Semi-Periodic Vector for *n*-Tuples of Operators

S. Nasrin Hoseini M.

Department of Mathematics Genaveh Branch, Islamic Azad University, Genaveh, Iran P. O. Box 7561738455, Borazjan, Iran nasrin_hosseini_59@yahoo.com

Mezban Habibi

Department of Mathematics
Dehdasht Branch, Islamic Azad University, Dehdasht, Iran
P. O. Box 181 40, Lidingo, Stockholm, Sweden
habibi.m@iaudehdasht.ac.ir

Fatemeh Safari

department of mathematics
Dehdasht Branch, Islamic Azad University, Dehdasht, Iran
P.O. Box 7571763111, Mamasani, Iran
safari.s@iaudehdasht.ac.ir

Fatemeh Ghezelbash

Department of Mathematics
Meymeh Branch, Islamic Azad University, Meymeh, Iran
P. O. Box 8196983443, Isfahan , Iran
ghezelbash@iaumeymeh.ac.ir

Parvin Karami

department of mathematics Mamasani Branch, Islamic Azad University, Mamasani, Iran P.O. Box 7571758379, Mamasani, Iran karami-pk67@yahoo.com

Abstract

In this paper, we introduce fix points for a tuple of operators on a

Banach space and give some Conditions for a vector to be a Fix point for the Tuple.

Mathematics Subject Classification: 37A25, 47B37

Keywords: Hypercylicity criterion, *n*-tuple, Fix point, Semi-Periodic vector, Dense generalized kernel

1 Introduction

Let \mathcal{X} be a Banach space and $T_1, T_2, ..., T_n$ are commutative bounded linear operators on \mathcal{X} . By an n-tuple we mean the n-component $\mathcal{T} = (T_1, T_2, ..., T_n)$ so that "n" is a finite positive integer number. For the tuple $\mathcal{T} = (T_1, T_2, ..., T_n)$ the set

$$\mathcal{F} = \{T_1^{k_1} T_2^{k_2} ... T_n^{k_n} : k_i \ge 0, i = 1, 2, ..., n\}$$

is the semigroup generated by \mathcal{T} . For $x \in \mathcal{X}$ take

$$Orb(\mathcal{T}, x) = \{Sx : S \in \mathcal{F}\}.$$

In other hand

$$Orb(\mathcal{T}, x) = \{T_1^{k_1} T_2^{k_2} ... T_n^{k_n}(x) : k_i \ge 0, i = 1, 2, ..., n\}.$$

2 Preliminary Notes

Definition 2.1 The set $Orb(\mathcal{T}, x)$ is called, orbit of vector x under \mathcal{T} and Tuple $\mathcal{T} = (T_1, T_2, ..., T_n)$ is called hypercyclic tuple, if there is a vector $x \in \mathcal{X}$ such that, the set $Orb(\mathcal{T}, x)$ is dense in \mathcal{X} , that is

$$\overline{Orb(\mathcal{T}, x)} = \overline{\{T_1^{k_1} T_2^{k_2} ... T_n^{k_n}(x) : k_i \ge 0, i = 1, 2, ..., n\}} = \mathcal{X}.$$

In this case, the vector x is called a hypercyclic vector for the tuple \mathcal{T} .

Definition 2.2 Let X is a metric space with metric d. Take

$$\eta(\mathcal{X}) = P(\mathcal{X}) - \{\phi\}$$

and

$$Cl(\mathcal{X}) = \{x : x \subset \mathcal{X}, x = closed, x \neq \phi\}$$

Consider an n-tuple $T=(T_1,T_2,...,T_n)$. An element $x\in\mathcal{X}$ is called a fixed point for T if there exist non-negative integer numbers $m_1, m_2, ..., m_n$ such that

$$T_1^{m_1}T_2^{m_2}...T_n^{m_n}(x) = x$$

Fixed point for a functional is defining similarly.

