
Int. Journal of Math. Analysis, Vol. 6, 2012, no. 25, 1235 - 1250

Results Connected to the Riemann Hypothesis

Badih Ghusayni

Department of Mathematics

Faculty of Science-1, Lebanese University

Hadath, Lebanon

badih@future-in-tech.net

Abstract

In his famous presentation at the International Congress of Math-
ematicians held in Paris in 1900, David Hilbert included the Riemann
Hypothesis (all the non-trivial zeros of the zeta function have real part
1
2) as number 8 in his list of 23 challenging problems for mathemati-
cians for the 20th century. Over 100 years later, it is one of the few on
that list that have not been solved. Nowadays, many mathematicians
consider it the most important unsolved problem in mathematics. We
give results connected to the Riemann Hypothesis.

Mathematics Subject Classifications: 30D05, 30D15, 11M06, 11M38,

11M50

Keywords: Zeta function, Completed Zeta function, Prime numbers, Rie-
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1 Introduction

Let A be any compact subset of the plane that avoids the integers. Enclose A

in an open disk centered at (0, 0) of some radius R. For each point z of A, we

have |n − z| ≥ n − |z| > n − R and for each integer t > R we then have for

integers n with |n| ≥ t :

∞∑
−∞

1

|n − z|2 ≤ 2
∞∑

n=t

1

(n − R)2
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which is the remainder of an absolutely convergent series and converges to 0

as t tends to infinity and since this does not depend on z, the series
∞∑
−∞

1
(n−z)2

converges uniformly A.

This leads us to the following

Theorem 1.1.
∞∑
−∞

1

(n − z)2
=

π2

sin2 πz

Proof. Since the series
∞∑
−∞

1

(n − z)2

converges absolutely on its domain of definition, we can replace n by n + 1

below to get

∞∑
−∞

1

(n − (z + 1))2
=

∞∑
−∞

1

((n + 1 − (z + 1))2
=

∞∑
−∞

1

(n − z)2
.

Now let b > 0 and let z=x+iy with |y| ≥b. Let k be the integral part of x.

Then

|
∞∑
−∞

1

(n − (x + iy))2
| = |

∞∑
−∞

1

(n − (x − p + iy))2
|

= lim
d→∞, t→∞

|
d∑
t

1

(n − (x − p + iy))2
|

≤ lim
d→∞,t→∞

d∑
t

1

|(n − (x − p + iy))|2

=
∞∑
−∞

1

|n − x + p − iy|2

=

∞∑
1

1

|n − x + p − iy|2 +

∞∑
0

1

| − n − x + p − iy|2

≤
∞∑
1

1

(n − 1)2 + b2
+

∞∑
0

1

n2 + b2
= 2

∞∑
0

1

n2 + b2
.

Next the function

g(z) =
∞∑
−∞

1

(n − z)2
− π2

sin2 πz
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is holomorphic except on the integers and satisfies

∞∑
−∞

1

(n − (z + 1))2
− π2

sin2 π(z + 1)
=

∞∑
−∞

1

(n − z)2
− π2

sin2 πz

and

|
∞∑
−∞

1

(n − z)2
− π2

sin2 πz
| ≤

∞∑
0

1

b2 + n2
+

2π2

(eπb − e−πb)2

which tends to 0 when b tends to infinity. So the function

g(z) =
∞∑
−∞

1

(n − z)2
− π2

sin2 πz

is bounded on [0, 1]+ iR and thus on C. Thus the function g is constant; since

g(ib) tends to 0 as b tends to infinity, g must be the zero function. Thus

∞∑
−∞

1

(n − z)2
=

π2

sin2 πz

Remark 1.2. To motivate an important corollary, observe that the function
z

ez−1
has its nearest singularities at z = −2πi and z = 2πi and so is holomor-

phic in the disk |z| < 2π. Therefore we can represent it there as z
ez−1

=
∞∑
0

Bn
zn

n!

where the coefficients B′
ks are nothing but the Bernoulli numbers the first of

which are B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 = 1

42
, B7 =

0, B8 = − 1
30

, B9 = 0 and B10 = 5
66

.

Corollary 1.3.
∞∑

k=1

1
k2n = (−1)n−122n−1B2nπ2n

(2n)!
.

