kpt < (),
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5 Proposition

(i) Under assumptions (HP), for all a(0 < o < §),

there exist positive real constants M,, p, Co(0 < p < 1) such that :
E[[Ya)II°] < Mo+ Cap™ ly[|”

(ii) If there exist two positive constants «, 3 such that

E [exp (3 |e1]”] < 0o, then there exists a constant A(0 < A < ) such that :

E [exp A |[Y5()]|*] < Blexp ACup™ |lyl|)

B is a constant depending on ¢;

5.1 The proof is technical

6 Assumptions (HS)

(1) (en)nen are, i.i.d real valued , centred variables admitting
a density strictly, positive on R

(ii) lim - g(e) =0

(iii) | \5]2Tg(8) < 00 (2r>d+1)

(iv) The density g is continously derivable with derivative g'.

9'(e)

5
oo | 9(e)de is finite

We suppose that I’ = fR

2
Weset: 1@ = [, g(e)de

AG)
g(e)




(v) There exist two positive real constants C' and p such that

/

S

(u) = £(0)] < Clu—v] (L4 |uP™ + JoP*)

(u) = £ ()] < Clu= o (1 + [ul” + oP)

For any x in R? the function f of the vector parameter

@|

@ [

0= (0,...00) has continous and bounded partial

derivatives in ®

(vi) For any x in R, the function f of the vector parameter

0 = (01, ...,04) has continous and bounded partial derivatives

n®

(vii) Let Df(z,0) be the gradient vector t(g—gl(x, 0), ..., 6‘991; (x,0))

[ Df(x,0)'Df(x,0)dx is not singular.

(vii) There exist two positive real numbers C and ¢(2¢ < J)such that

a-|| Df(z,0)| < C(1+ |l=[|)
b-|Df(x,0) = Df(z, &)|| < Cll6 — 0"l (1 + [[«]|)

||l denote the euclidian norm in R¥.

(ix) For any x in R? | f(z,0) has a function of the vector parameter ¢

has continous and partial derivatives .

Let D?f the hessian of f. We assume the following conditions:

ID2f (2, )] < C(1 + [|=[|)
|1D?f(x,0) = D*f(2,0) | < C |6 — 0| (1 + [[«]|)

1211
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(x) For any 6 in ®, IM > 0, f(6, M) the function of the vector

x =" (21, %9, ....,74) has partial derivatives in R?, There exists
a positive real number p(0 < p < 1), such that for any
(z,0) in R? x © the following relation holds:

d
2 =1

§L<x,9>) < pf

(xi) There exist two real numbers p;,and C(p;) such that

for any 6 € ©, \, positive real number and 7 vector in R¥

with ||7]| = 1, we have:

E[A%(0,7) 101 (A0, A7) + (1 = p1)1(1.00) (A(8, A7) /Y1 = y]
> NC(py)

where AONT) = |f(Yars1,0 + A7) — f(Yar11,0)|

and d* = sup(d, d’).

7 Theorem?2

Under assumptions (HP),(HS), the sequence of maximum
likelihood estimators (MLE) (9n)n€ N verifies :

(i) (0n)nen is consistent

(i) Lyo(v/n(bn —6)) — N(0,1;").

Iy =19E,, [Df(.,0)'Df(.,0)]
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(iii) Large deviation inequality:

For all real positif number + any compact set in R,
there exist three positive real constants A;,A, |

such that:

SUPg x i P,y ( 6, — QH > ) < Ay exp —Ayyn

(iv) There exists a positive real number B such that:

sup ®xKP9,yo [\/5101/2

0, — GH > B\/Logn] = 0(%)

7.1 Proof

Let  Z,(t) = Hn g(Xi—f(Yi—1,0+t/v/n))

=1 g(Xi—f(Vi-1,0)) be the random

likelihood ratio for t such that 6 +¢ € ©.

We achieved the goals using the well known method

of Ibragimov and Khas’minski.

We need the convergence of finite dimensional distributions

of the process Z,(t).(Lemma 8.2)

Then a majoration of the trajectories of process (lemma 8.3)
and their modulus of continuity (Lemma 3).

