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Abstract

Quasi-continuity (in the sense of Kempisty) generalizes directional
continuity of complex-valued functions on open subsets of Rn or Cn, and
in particular provides certain approach regions at every point. We show
that these can be used as a proof tool for proving several properties
for Lebesgue measurable, locally bounded, quasi-continuous functions
e.g. that for such a function f the polynomial ring C(M,K)[f ] (where
K = R or C) satisfies that the equivalence classes under identification
a.e. have cardinality one and an asymptotic maximum principle.
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1 Introduction

The purpose of this article is to consider some properties of Lebesgue measur-

able, locally bounded quasi-continuous functions by pointing out the existence

of approach regions, and show that these in turn can be used as a proof tool.

In this introduction we present some problems which can be treated using ap-

proach regions.

Let M be a domain in Rn (Cn). We shall denote by L1(M) the set of equiva-

lence classes of integrable functions, where f, g are called equivalent, denoted

f ∼ g, if they agree a.e. with respect to Lebesgue measure on M . Clearly

f, g ∈ C(M, K) (K = C or R) together with [f ] = [g] implies that f ≡ g
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(pointwise) due to the fact that a continuous function which vanishes a.e. van-

ishes identically. In other words the equivalence classes in C(M, K)/ ∼ each

consist of precisely one element.

Question. Is C(M, K) maximal with this property?

The answer is no and we provide in Proposition 3.14 proper superspaces of

C(M, K) with this property. These are in turn subspaces of a superspace of

C(M, K) whose elements satisfy a generalization of directional continuity (see

Section 2), and it turns out that this larger class shares several properties

with the set of continuous functions (see Section 3). The given generalization

of directional continuity turns out in certain natural settings to be equiva-

lent to one introduced by Kempisty [8] called quasi-continuity, however it is

known that there exists a quasi-continuous function which is (the axiom of

choice is needed) not Lebesgue measurable (see Marcus [9]), and also e.g. the

function f(x) := x− 1
2 , x ∈ (0, 1), f(x) = 0, x ∈ (−1, 0] is Lebesgue integrable,

quasi-continuous but not locally bounded at x = 0. We shall in this text

restrict ourselves to the the case of Lebesgue measurable, locally bounded,

quasi-continuous functions on domains in Rn (Cn). For an introduction to

quasi-continuous functions please see Neubrunn [10] and the references therein.

We shall consider some properties inherited by functions which can be locally

L1-approximated by certain families of continuous functions.

Example 1.1. A function on a domain M of Cn which can be uniformly

approximated by elements in a class of functions (K-valued, K = R or C)

which have restrictions M that are continuous, is itself continuous but if the

convergence is only pointwise one obtains a so called Baire 1 function. Under

certain natural circumstances the boundary maximum modulus principle will

be inherited for continuous functions which can be uniformly approximated by

functions which satisfy this principle.

A study of not necessarily continuous but locally bounded Lebesgue mea-

surable functions on smooth manifolds cannot assume local uniform approx-

imability by continuous functions. There are exceptional cases where local

L1-approximability by appropriate families of continuous functions imply lo-

cal uniform approximation, e.g. if in Example 1.1 we have that the domains

of the approximating elements and that of the restrictions have the same di-

mension and if it concerns approximation by holomorphic functions then local

L1-approximation implies that the approximation is in fact locally uniform

(see Hörmander [6], Theorem 1.2.4).



Approach compatible functions 661

Question. Can we find an analogue of Example 1.1 for Lebesgue measurable

locally bounded quasi-continuous functions?

For the first part of Example 1.1 we refer the reader to Kantorovich [7] for an

analysis of the so called Baire order of a family of functions properly containing

the continuous functions (see also Rodriguez-Salinas [11]). We mention that it

is already known (see Natanson [12]) that a (real-valued) Lebesgue measurable

function (in one real variable) is equivalent to a function of Baire class ≤ 2.