Proof. The function

π2

sin2 πz
−

∞∑
−∞

1

(n − z)2

is the derivative of

1

z
+

∞∑
1

(
1

z + n
+

1

z − n
) − π cotπz
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and this derivative is zero. This implies that π cotπz − 1
z
−

∞∑
1

( 1
z+n

+ 1
z−n

) is

constant and, moreover, it turns out that this constant is 0. Therefore,

πz cotπz = 1 +

∞∑
1

2z2

z2 − k2
.

Let an be the coefficient of zn in the power series expansion of the function

πz cot πz.

Since

an =
1

2πi

∫
|z|=r

dz

zn+1
+

1

2πi

∞∑
k=1

∫
|z|=r

2z1−ndz

z2 − k2

for every n = 0, 1, 2, . . . , a0 = 1 and an = 0 for odd n. Now for even n we have

an = 2

∞∑
k=1

1

kn
.

Comparing with the power series expansion

πz cotπz = 1 +

∞∑
1

(−4)nB2nπ
2nz2n

(2n)!
,

we get

∞∑
k=1

1

k2n
=

(−1)n−1B2n22n−1π2n

(2n)!
.

Remark 1.4. The above formula for
∞∑

k=1

1
k2n was due to Euler. However, de-

spite trying hard to obtain a closed formula for
∞∑

k=1

1
k3 , he was not successful as

was reflected in a relevant translation of his Latin 1785 Monograph ”Opiscula

analytica” [1] ”At this point I will examine in rather more detail a unique case,

which does not seem alien to follow such a relation, namely the sum of the se-

ries of the reciprocals of cubes 1+ 1
23 + 1

33 + 1
43 + 1

53 + · · · etc., which so far in no

way I could reduce to the circle or to logarithms.” Euler tried, unsuccessfully,

to look for a linear relation with integer coefficients among π3, π2 log 2, (log 2)3,

due to the following connections

log 2 = 1 − 1

2
+

1

3
− 1

4
− · · ·
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and
π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · ·

More precisely, the series for π2 log 2 or that for (log 2)3 contains the series
∞∑

k=1

(−1)k 1
k3 . For over 225 years now, all the cases

∞∑
k=1

1
k2n+1 , n = 1, 2, ... remain

open.

2 Riemann zeta function with some properties

The Riemann zeta function ζ is defined by ζ(z) =
∞∑

k=1

1
kz . Set z = x + iy.

Now | 1
kz | = 1

|ez log k| = 1
|ex log k| = 1

kx . So the series
∞∑

k=1

1
kz converges absolutely in

the half-plane x > 1. By Weierstrass test, this series converges uniformly on

every compact subset of this half-plane. With some work, this function can be

continued analytically to all complex z �= 1 (see for instance [6].) (For z = 1,

the outcome turns out to be the harmonic series which diverges to infinity. As

a result, the zeta function is a meromorphic function of the complex variable

z, which is holomorphic everywhere except for a simple pole at z = 1 with

residue 1).

Theorem 2.1. For Re(z) > 1 we have ζ
′
(z) = −∑∞

n=1
log n
nz ;that is, for Re(z) >

1, ζ
′
(z) can be obtained by differentiating the series of ζ(z) term-by-term and

taking its negative.

Proof. Let K be a compact subset of {z : Re(z) > 1}. Then K is

a subset of some half-plane H = {z : Re(z) ≥ c > 1}. Consider the se-

quence of functions {fk(z)}∞1 defined by fk(z) =
∑k

n=1
1
nz . It is easy to see

that this sequence {fk(z)}∞1 converges uniformly to ζ(z) on H. Then the se-

quence {f ′
k(z)}∞1 = {−∑k

n=1
log n
nz } converges to −∑∞

n=1
log n
nz . Consequently,

for Re(z) > 1, ζ
′
(z) = −∑∞

n=1
log n
nz ;

Definition 2.2. The von Mangoldt function Λ is defined by

Λ(n) =

{
log p for n = p, p2, · · · ;

0 otherwise,
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It turns out that, for Re(z) > 1, the logarithmic derivative of the zeta

function log
′
ζ(z) is

ζ
′
(z)

ζ(z)
= −

∞∑
n=1

Λ(n)

nz

which plays a crucial role in the proof of the Prime Number Theorem. We’ll

elaborate more on this function in a later section.