The Theorem is then a consequence of th 10.1 p104

[I.A Ibragimov and Khas'minski] .
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7.2 Lemma

Under the assumptions (HS),
LogZn(t)-2= >1_y < Df(Y;1,0),0)L(e;) +3 < Iot,t >—, 0

uniformly in 6 € ©, and yo € Ky

7.2.1 Proof

It is sufficient to show that uniformly on © x Ky x N, the random function:

™ — ¢j(0,7%) =2 l;g&jf_(ﬁg_’el;)) ) is differentiable in quadratic mean

at the point 7% =0 for P,s.

[G.Roussas.Contiguity of probability measures] .

7.3 Lemma

Under the assumptions (HS), there exists a positive real constant C such
for any 0 in ©, y in Ky and t such that 6 + ﬁ € 0,
Eoy | Z3(8)] < exp—C|lt)?

7.3.1 Proof

The proof is technical.
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Part 11

Speed of convergence

8 Speed of M.L.E Convergence

8.1 Notations

Let 1(.,.,.) the function defined by
I(,,): RxR'x© - R
l(z,y,0) = Logg(z — f(y,0))

For i=1,2,... , we set [;(w, 0) = [(X;(w), Y;_1(w), 0))

l’(x,y,é’) (380}1 (x y7‘9)7 aag (I Y, 0))
l”(l’,y, 0) = (d@dzdlg (ZE y7‘9))1j 1,...k

L(0) = 1'(Xi, Y1, 0)

li”(e) = (36(??919 (XHY 179))13 1,...k

Df(y,0) = (5=(v,0), ... 5L (y,0)).
We have :l'(x,y,0)l'(z,y,0) = &

and l/(xmya 9) = %('x - f(y> 9) Df(y> 9)
Iy = Ey, V(. 0)7(.,0))] = —Ey, [I(.,0)]

We denote
m(z,y.0) = I, U (x,y,0)
h(z,y,0) = I;l/zl”(x, y,0)1, 2

I is the identity operator in R?

= Jn i Ly PEOh = J2 LIy i)+ 1)
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hn = S (1, P 0) I+ )

Let Sy the set of symetric matrix on R¥ and

7 the bijection : RY x Sy — R¥(@+3)/2 = Rd"

U; 1= ]_, d
Wj(4),1(i) 1=d+1,..d*

(u,v) — 7(u,v) = {

where (j(i),1(7)) is the solution of d* + j + w =1, j<l.

Conversly , given the RY vector r,u(r) = (ry,...,7a)
W(r) is the symetric matrix , where te term of the j-th

row and 1 .th colomn (j <) is

wj = r;, and i:d*+j+@‘

We denote Tn(w, 0) = m(my,(w, 0), hy(w, ).
C(0) = Eggu, [m(m(.,0),h(.,0))m(m(.,0),h(.,0)].

Given a set A in R and a positive real number B,

AP ={r/|r —s|| < 8 for somes € A},
A8 = C(C AP,

Given A in R | Z(A) is the cylinder AxRY ~¢ C R,
Fora > 0,A C R*, L,(a) = {r € R*/||r|| < a '/?n'/*}

Lt,(a) = {7“ € RV /|Ir|| < a*1/2n1/4}
We set :

An(a) = A Ln(a)
Ar(a) ={r e R* |lr — s|| < a*n~'/? Is||> for s € An(a)}

n
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8.2 Theorem

Under assumptions (HP),(HS), the sequence of maximum
likelihood estimators (9n)n€ ~ satisfies the following property:
For any compact set K in R? | there exists a positive number

C(K) such that for every convex set in R?

suppeo yex | Poy(I,*(0n — 0) € E) — o(E)| < <L)

Where @ is the standard normal distribution on R? , N (0, I).

I is the standard identity operator on R?.

8.3 Proof of the theorem

The result of the theorem derives mainly from Berry Essen Bound

of suitably normalized random vector sums and this following expansion:

Ui Lt h0n) = G2 Sl G0) + 5 S50 B (0)v/n(Bn — 0)+
+ﬁ2¢:1fo (" 9+(9n—9)) l”(e))\/_(@n—ﬁ)du.