We prove an analogue of the second part (see Proposition 3.24).

In a metric space continuity is equivalent to sequential continuity, and the gen-

eralization of directional continuity which quasi-continuity involves that there

for every point exists an open set with the point in its closure, such that se-

quential continuity holds for any sequence chosen within the special open set

(see Proposition 3.15), this is in one dimension precisely continuity to one side.

In higher dimension it is a stronger property.

The main results of this text are a uniqueness property for polyno-

mial rings C(M, K)[f ] where f is approach compatible (see Proposition

3.14) and an asymptotic local maximum modulus principle (see Proposi-

tion 3.24).

2 Approach regions and Lebesgue measurable

locally bounded quasi-continuous functions

We shall formulate the definition of Lebesgue measurable locally bounded

quasi-continuous functions in terms of so called approach regions. But first

we give the general definition of quasi-continuity (which will reduce to the def-

inition involving approach regions for Lebesgue measurable, locally bounded

functions on domain of Rn or Cn).

Definition 2.1 (Quasi-continuous, see Kempisty [8]). A function f :

X → Y from a topological space X to a metric space (Y, d) is called quasi-

continuous at x0 ∈ X if ∀ε > 0 and each neighborhood Ux0 of x0 ∃ a nonempty

open set Wx0 ⊂ Ux0 such that d(f(x), f(x0)) < ε,∀x ∈ Wx0.

We have for any domain M of Rn (or Cn) C(M, K) � {f : M → K; f is

Lebesgue measurable, locally bounded, quasi-continuous} � {f : M → K; f
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is locally integrable} . Quasi-continuous functions are a generalization of func-

tions U → R, U ⊂ R an open connected set subset, which at every point of

U is left or right continuous. Of course if the function is both left and right

continuous at a point then it is continuous at that point, however in higher

dimension there are infinitely many directions of approach to every point.

Definition 2.2 (ε-approach region). Let f be a measurable complex-valued

function on an open subset M of some Rn or Cn. Given a point p0 ∈ M and

an ε > 0, we define an ε-approach region with respect to f at p0, ωf
p0,ε to be

the set,

ωf
p0,ε := {z ∈ M : |f(z) − f(p0)| < ε}◦,

where we use the notation X◦ for the interior of a set X. Note that we always

have p0 ∈ {z ∈ M : |f(z) − f(p0)| < ε}. Note also that ωf
p0,ε is always open but

can be empty.

Definition 2.3 (Approach compatible function). Let M be an open sub-

set of Rn or Cn. We call a locally bounded Lebesgue measurable function f,

approach compatible at p0 ∈ M, if for any open ambient neighborhood Up0 of

p0, ωf
p0,ε ∩Up0 �= ∅, ∀ε > 0. If f is approach compatible at every point of M we

simply say that f is approach compatible.

Remark 2.4. Local boundedness together with Lebesgue measurability implies

that any approach compatible function is locally integrable. The requirement of

local boundedness is important, indeed we wish that for a given ε > 0,
∫

ωf
p0,ε

|f |
is not finite since we are interested in situations when f is locally integrable.

Observation 2.5. Let M be an open subset of some Rn (or Cn) and let K = C
or R. Then a function f : M → K is approach compatible iff it is Lebesgue

measurable, locally bounded and quasi-continuous on M .

Proof. Let p0 ∈ M and let Up0 ⊂ M be an open neighborhood of p0. If f

is quasi-continuous at p0 then |f(z) − f(p0)| < ε,∀z ∈ Wp0 for some open

Wp0 ⊂ Up0. Now Wp0 = {z ∈ Wp0 : |f(z) − f(p0)| < ε} ⊆ Up0 ∩ {z ∈
M : |f(z) − f(p0)| < ε} and we have that Wp0 is open so Up0 ∩ {z ∈ M :

|f(z) − f(p0)| < ε} must contain an interior point which in turn must lie in

{z ∈ M : |f(z) − f(p0)| < ε}◦ ∩ Up0 = ωf
p0
∩ Up0,

Conversely if f is approach compatible at p0 then Up0 ∩ ωf
p0

is open and

nonempty thus contains an open ball, and since this can be done for any

ε > 0, f must be quasi-continuous.
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For simplicity we shall (in light of Observation 2.5 and because we shall

only consider complex-valued functions on real (complex) open subsets of

Rn (Cn)) in the remaining part of this text use the term approach compat-

ible instead of Lebesgue measurable locally bounded quasi-continuous.