Definition 2.3 Let \mathcal{X} is a Banach space and $x \in X$, the vector x is called a semi-periodic vector for tuple $T = (T_1, T_2, ..., T_n)$ if the sequence

$$\{T_1^{m_1}T_2^{m_2}...T_n^{m_n}(x)\}$$

be semi-compact. In this case \mathcal{T} is called semi-periodic tuple.

Definition 2.4 Let \mathcal{X} is a Banach space and $\mathcal{T} = (T_1, T_2, ..., T_n)$ is a Tuple, then the dense generalized kernel of T is the set

$$\bigcup_{k>0} (Ker(T_1^{m_{1,k}}T_2^{m_{2,k}}...T_n^{m_{n,k}})).$$

Note 2.5 All of operators in this paper are commutative bounded linear operators on a Banach space. Also, note that by $\{j,i\}$ we mean a number, that was showed by this mark and related with this indexes, not a pair of numbers.

Readers can see [1-9] for some information.

Main Results 3

Theorem 3.1 (The Hypercyclicity Criterion) Let \mathcal{X} be a separable Banach space and $\mathcal{T} = (T_1, T_2, ..., T_n)$ is an n-tuple of continuous linear mappings on \mathcal{X} . If there exist two dense subsets \mathcal{Y} and \mathcal{Z} in \mathcal{X} , and strictly increasing sequences $\{m_{j,1}\}_{j=1}^{\infty}$, $\{m_{j,2}\}_{j=1}^{\infty}$, ..., $\{m_{j,n}\}_{j=1}^{\infty}$ such that : 1. $T_1^{m_{j,1}}T_2^{m_{j,2}}...T_n^{m_{j,n}} \to 0$ on $\mathcal Y$ as $j \to \infty$,

- 2. There exist functions $\{S_j: \mathcal{Z} \to \mathcal{X}\}$ such that for every $z \in \mathcal{Z}$, $S_j z \to 0$, and $T_1^{m_{j,1}}T_2^{m_{j,2}}...T_n^{m_{j,n}}S_jz \to z$, on \mathcal{Z} as $j \to \infty$, then \mathcal{T} is a hypercyclic n-tuple.

Theorem 3.2 Let \mathcal{X} be a separable Banach space and $\mathcal{T} = (T_1, T_2, ..., T_n)$ is an hypercyclic n-tuple of commutative continuous linear mappings on \mathcal{X} . the tuple \mathcal{T} satisfying the hypothesis of The Hypercyclicity Criterion, if there is a subset \mathcal{S} of \mathcal{X} such that, all elements of \mathcal{S} are semi-periodic vectors for tuple \mathcal{T} .

proof. Since \mathcal{T} is hypercyclic tuple, then we can choice a vector $x \in \mathcal{X}$ such that $Orb(\mathcal{T}, x)$ is dense in \mathcal{X} . Take

$$U_k = (0, \frac{1}{k})$$

$$V_k = \{x + u : u \in U_k\}.$$

Since the set of hypercyclic vectors for any tuple is dense in \mathcal{X} , so let $u_1 \in U_1$ and the natural numbers $m_{1,1}, m_{2,1}, ..., m_{n,1}$ with property

$$T_1^{m_{1,1}}T_2^{m_{2,1}}...T_n^{m_{n,1}}(u_1) \in V_1.$$

Now, take $u_2 \in U_2$. Since

$$\overline{\{T_1^{m_{1,1}+1}T_2^{m_{2,1}+1}...T_n^{m_{n,1}+1}(u_2),T_1^{m_{1,1}+2}T_2^{m_{2,1}+2}...T_n^{m_{n,1}+2}(u_2),...\}}=\mathcal{X}$$

so there are $m_{1,2}, m_{2,2}, ..., m_{n,2}$ such that

$$T_1^{m_{1,2}}T_2^{m_{2,2}}...T_n^{m_{n,2}}(u_2) \in V_2.$$

Similarly, there are $m_{1,t}, m_{2,t}, ..., m_{n,t}$ such that

$$T_1^{m_{1,t}}T_2^{m_{2,t}}...T_n^{m_{n,t}}(u_t) \in V_k.$$

There are sequence $\{u_t\}_{k=1}^{\infty}$ of hypercyclic vectors and subsequences $\{m_{1,t}\}, \{m_{2,t}\}, ..., \{m_{n,t}\}$ of natural numbers, such that