With the notations , we have :

ma(0) + = (hy = Dt = I, (., 0) L2

Under assumptions(HP)(v), (HS)(v)(viii)(ix),
there exist two positive real constantsC and k such that :

sup { By, (Ka(0)) > k.0 €©,ne Nye K} < &

et A, = An(‘g) = {w/ HKH(W’Q)” < l%}

when w € A, , we have :
Hmn(w, 0) + ﬁ {hn(w7 6) -

Given a convex set E,

{tn € E} = {(to, W () € E x R" =}
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et Co(A,b) = {7“ e R") Hu(r) + (%0 - I)tH < L lt|? te AN Ln(b)} .

We have |, Vnzno,ee@,weAnﬂﬂfln

Hmn(w,e) - (Lha(w,0) — 1)/l (6, — e)H <
2

Vil (b(w) - 6)

b
7

—1/2||?

b= Ksup@é@ HIQ

Vnzno,ee@,weAmgﬂfln

VL0, —0) € E = nl,”*(0,(w) — 0) € EN Ly,(b)
= 1(Mma(w, 0), hn(w, 0)) € Co(E,b)

We have : C,(E,b) C (ZE):(v/2b) U L/, (2b) [Pf.7.1]
Therefore Py, |[w € Q/m,(w,0) € Cu(,b)] — ®(E)| < |Pi| + | Py .

Py =Py [we Q/m,(w,0) € (ZE);(V2b)] — O(E)|

P, =P,y [w € Q/mp(w,0) € M]

Let S,(y) = ﬁ Yoy View Yio1(y))

We are interested by the speed of convergence in law of such fonctionnals:

The quantities such as will be evalued are

Pevy [Hsn(y)” 2'7]7 v > 0
\Ijn(t) =FK |:eXpZ' < ta ﬁ Z?:l V(glﬁ Yk—l(y)) >:|



1219

8.4 Assumptions(HT)

Let beV(e,y) a function R x R4 — R,
n is a function R— [1, 00[, 7,6, 7(0 < ay), three positive real

numbers such that:

(1) IVl < nEe)d+ [yl
(ii) [[Vi(e,y) = Ve, v ) < mle)(X+[lylI” + [1¥'[I7) ly — ¢/l
(iii) [ n°(c) expy(lel’)g(e)de < oo

(iv) The vectors V (e,y) are centred and reduced under g(g)devy(dy).

First we introduce a Banach space and a linear operator linked to the

conditionnal expectation of the chain .
Let B = B, be the set of the functions h : R* — R"
such that :

h(z
M(h) = SupxeRd%7

B |h(z)—h(y)|
L(h) = sup yeps Te—yl[(L+ =+l

7>0,c>0.

The operator Uy is defined on B

Uph(y) = [ h(ce + F(y,0)g(e)de

8.5 Lemmal:

Under assumptions (HS), Uy is quasi-compact and admits the following
decomposition
Ug = o + Qo
where 7y is the projector, Qp is an operator with spectral radius p,
less than 1.
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Moreover, there exist two real positive constants C* and p
(0<p < 1) such for any 6 in ©,we have ||Qp| < C*p"

where ||.|lis the usual operator norm.

8.6 Proposition

Under the assumptions (HS), for every v € K (compact in R%), there
exist a positive constant C such that :

Vs (2< s <6), P, [1Sa()]l > 7] < &

8.6.1 Proof
For s > 2, by Markov inequality,
Poy 1S @)l > 5] € == B IS0, View Yia ()] = 2o

Let H(y) = [ V(e,y)u(de).
B = Egy [[I2°V(ew, Yi1) = HYi1(y) + HYia(y)]]] <

2-Y(E [|B°] + E [ B2[])

B =30 Vier, Yic1) — HYs—1(y))
3222?:1 H(Yk—l(y))

B! is a norm of increments of martingales .
E|B,II°]< CoEy 11 By 21

< Csn*lP7120 30 By IV (ek, Yi-0) ]

Using assumptions about ||V (e, y)|| ,we conclude that
Ep, [||B'n||"] is bounded for all n
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8.7 A representation of the characteristic function of S,