3 Properties

For the purposes of the proofs of this text the quintessential properties of

approach compatible functions are given Observation 3.10 and the combined

properties which provide that the polynomial ring of an approach compatible

function over the continuous functions belongs to the set of approach com-

patible functions. First of all we note the following consequence of approach

compatibility.

Observation 3.1. A function f approach compatible at a point p satisfies that

p ∈ ωf
p,ε, recall the approach regions are open and nonempty. Also note that

ε′ > ε ⇒ ωf
p,ε ⊆ ωf

p,ε′ and since each Eε := Bp(δ)∩ωf
p,ε is by definition open for

all δ > 0 we have dist(p, ωf
p,ε) = 0. A result of this is that if another function

g satisfies that there exists for each ε > 0 another ε′ > 0 such that,

ωf
p,ε′ ∩ Bp(ε

′) ⊆ ωg
p,ε,

then g is approach compatible at p, namely any open neighborhood Up of p has

nonempty open intersection with ωf
p,ε′∩Bp(ε

′) (because there is a nonempty open

subset of ωf
p,ε′ containing p on the boundary) thus also has open intersection

with ωg
p,ε.

It is clear that approach compatible functions are not necessarily continuous

and that continuous functions are approach compatible, and in one real variable

functions continuous to one side at every point are approach compatible.

Example 3.2. F (x) := 1 for x ∈ [0, 1] and zero otherwise, is approach

compatible since it is at every point left or right continuous. Note that this

function is globally neither left continuous nor right continuous. Any neigh-

borhood U1 of the point x = 1 has open intersection with the open interval

(0, 1), and 0 = |F (x) − F (1)| < ε,∀ε > 0, x ∈ [0, 1], in fact for any ε < 1,

ωF
0,ε := (0, 1). Similarly one checks the only other point of discontinuity x = 0.

Example 3.3. Let M = (−1, 1) and let f(x) = (1 − x/2) · sin
(

1
x

)
, x ∈

(0, 1), f(x) = 0, x ∈ (−1, 0]. This function is approach compatible since it
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is left or right continuous at every point of M. For any x ∈ M, there is a

connected component of ωf
x,ε which contains x in its closure.

The set of approach compatible functions is not closed under addition or

multiplication.

Example 3.4. Let

F1(x) :=

{
1
2

, x ≥ 0

0 , else
; F2(x) :=

{
0 , x > 0

−1
2

, else

where F1 is right continuous and F2 is left continuous everywhere (in particular

both are approach compatible). Define also the approach compatible functions,

G1(x) :=

{
1
2

, x ≥ 0

1 , else
; G2(x) :=

{
1 , x > 0

−1
2

, else

Then we have,

(F1 + F2)(x) =

⎧⎨
⎩

1
2

, x > 0

0 , x = 0

−1
2

, x < 0

; (G1 · G2)(x) =

⎧⎨
⎩

1
2

, x > 0

−1
4

, x = 0

−1
2

, x < 0

neither of which is approach compatible at the origin.

Here is a complex-valued example.