A particularly striking formula was proven by von Mangoldt:

For x > 1,

∑
1<n<x

Λ(n) +
1

2
Λ(x) = x −

∑
primes p,ζ(p)=0,Re(p)>0

xp

p
− log(2π) − 1

2
log(1 − 1

x2
).

Definition 2.3. The Möbius function μ is defined by

μ(n) =

⎧⎪⎨
⎪⎩

0 if n is divisible by a square of a prime;

1 if n is a product of an even number of distinct prime numbers;

−1 if n is a product of an odd number of distinct prime numbers

It turns out that, for Re(z) > 1, the reciprocal of the zeta function 1
ζ(z)

is

1

ζ(z)
= −

∞∑
n=1

μ(n)

nz

which converges and represents a holomorphic function on {z : Re(z) > 1}.
We’ll elaborate more on this function in a later section.

Definition 2.4. The Gamma function Γ is defined as

Γ(z) =
e−γz

z

∞∏
1

(1 +
z

n
)−1e

z
n ,

where γ is Euler constant γ = limn→∞(1 + 1
2

+ 1
3

+ · · ·+ 1
n
− log n).

We now mention the recurrence formula for the Gamma Function

Γ(z + 1) = zΓ(z)

(for a proof see [3], p. 50) and the duplication formula

√
πΓ(2z) = 22z−1Γ(z)Γ(z +

1

2
)

(for a proof see [3], p. 51). Our further study requires the following definitions
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Definition 2.5. Let f(z) be an entire function. The maximum modulus func-

tion, denoted by M(r), is defined by M(r) =max{|f (z)| : |z| = r}.

Definition 2.6. Let f(z) be a non-constant entire function. The order ρ of

f(z) is defined by

ρ = lim sup
r→∞

log log M(r)

log r
.

The order of any constant function is 0, by convention.

Definition 2.7. An entire function f(z) of positive order ρ is said to be of

type τ if

τ = lim sup
r→∞

log M(r)

rρ
.

Definition 2.8. If 0 ≤ τ < ∞, then f(z) is said to be of finite type.

If τ = 0, then f(z) is said to be of minimal type.

If 0 < τ < ∞, then f(z) is said to be of normal type.

If τ = ∞, then f(z) is said to be of infinite type.

Definition 2.9. Let z1, z2, · · · be a sequence of non-zero complex numbers.

The greatest lower bound of positive numbers α for which
∑∞

0
1

|zn|α is conver-

gent is called the exponent of convergence of the sequence {zn} and is denoted

by ρ1. The smallest positive integer α for which the series is convergent is

denoted by p + 1 and p is called the genus of {zn} .

We can now state and prove the following

Theorem 2.10.

Γ(z)Γ(1 − z) =
π

sin πz
.

Proof. The function sin(πz) is an entire function which vanishes at 0,±1,±2, ...

and since
∑∞

−∞
1
v2 = 2

∑∞
1

1
v2 (v �= 0) converges while

∑∞
−∞

1
v

diverges (since

the partial sum S(−k,2k) diverges) , the genus of the sequence of the zeros is 1.

Hence

sin(πz) = zeϕ(z)
∞∏
−∞

(1 − z

v
)e

z
v .

Since the product is unconditionally convergent, then by rearranging the fac-

tors we get

sin(πz) = zeϕ(z)

∞∏
1

(1 − z2

v2
).



1242 B. Ghusayni

To determine ϕ(z) take the logarithmic derivative. Then

π cot(πz) =
1

z
+ ϕ

′
(z) +

∞∑
v=1

2z

z2 − v2
.

We have seen that

π cot(πz) =
1

z
+

∞∑
v=1

2z

z2 − v2
.

It follows that ϕ
′
(z) = 0. Thus ϕ(z) = K, a constant. Now

sin(πz) = zeK
∞∏
1

(1 − z2

v2
).

Since limz−→0
sin(πz)

πz
= 1, eK = π. Consequently,

sin(πz) = πz
∞∏
1

(1 − z2

v2
).

The proof of the following theorem is quite involved and can be found for

instance in [6], pp. 23 − 28

Theorem 2.11. Riemann Functional Equation.

ζ(z)Γ(
1

2
z)π− 1

2
z = π− 1

2
(1−z)Γ(

1

2
(1 − z))ζ(1 − z).