$$\lim_{k\to\infty}(u_k)=0$$

and

$$T_1^{m_{1,t}}T_2^{m_{2,t}}...T_n^{m_{n,t}}(u_t) \in V_t.$$

Now we try to find subsequence

$$\{m'_{1,t}\}, \{m'_{2,t}\}, ..., \{m'_{n,t}\}$$

of

$$\{m_{1,t}\}, \{m_{2,t}\}, ..., \{m_{n,t}\}$$

such that

$$T_1^{m'_{1,t}} T_2^{m'_{2,t}} \dots T_n^{m'_{n,t}}(u_2)(V_t) \bigcap (U_t) \neq \phi.$$

Suppose that $V = V_k$ and $U = U_k$ for any given k. If S be the set of all semi-periodic vectors of T then $\overline{S} = \mathcal{X}$ so

$$S \cap (x + B(0, \frac{1}{2k})) \neq \phi$$

in other word, we can take

$$\omega \in \mathcal{S} \cap (x + B(0, \frac{1}{2k}))$$

indeed the orbit of

$$\{T_1^{m_{1,t}}T_2^{m_{2,t}}...T_n^{m_{n,t}}(u_t)\}$$

is semi-compact, so there subsequence

$$\{\eta_{1,t}\}, \{\eta_{2,t}\}, ..., \{\eta_{n,t}\}$$

of

$$\{m_{1,j}\}, \{m_{2,j}\}, ..., \{m_{n,j}\}$$

such that

$$\{T_1^{\eta_{1,t}}T_2^{\eta_{2,t}}...T_n^{\eta_{n,t}}(\omega)\}$$

is a convergence sequence. Suppose $\omega_0 \in \mathcal{X}$ and

$$T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}} (\omega) \to \omega_0$$

as $t \to \infty$. With replace $\epsilon = \frac{1}{2k}$ we have k_0 ,

$$||T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(\omega) - \omega_0|| \le \frac{1}{2k_0}$$

as $\eta_{j,t} > k$ for j = 1, 2, ..., n and t = 1, 2, ... since x be a hypercyclic vector for S then there are natural numbers

$$\eta_{1,t}, \eta_{2,t}, ..., \eta_{n,t}$$

such that,

$$||T_1^{\eta_{1,t}}T_2^{\eta_{2,t}}...T_n^{\eta_{n,t}}(\omega) + \omega|| \le \frac{1}{2k}.$$

Since $\lim(u_i) = 0$ as $i \to 0$, then there is α such that

$$||u_{\alpha}|| \le \frac{1}{2k_0 ||T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}||}.$$

For k, take $\eta_{i,t}$ with property $\eta_{i,t} > k$ and $\eta_{i,t} > k_0$ for i = 1, 2, ..., n and t=1,2,..., now we have

$$\begin{split} \|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}T_1^{\eta_{1,t}}T_2^{\eta_{2,t}}...T_n^{\eta_{n,t}}(u_i) + \omega\| \\ &= \|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}T_1^{\eta_{1,t}}T_2^{\eta_{2,t}}...T_n^{\eta_{n,t}}(u_i) \\ &+ T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(x) - T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(x) + \omega\| \\ &= \|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(T_1^{\eta_{1,t}}T_2^{\eta_{2,t}}...T_n^{\eta_{n,t}}(u_i) - x) + \\ &T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(x) + \omega\| \\ &\leq \|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(T_1^{\eta_{1,t}}T_2^{\eta_{2,t}}...T_n^{\eta_{n,t}}(u_i) - x)\| + \\ &\|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(x) + \omega\| \\ &\leq \|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(x) + \omega\| \\ &\leq \|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}(u_i) - x)\| + \frac{1}{2k} \\ &\leq \|T_1^{\eta_{1,k}}T_2^{\eta_{2,k}}...T_n^{\eta_{n,k}}\| + \frac{1}{2r_i} \\ &\leq \frac{1}{2k} + \frac{1}{2k} \end{split}$$
 Since