Example 3.5. Define the real smooth submanifold of C2,

M := {(z1, z2) ∈ C2 : |z| < 1}.
Then the restriction to M, of the function,

f = z1e
�Imz2�,

(where �·� denotes the least upper integer) is an approach compatible func-

tion since it satisfies on {z ∈ M : Imz2 > 0} that f(z) = z1 · e, (thus is

a holomorphic function on the upper half-sphere, in particular any point has

open nonempty ε-approach regions for all ε > 0), and on the lower hemishpere

{z ∈ M : Imz2 ≤ 0} it satisfies f(z) = z1 (a holomorphic function on the

interior). If we take any point p ∈ M \ {Imz2 �= 0} then p belongs to the

interior of ωf
p,ε. For p ∈ M \ {Imz2 = 0} let U be an open neighborhood of p

in M. Then U has open intersection with the interior of each hemisphere. By

the open mapping theorem for holomorphic functions (f being holomorphic in

the interior of each hemisphere) f is approach compatible at p. This example

is clearly Lebesgue measurable, locally bounded on M and non-continuous on

{Imz2 = 0, z1 �= 0}.
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Another property of quasi-continuous functions which is not shared with

the set of continuous functions is the fact that a bijective quasi-continuous

function need not have quasi-continuous inverse (see Grande & Natkaniec [3]).

For further examples of quasi-continuous functions see e.g. Neubrunn [10].

3.1 A uniqueness property for certain polynomial rings

After having seen several examples of properties different compared to the

continuous subclass we now present some properties shared with the continuous

functions.

Observation 3.6. The set of approach compatible functions is closed under

addition by the everywhere constant functions. Let c ∈ C. If f is approach

compatible on an open subset M of some Rn (or Cn) and p ∈ M, then ωf+c
p,ε =

{z ∈ M : |(f(z) + c) − (f(p) + c)| = |f(z) − f(p)| < ε}◦ = ωf
p,ε. It is also

clear that −f is approach compatible, since {|(−f(z)) − (−f(p))| < ε} =

{|f (z) − f(p)| < ε}, so ω−f
p,ε = ωf

p,ε.

More can be said.

Proposition 3.7. Let M be an open subset of some Rn (or Cn). The set of

approach compatible functions is closed under addition by continuous functions.

Furthermore if f is approach compatible and g ∈ C(M, K) (where K = C or

R), then for any p ∈ M and ε > 0, the ε-approach region of f +g at p contains

the (open) intersection with the ε′-approach region of f at p with Bp(ε
′) for

some ε′ > 0.

Proof. Let p ∈ M, let f be approach compatible on M and let g ∈ C(M, K).

For the ε-approach region at any p ∈ M of g we know that it is an open

neighborhood of p which implies that ωf
p,ε ∩ ωg

p,ε is open and nonempty. For

the ε-approach regions with respect to f + g we have,

ωf+g
p,ε = {z ∈ M : |(f(z) + g(z)) − (f(p) + g(p))| < ε}◦ =

{z ∈ M : |(f(z) − f(p)) + (g(z) − g(p))|︸ ︷︷ ︸
≤|f(z)−f(p)|+|g(z)−g(p)|

< ε}◦.

Hence the (due to the definition of approach regions necessarily nonempty

open) intersection ωf
p,ε/2 ∩ ωg

p,ε/2 = {z ∈ M : |f(z) − f(p)| < ε/2}◦ ∩ {z ∈ M :

|g(z) − g(p)| < ε/2}◦, belongs to ωf+g
p,ε , and this can be done for any ε > 0.

Now g being continuous means that ωg
p,ε/2 contains an open ball say Bp(ε

′).
This means by definition of approach region of f at p that,

ωf+g
p,ε ⊃ ωf

p,ε/2 ∩ ωg
p,ε/2 ∩ Bp(ε

′) = Bp(ε
′) ∩ ωf

p,ε/2 �= ∅.
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Finally, we recall that ε1 ≥ ε2 ⇒ ωf
p,ε2

⊆ ωf
p,ε1

thus making sure that ε′ < ε/2

implies that

∅ �= Bp(ε
′) ∩ ωf

p,ε′ ⊂ ωf+g
p,ε .