We now state and prove an equivalent form of Riemann Functional Equa-

tion which is needed to prove a few properties about the zeta function:

Theorem 2.12. Alternative form of Riemann Functional Equation.

ζ(1 − z) = 2(2π)−z cos
πz

2
Γ(z)ζ(z).

Proof. By theorem 2.10 we have Γ( z
2
)Γ(1− z

2
) = π

sin πz
2

. Now let s = 1−z in

the latter formula to get Γ(1
2
− s

2
)Γ(1

2
+ s

2
) = π

cos πs
2

. Let z = s
2

in the duplication

formula to get Γ(1
2

+ s
2
) = 21−s√πΓ(s)

Γ( s
2
)

. Now

2(2π)−z cos
πz

2
Γ(z)ζ(z) = 21−zπ1−z Γ(z)ζ(z)

Γ(1
2
− z

2
)Γ(1

2
+ z

2
)

= ζ(1 − z).

We now use ζ(2n) with the alternative form of Riemann functional equation

as follows

ζ(1 − 2n) = 2(2π)−2n cosnπΓ(2n)ζ(2n) = −B2n

2n
.
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Let k = 2n. Then ζ(1 − k) = −Bk

k
. If we now let m = k − 1, then we get

ζ(−m) = −Bm+1

m+1
. In particular, for m = 0, we get ζ(0) = 1

2
. Now let us prove,

in general, that B2k+1 = 0 for k = 1, 2, 3, ... First, t
et−1

+ t
2

= t
2
coth t

2
is an even

function. Next, t
2
coth t

2
=

∑∞
0 Bn

tn

n!
+ t

2
=

∑∞
n=0,n�=1 Bn

tn

n!
. Now replacing t

with −t we get t
2
coth t

2
=

∑∞
n=0,n�=1(−1)nBn

tn

n!
. Therefore, (−1)nBn = Bn for

n = 0, 2, 3, 4, ... which for odd n = 2k + 1 implies the result. In particular,

ζ(−2n) = 0 for natural numbers n, (these are called the trivial zeros of the

zeta function).

3 Riemann Hypothesis

In 1859 Bernhard Riemann [5] conjectured that the ALL non-trivial zeros of

his zeta function have real part equal to 1/2 (the trivial zeros being at the

negative even integers and recently computer calculations have shown that

the first 10 trillion non-trivial zeros lie on the critical line 1/2 + it, where

t is a real number). This has been known as the Riemann Hypothesis. In

the year 2000, Fields Medalist Enrico Bombieri stated that ”In the opinion of

many mathematicians the Riemann Hypothesis is probably the most important

open problem in pure mathematics today.” Not only that but it has a million-

dollar tag attached to whether or not it is true. Indeed, it is one of seven

problems each worth a million dollars (one of them, the Poincare Conjecture,

was solved by Grigori Perelman in 2002. Eight years later, on March 18, 2010,

the Clay Mathematics Institute-named after the Boston businessman Landon

Clay-awarded Perelman the one million dollar Prize in recognition of his proof

but he rejected it quoting that Richard Hamilton who had a major contribution

for the proof, is equally deserving. Earlier, in August 2006, Perelman was

awarded for his proof the Fields Medal, the highest award in mathematics,

but he declined it as well.)

In what follows, we mention an essential result for an analytic proof of the

Prime Number Theorem. On the basis of counting primes, one may be led to

suspect that π(x) increases somehow like x
log x

. As a matter of fact, in 1791

at the age of 14, Gauss conjectured that limx→∞
π(x) log x

x
= 1. In 1850, trying

to settle the Gauss conjecture, Tchebycheff showed that there exist positive

constants c and C such that

c
x

log x
< π(x) < C

x

log x
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for x ≥ 2 with c = .92 and C = 1.11

It was not until 1896 that the Gauss conjecture was settled by Hadamard and,

simultaneously by, de la Vallée Poussin and from then on it has been known

as the Prime Number Theorem. Both Hadamard and de la Vallée Poussin

employed complex-variable methods. They proved that ζ(1 + it) �= 0 from

which they deduced the Prime Number Theorem.