$$\|\omega + T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i) - x\| = \|\omega - x + T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i)\|$$

$$\leq \|\omega - x\| + \|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i)\|$$

$$\leq \frac{1}{2k} + \|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}\|.\|(u_i)\|$$

$$\leq \frac{1}{2k} + \frac{1}{2k}$$

$$\begin{split} &=\frac{1}{k} \\ \text{then } h = \omega + T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i) \in V_k \text{ so} \\ &\|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(h)\| = \|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(\omega + T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i))\| \\ &= \|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(\omega) + T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i))\| \\ &= \|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(\omega) - \omega_0 + \\ & T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i)) + \omega_0 \| \\ &\leq \|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(\omega) - \omega_0 \| + \\ & \|T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(T_1^{\eta_{1,t}} T_2^{\eta_{2,t}} ... T_n^{\eta_{n,t}}(u_i)) + \omega_0 \| \\ &\leq \frac{1}{2k} + \frac{1}{2k} \\ &= \frac{1}{k} \end{split}$$

that is

$$T_1^{\eta_{1,k}} T_2^{\eta_{2,k}} ... T_n^{\eta_{n,k}} (V_k) \bigcap U_k \neq \phi$$

By this the proof is complete.

Lemma 3.3 Let \mathcal{X} be a separable Banach space and $\mathcal{T} = (T_1, T_2, ..., T_n)$ is a chaotic n-tuple of commutative continuous linear operators on \mathcal{X} . the tuple \mathcal{T} satisfying the hypothesis of The Hypercyclicity Criterion.

proof. Since the tuple \mathcal{T} is a chaotic tuple, then have a set of semi-periodic vector, so by the Theorem 3.2, the \mathcal{T} satisfying the hypothesis the Hypercyclicity Criterion.

Lemma 3.4 Let \mathcal{X} be a separable Banach space and $\mathcal{T} = (T_1, T_2, ..., T_n)$ is an n-tuple of commutative bounded linear mapping on \mathcal{X} and \mathcal{T} have a dense generalized kernel, then tuple \mathcal{T} satisfying the hypothesis of The Hypercyclicity Criterion.

proof. For proof of this lemma, it is sufficient to choice a vector x for the tuple \mathcal{T} , by the theorem 3.2 the proof is clear.

ACKNOWLEDGEMENTS. This research was partially supported by a grant from Research Council of Islamic Azad University, Genaveh Branch, so the authors gratefully acknowledge this support.

References

- [1] P. S. Bourdon, Orbit of hyponormal operators, Mich. Math. Jour. , 44 (1997),345-353.
- [2] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, *Proc. Amer. Math. Soc.*, **100** (1987), 281-288.
- [3] M. Habibi and F. Safari, n-Tuples and Epsilon Hypercyclicity, Far East Jour. of Math. Sci. , 47 , No. 2 (2010), 219-223.
- [4] M. Habibi and F. Safari, Chaoticity of a Pair of Operators, *Int. Jour. of App. Math.*, **24**, No. 2 (2011), 155-160.
- [5] M. Habibi and B. Yousefi, Conditions for a tuple of operators to be topologically mixing, *Int. Jour. of App. Math.*, **23**, No. 6 (2010), 973-976.
- [6] B. Yousefi and M. Habibi, Syndetically Hypercyclic Pairs, *Int. Math. Fo-rum*, **5**, No. 66 (2010), 3267 3272.
- [7] B. Yousefi and M. Habibi, Hereditarily Hypercyclic Pairs, *Int. Jour. of App. Math.*, **24**, No. 2 (2011), 245-249.
- [8] B. Yousefi and M. Habibi, Hypercyclicity Criterion for a Pair of Weighted Composition Operators, *Int. Jour. of App. Math.*, **24**, No. 2 (2011), 215-219.

Received: September, 2011