By Observation 3.1 this implies that f + g is approach compatible.

Proposition 3.8. If f is approach compatible on an open subset M of some

Rn (or Cn) then so is fk and k · f for all finite k ∈ N. Furthermore for any

p ∈ M and sufficiently small ε > 0 the ε-approach region of fk and k · f at p

each contain the (open) intersection with the ε′-approach region of f at p with

Bp(ε
′) for some ε′ > 0.

Proof. We have,

ωkf
p,ε = {z ∈ M : |kf(z) − kf(p)| < ε}◦ = {z ∈ M : k |f(z) − f(p)| < ε}◦ =

{z ∈ M : |f(z) − f(p)| < ε/k}◦ = ωf
p, ε

k
.

so any ωkf
p,ε contains ωf

p, ε
k

whose intersection with any open neighborhood of p

is nonempty open, so kf is approach compatible. As for fk we first look at

the case k = 2. We have because f is locally bounded that there exists (when

restricting attention to a subset of a fix approach region) a 0 < C < ∞ such

that |f(z) + f(p)| < C on (the open) ωf
p,ε ∩ Bp(ε). Then,

ωf2

p,ε ∩ Bp(ε) = {z ∈ M :
∣∣f 2(z) − f 2(p)

∣∣ < ε}◦ ∩ Bp(ε) =

{z ∈ M : |(f(z) − f(p))(f(z) + f(p))|︸ ︷︷ ︸
≤C|f(z)−f(p)|

< ε}◦ ∩ Bp(ε).

Thus,

ωf
p, ε

C
∩ Bp(ε) ⊂ ωf2

p,ε,

so by Observation 3.1 f 2 is approach compatible at p, and we can set ε′ := ε/C

in the statement of the proposition. Now we use induction in k, namely let

k > 2 and assume f j is approach compatible for 1 ≤ j ≤ k − 1, and that for

any ε,∃ε′ such that ωf
p,ε′ ∩ Bp(ε

′) ⊂ ωfj

p,ε. We have,∣∣fk(z) − fk(p)
∣∣ ≤∣∣(f(z) + f(p))(f k−1(z) − fk−1(p)) + f(z)fk−1(p) − f(p)f k−1(z)

∣∣ ≤
|(f(z) + f(p))| ∣∣fk−1(z) − fk−1(p)

∣∣ + |f(z)f(p)| ∣∣fk−2(p) − fk−2(z)
∣∣ .

Again since f is locally bounded we have when restricting attention to a subset

of a fix approach region that there is a C such that max{|(f(z) + f(p))| ,
|f(z)f(p)|} ≤ C. Thus,∣∣fk(z) − fk(p)

∣∣ ≤ C
∣∣fk−2(z) − fk−2(p)

∣∣ + C
∣∣fk−1(z) − fk−1(p)

∣∣ . (1)
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By the induction hypothesis there exists ε′ > 0, ε′′ > 0 such that, ωf
p,ε′∩Bp(ε

′) ⊂
ωfk−1

p,ε , and ωf
p,ε′′ ∩ Bp(ε

′′) ⊂ ωfk−2

p,ε . Set ε′′′ := min{ε′, ε′′}. Then,

ωf
p,ε′′′ ∩ Bp(ε

′′′) ⊂ ωfk−1

p,ε ∩ ωfk−2

p,ε .

Now by Eqn.(1),

ωfk

p,2Cε∩Bp(ε) = {z ∈ M :
∣∣fk(z) − fk(p)

∣∣ < 2Cε}◦∩Bp(ε) ⊃ ωfk−2

p,ε ∩ωfk−1

p,ε ∩Bp(ε).

Set δ := Cε. Then for each δ > 0, ∃ε′′′ such that,

ωfk

p,δ ∩ Bp(ε
′′′) = {z ∈ M :

∣∣fk(z) − fk(p)
∣∣ < δ}◦ ∩ Bp(ε

′′′) ⊃ ωf
p,ε′′′ ∩ Bp(ε

′′′).
(2)

Thus by Observation 3.1 fk is approach compatible at p, and Eqn.(2) clearly

shows the last part of the statement of the proposition for fk, so by induction

we are done.