Remark. Hadamard and de la Vallée Poussin also showed the converse to

be true and for a while it appeared that the Prime Number Theorem was

impossible to prove without using ζ(1 + it) �= 0. However, in 1949, Erdös and

Selberg proved the Prime Number Theorem by ”elementary” methods meaning

without using functions of a complex variable. Below we state Hadamard and

de la Vallée Poussin key result:

Theorem 3.1. ζ(1 + it) �= 0. That is, no zeros of the zeta function could lie

on the line 1 + it.

It is worth mentioning here that the Riemann Hypothesis is indirectly

related to prime numbers (which of course are of great interest to number

theorists) via Analytic Number Theory. In his famous 1859 paper, Riemann

unveiled a close relationship between prime numbers and zeros of his zeta

function; more specifically, through ”Euler” Product ζ(z) = Πp prime(
1

1− 1
pz

)

(earlier, Euler had considered this function only as a real function). Since

none of the factors have zeros, there are no zeros of the zeta function with

real part greater than 1. Combined with our earlier results, this shows that

all non-trivial zeros must lie inside the critical strip 0 ≤ Re(z) ≤ 1.

At one point, G. H. Hardy made headlines within the mathematical community

when he claimed to have proved the Riemann Hypothesis. In fact, he was able

to prove that there were infinitely many zeros on the critical line, but was

unable to prove that there did not exist other zeros that were NOT on the line

(or even infinitely many off the line). Hardy and Ramanujan collaboration

included the Riemann Hypothesis which still defied this joint attempt.

We conclude this section with the following interesting result by Speiser [8]

which also ties this section with the previous one:

Theorem 3.2. Riemann Hypothesis is true if and only if ζ
′
has no zeros in

the strip {z : 0 < Re(z) < 1
2
.} Thus the zeta function ζ has only simple zeros
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on the critical line if and only if its derivative ζ
′
has no zeros on the critical

line.

4 The completed zeta function

Definition 4.1. The completed zeta function is defined by

ξ(z) =
1

2
z(z − 1)π− z

2 ζ(z)Γ(
z

2
)

Theorem 4.2. ξ(z) = ξ(1 − z). Thus the function ξ(z) is symmetric about

the critical line Re(z) = 1
2
;

Proof. Rewrite Riemann’s Functional Equation as

π− 1
2
zΓ(

1

2
z)ζ(z) = π− 1

2
(1−z)Γ(

1

2
(1 − z))ζ(1 − z)

from which the relation ξ(z) = ξ(1 − z) follows easily.

Theorem 4.3. The function ξ(z) is entire.

Proof. Using the analytic continuation of Γ(z) to the whole complex plane

and the fact that ζ(z) is holomorphic in the whole complex plane except for a

simple pole at z = 1 which is removable because of the factor z − 1, it follows

that ξ(z) is entire.

Theorem 4.4. ξ(z) is of order 1.

Proof. With [t] denoting the greatest integer function, we have

z

∫ N+1

1

[t]t−1−zdt = z

N∑
n=1

∫ n+1

n

[t]t−1−zdt = z

N∑
n=1

n

∫ n+1

n

t−1−zdt

= z

N∑
n=1

n(n−z−(n+1)−z) = 1−2−z +2(2−z−3−z)+ ...N [N−z−(N +1)−z]

=

N∑
n=1

n−z − N(N + 1)−z.

When x > 1, limN→∞ |N(N + 1)−z| = limN→∞ N(N + 1)−x = 0. Hence for

x > 1 we have

ζ(z) = z

∫ ∞

1

[t]t−1−zdt.
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Therefore

ζ(z) =
z

z − 1
+ z

∫ ∞

1

[t] − t

tz+1
dt.

The integral on the right is uniformly convergent when 0 < x1 ≤ x ≤ x2 and

since |[t] − t| < 1, it represents a holomorphic function on x > 0. Hence the

above integral representation is valid on x > 0. When x ≥ 1
2

and |z| > 2, it

follows from this integral representation that

ζ(z) ≤ |z|
z − 1

+ |z|
∫ ∞

1

[t] − t

tx+1
< |z| + |z|

∫ ∞

1

dt

t
3
2

= O(|z|).

Now

|Γ(z)| ≤
∫ ∞

0

e−ttx−1dt <

∫ 1

0

e−tt−
1
2 dt +

∫ ∞

1

e−tt[x]dt = O(1) +

∫ ∞

0

e−tt[x]dt

= O(1) + [x]! ≤ O(1) + [x][x] ≤ O(1) + [|z|][|z|] ≤ O(1) + |z||z|

= O(1) + e|z| log |z| = O(e|z|
1+ε

)

where ε > 0.