Let us set, for a function h: R — R

Uph(y) = [expi <t,S, > h(ce + F(y,0))g(e)de
Then the characteristic function of \S,, can be written
Un(t) = Flexpi < t,S, >| = U9+ﬁ1-
where 1 is the constant function :y— 1.
- Ugy is a linear operator on B ,
- Using the perturbation theory of linear, we will derive an
Edgeworth’expansion of the characteristic function of S,
For « and X two positive constants 0 < a < 1), (0 < XA < f3),

For h: R — C, let
|7 ()]

|2\ = SUPx et TR cp AT
_ |h(z)—h(y)|
and 17 (h) = SUP; e Rt o=y exp N +9T]

By with the norm (.|, +m,) is a Banach space.

8.8 Proposition
Under (HS), for h € Ly, Uph = [ hdvg + Q%R
(o is an operator with spectral radius less than 1 and Qu1=0.

8.8.1 Proof

By Marinescu Tulcea theorem.
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8.9 Proposition

Under (HS),there exist a positive constant on such that :

[t <m,h € By,n>1
Urh = s*(m(t)h + Q™()h

where s(t) is an eigenvalue of Uy, its eigenspace E(t) has its dimension
equal to 1, 7(t) is the projector of E(t)

Q(t) has its spectral radius <1.

Qt)r(t) = =(1)Q(t) = 0

t— s(t),t — 7w(t) are C3.

THE PERTURBATION THEORY OF LINEAR YIELDS

8.10 Proposition

For ||t||small enough (||t|| < T'),the operator Uy, has the following

representation:

U = so(t)mo(t) + Qo

where sy(t) is an simple eigenvalue,my(t) the projector on the one
dimensionnal eigenspace of sy(t), Qg(t), an operator with spectral
radius less than 1(sp(0) = 1, m9(0) = mg, Qo0 = Qo)

The functions sg(.), 7(.), @Q(.), have five derivatives in a neighborhood
of the point t = 0.

These derivatives are uniformly bounded on ©, and there exist two
positive real constants Cj and p; such that for any 6 in ©.
Il <cipr when | &) <m
on a:ﬁln(ﬁ) = 0”7%11 = Sg(ﬁ)ﬂ'g(ﬁ)l + Q;ﬁl.
(

+
= exp(nLogso(7))mo(J)1 + Q5 . 1.
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8.11 Notations

sfgk) = S, Wék) = 7% is the derivative k-th derivative of the
functions .These are multilinear on R%.
sB(t) = s (ty,.. t);
7B () = 7B (ty, ..., 1)

8.12 Lemma
For any § € ©,t € R%, Sél)(()) =0, sé2)(t) = —|ItlI?

8.12.1 Proof

For all t near zéro , we have:
SE[< Su(y),t >] =< [ [ Ve, y)ulde)v(dy),t >=0
and B [< Su(y)'Sy(y)t,t >] — [|t]|*

t=(ei)izs
We take the derivative in the left and the right at the point zero , n — oo

U = su(G5)m(75) + Qn(F7)

8.13 Proposition

There exist two positive constants , C, and C4 such that for ﬁ ‘ <A
S n 2 s(3)(0)t(3)
’Hn(ﬁ) - ’U 1 —exp— 1201+ 50— 4+ 7 (0)1%| <

-

€ exp L (1 + [t + Cir™.
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8.14 Lemmal

For ||t|| < T'/n, there exists a real positive constant C such that :

2 o
s"(m) — exp(— 140y (1 4 p-1/2500)| <

C((I\t\l4 + HtHS)eXp ||t||2)

8.14.1 Proof

Using Taylor’s expansion of s( \/—) about zero

s(=) =1 —n~ |4+ 252 58) (1) + n2ny () 1]

Moo = sup{|m(t)],0 € O, [|t] <Ti} < oo

After,
W(ﬁ) =1+n"270 ()1 + ||7ﬁH277 (ﬁ)
Then
n(Lyp(L) — 1”1 —1/2(s® () ()1
() () — exp =15 (L V2 (52 + 1M (t)1))
< Cllﬂlﬁ;llt\\g exp — ]

The norm of the term @", 1 will be majored by C7, p}.
v
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