Proposition 3.9. Let M be an open subset of some Rn (or Cn). The set

of approach compatible functions is closed under multiplication by continuous

functions i.e. for any p ∈ M and g ∈ C(M, K) (K = R or C) it holds that

g · f is approach compatible at p, and for ε > 0 the ε-approach region of f · g
at p each contain Bp(ε

′) ∩ ωf
p,ε′ for some ε′ > 0.

Proof. Let f be approach compatible and g ∈ C(M, K). We use that

|f(z)g(z) − f(p)g(p)| =∣∣(f(z) + g(z))2 − (f(p) + g(p))2 − (f 2(z) − f 2(p)) − (g2(z) − g2(p))
∣∣ ≤∣∣(f(z) + g(z))2 − (f(p) + g(p))2

∣∣ +
∣∣f 2(z) − f 2(p)

∣∣ +
∣∣g2(z) − g2(p)

∣∣ .
In particular,

ωfg
p,ε ⊇ ω

(f+g)2

p, ε
3

∩ ωf2

p, ε
3
∩ ωg2

p, ε
3
. (3)

So (by Observation 3.1) we are done if we can show that the right hand side

contains for some ε′, the set Bp(ε
′) ∩ ωf

p,ε′. By Proposition 3.8 applied to f 2

there exists ε1 such that,

Bp(ε1) ∩ ωf
p,ε1 ⊆ ωf2

p, ε
3
. (4)

Since g is continuous its ε-approach regions are open so clearly there exists ε2

such that,

Bp(ε2) ∩ ωf
p,ε2 ⊆ ωg2

p, ε
3
. (5)
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Also by Proposition 3.7 to (f +g) followed directly by an application of Propo-

sition 3.8 to the second power (f + g)2 there exists ε3 > 0 such that,

Bp(ε3) ∩ ωf
p,ε3 ⊆ ω

(f+g)2

p, ε
3

. (6)

Setting ε′ := min{ε1, ε2, ε3} we have that Eqn.(4), Eqn.(5) together with

Eqn.(6) yield,

Bp(ε
′) ∩ ωf

p,ε′ ⊆ ω
(f+g)2

p, ε
3

∩ ωf2

p, ε
3
∩ ωg2

p, ε
3
.

We have by Eqn.(3) that ωfg
p,ε contains Bp(ε

′) ∩ ωf
p,ε′ which is open nonempty

(since f is approach compatible). Again by approach compatibility of f at p

we have that for any open neighborhood U of p, U∩Bp(ε
′)∩ωf

p,ε′ ⊆ U∩∩ωf
p,ε′ so

the right hand side must be open nonempty. Thus fg is approach compatible

at p. furthermore it contains for any ε > 0, Bp(ε
′)∩ ωf

p,ε′ for some ε′ > 0 so we

are done.

The following is another property which the approach compatible functions

share with the continuous functions.

Observation 3.10. If f is an approach compatible function on an open subset

U (of Rn or Cn) such that f vanishes a.e. then f must vanish pointwise.

Proof. If f(p) �= 0, then there exists an ε > 0 such that |f | > 0 on the ε-

approach region ωf
p,ε. By definition of approach compatibility these approach

regions have nonempty interior thus nonzero Lebesgue measure so it cannot

hold that f = 0 a.e. on U, thus we must have p ∈ f−1(0), ∀p ∈ U.

Let M be an open subset of some Rn or Cn. Let ∼ denote the equivalence

relation on a given subset of the set of integrable functions, given by f ∼ g,

if they agree a.e. with respect to Lebesgue measure on M . We shall show a

uniqueness property for certain superspaces of the continuous functions.