Since π− 1
2
z is an entire function of order 1, ξ(z) = O((exp(|z|1+ε)) whenever

x ≥ 1
2
. Since ξ(z) = ξ(1 − z), ξ(z) = O(exp(|z|1+ε)) holds throughout the

complex plane. Thus ξ(z) is of order at most 1.

Next, if z is a real number > 2, then

ξ(z) = 2(z − 1)π− 1
2
zζ(z)Γ(

1

2
z + 1) > 2Γ(

1

2
z + 1) = 2

∫ ∞

0

e−tt
1
2
zdt

> 2

∫ ∞

z

e−tt
1
2
zdt > 2z

1
2
z

∫ ∞

z

e−tdt = 2z
1
2
ze−z = e

1
2
z log z−z+log 2.

If ε > 0 is arbitrary, then for large z,

1

2
log z − 1 +

1

z
log 2 > z−ε

and so ξ(z) > exp(z1−ε) for large real values z.

Consequently, the order of ξ(z) is 1.

Theorem 4.5. The function ξ(z) is of infinite type.

Since log M(r) ∼ 1
2
r log r as r −→ ∞, log M(r)

r
∼ 1

2
log r as r −→ ∞. Since

the order of ξ(z) is 1, the type τ is

lim sup
r−→∞

log M(r)

r
= ∞.
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Theorem 4.6. The function ξ(z) has infinitely many zeros.

Proof. This follows easily now by this author’s previous result that an

entire function of order 1 and infinite type must have infinitely many zeros [2].

Euler Product Formula shows that every zero z0 of ξ has Re(z0) ≤ 1 while

the Functional Equation ξ(1− z) = ξ(z) shows that all zeros are in the critical

strip. With some additional work one can show that all zeros of ξ lie inside

the critical strip.

Theorem 4.7. If the Riemann Hypothesis is false, then the zeros of the ξ

function in the critical strip that are not on the critical line would occur in

quadruples as vertices of rectangles.

Proof. For real values of z, ξ(z) is also real. Thus ξ(z) = ξ(z). Therefore

if s is a zero of ξ, then s, 1 − s, 1 − s are also zeros of ξ. As a result, zeros on

the critical line occur in conjugate pairs and zeros off the critical line occur in

quadruples of the above form.

The Riemann Hypothesis can therefore be stated as:

All zeros of ξ(z) are on the critical line Re(z) = 1
2
.

Remark 4.8. As of the time of this writing, no double zero of the function ξ

has been found on the critical line.

5 Connections with the Riemann Hypothesis

To reach this connection we use the following Lemma whose proof employs

complex analysis:

Lemma 5.1. (a) z0 is a pole of order m of a function f if and only if there

is a unique m−tuple (b1, b2, · · · , bm) of complex numbers such that bm �= 0 and

the function h(z) = f(z) − ∑m
j=1

bj

(z−z0)j has a removable singularity at z0.

(b) If z0 is a pole of order m of a function f, then z0 is a simple pole of f
′

f

with Res(f
′

f
, z0) = −m.

Theorem 5.2. Let S denote the set of zeros of the zeta function in the critical

strip whose real part is greater than 1
2
. Then ζ

′
(z)

ζ(z)
+ 1

z−1
is holomorphic on S

if and only if the Riemann hypothesis is true.
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Proof. Recall that the zeta function ζ is holomorphic everywhere in the

complex plane except for a simple pole at z = 1. By Lemma 5.1(b) z = 1 is a

simple pole of ζ
′
(z)

ζ(z)
+ 1

z−1
with Res( ζ

′

ζ
, 1) = −1. Moreover, by Lemma 5.1(a),

there is a unique nonzero complex number b such that the function h(z) =
ζ
′
(z)

ζ(z)
− b

z−1
has a removable singularity at 1. Furthermore, by the definition of

the residue of a function at z0 we must have b = −1. As a result the function

H(z) =

{
ζ
′
(z)

ζ(z)
+ 1

z−1
if z �= 1;

L if z = 1,

where L = limz→1 h(z), is an entire function.

(⇒) Suppose that ζ
′
(z)

ζ(z)
+ 1

z−1
is holomorphic on S. In addition, suppose that

z0 is a non-trivial zero of ζ ; that is, ζ(z0) = 0 with z0 �= 0 to which we can

also add that 0 < Re(z0) < 1. It is enough to obtain a contradiction if we

assume either the case 0 < Re(z0) < 1
2

or Re(z0) > 1
2
. First, assume that

0 < Re(z0) < 1
2
. Then, since ζ is holomorphic at z0, limt→0

ζ(z0+t)−ζ(z0)
t

exists.

Thus ζ
′
(z0) exists. In addition, ζ

′
(z0) �= 0 for otherwise ζ

′
(z)

ζ(z)
+ 1

z−1
won’t exist

and so won’t be holomorphic on S. Thus z0 would be a pole of ζ
′
(z)

ζ(z)
+ 1

z−1

other than 1 which is a contradiction. Next, assume that Re(z0) > 1
2
. Then

ζ
′
(z)

ζ(z)
+ 1

z−1
is holomorphic at z0. Then the derivative of ζ

′
(z)

ζ(z)
+ 1

z−1
exists at z0;

that is ζ
′′
(z0)ζ(z0)−[ζ

′
(z0)]2

[ζ(z0)]2
− 1

(z0−1)2
exists which is the desired contradiction.

(⇐) If the Riemann Hypothesis is true, then ζ has no zeros on {z : Re(z) >

1/2} and therefore ζ
′
(z)

ζ(z)
+ 1

z−1
is holomorphic there. In particular, ζ

′
(z)

ζ(z)
+ 1

z−1

is holomorphic on S.

Now given our shift from ζ(z) to ξ(z) we conjecture and prove the following

Theorem 5.3. Let T denote the set of zeros of the completed zeta function in

the critical strip whose real part is greater than 1
2
. Then ξ

′
(z)

ξ(z)
is holomorphic

on T if and only if the Riemann hypothesis is true.

Proof.(⇒) Suppose that ζ
′
(z)

ζ(z)
is holomorphic on T. In addition, suppose

that z0 is a zero of ξ; that is, ξ(z0) = 0 to which we can also add that 0 <

Re(z0) < 1. It is enough to obtain a contradiction if we assume either the case

0 < Re(z0) < 1
2

or Re(z0) > 1
2
. First, assume that 0 < Re(z0) < 1

2
. Then,

since ξ is holomorphic at z0, limt→0
ξ(z0+t)−ξ(z0)

t
exists. Thus ξ

′
(z0) exists. In

addition, ξ
′
(z0) �= 0 for otherwise ξ

′
(z)

ξ(z)
won’t exist and so won’t be holomorphic
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on T. Thus z0 would be a pole of ξ
′
(z)

ξ(z)
which is a contradiction. Next, assume

that Re(z0) > 1
2
. Then ξ

′
(z)

ξ(z)
is holomorphic at z0. Then the derivative of ξ

′
(z)

ξ(z)

exists at z0; that is ξ
′′
(z0)ξ(z0)−[ξ

′
(z0)]2

[ξ(z0)]2
exists which is the desired contradiction.

(⇐) If the Riemann Hypothesis is true, then ξ has no zeros on {z : Re(z) >

1/2} and therefore ξ
′
(z)

ξ(z)
is holomorphic there. In particular, ξ

′
(z)

ξ(z)
is holomorphic

on T.

Remark 5.4. It is known (see for example [7]) that Re( ξ
′
(z)

ξ(z)
) > 0 on {z :

Re(z) > 1/2} if and only if the Riemann hypothesis is true.

Remark 5.5. Recall that, for Re(z) > 1, the reciprocal of the zeta function
1

ζ(z)
is

1

ζ(z)
= −

∞∑
n=1

μ(n)

nz

which converges and represents a holomorphic function on {z : Re(z) > 1}. If,

in addition, ζ(z) has zeros for 1
2

< Re(z) < 1, there would not exist a holo-

morphic function in this region. On the other hand, if the Riemann Hypothesis

is true (no such zeros in the region), then the series can actually be shown to

converge to a holomorphic function on {z : Re(z) > 1
2
}.

Remark 5.6. With M(x) being the Mertens function defined by M(x) =∑
0<n≤x μ(n), it is known that for any ε > 0, M(x) = O(x

1
2
+ε) if and only

if the Riemann hypothesis is true.
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