Definition 3.11. Let M be an open subset of some Rn or Cn, and let

f be approach compatible on M. Denote by C(M, K)[f ] the set of polyno-

mials in f with coefficients in C(M, K), i.e. functions of the form F (z) =∑N
j=1 cj(z)f j(z), cj(z) ∈ C(M, K), for some finite positive integer N .

Proposition 3.12. Let M be an open subset of some Rn or Cn, and let f

be an approach compatible K-valued (K = C or R) function on M. Then

C(M, K)[f ] belongs to the set of approach compatible functions.

Proof. We shall need the following lemma.
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Lemma 3.13. If g, h are two functions approach compatible at p such that

for any ε > 0, ωg
p,ε contains Bp(ε

′) ∩ ωf
p,ε′ and ωh

p,ε contains Bp(ε
′′) ∩ ωf

p,ε′′ for

some ε′ > 0, ε′′ > 0, then g + h is approach compatible.

Proof. Setting ε′′′ := min{ε′, ε′′} we have, Bp(ε
′′′) ∩ ωf

p,ε′′′ ⊆ ωg
p,ε ∩ ωh

p,ε. Also as

in the proof of Proposition 3.7,

ωg+h
p,ε = {z ∈ M : |(g(z) + h(z)) − (g(p) + h(p))| < ε}◦ =

{z ∈ M : |(g(z) − g(p)) + (h(z) − h(p))|︸ ︷︷ ︸
≤|f(z)−f(p)|+|g(z)−g(p)|

< ε}◦.

so ωg
p,ε ∩ ωh

p,ε ⊆ ωg+h
p,2ε , where the left hand side contains Bp(ε

′′′) ∩ ωf
p,ε′′′, which

by approach compatibility of f will have nonempty open intersection with any

open neighborhood U of p in M (because U∩(Bp(ε
′′′)∩ωf

p,ε′′′) = (U∩(Bp(ε
′′′))∩

ωf
p,ε′′′)). This completes the proof.

The proposition can now be realized as a consequence of Lemma 3.13 together

with the accumulated result of Proposition 3.7 (closedness under addition by

continuous functions), Proposition 3.8 (closedness under taking finite powers

and sums, fk, kf) and Proposition 3.9 (closedness under multiplication by

continuous functions). Namely each proposition yields an approach compatible

function which for any ε > 0 contains Bp(ε
′) ∩ ωf

p,ε′ for some ε′ > 0, so by

Lemma 3.13 a finite sum of such functions is approach compatible at p and we

are done.

Proposition 3.14. Let M be a an open subset of Rn (Cn) and let f be an

approach compatible K-valued (K = C or R) function on M. Then,

g ∈ C(M, K)[f ] ⇒ the equivalence class of g in C(M, K)[f ]/ ∼
has cardinality one.

Proof. Let g, h ∈ C(M, K)[f ], g = h a.e. with respect to Lebesgue measure on

M. By Proposition 3.9, Proposition 3.12 this means that g+(−h) is also an ap-

proach compatible function. But by Observation 3.10 any approach compatible

function which vanishes a.e. (which clearly (g − h) must) vanishes identically.

Thus g ≡ h on M.

3.2 A note on the perspective of generalizing directional

continuity

In this section we point out that approach compatibility has a sequential for-

mulation and we show that as a consequence certain operations e.g. taking
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the absolute value preserves approach compatibility. But first we look at a

formulation generalizing sequential continuity.

Proposition 3.15. Let M be an open subset of some Rn or Cn, p0 ∈ M, and

let f be a measurable locally bounded function M → K (where K = R or C).

Then the following assertions are equivalent:

(i) f is approach compatible at p0 ∈ M.

(ii) There exists a open set Up0 ⊂ M with p0 ∈ U p0, such that for any

sequence {zj}j∈� in Up0 with zj
j→ p0, it holds that f(zj)

j→ f(p0).

Proof. (i)⇒(ii).

By definition there exists for each ε > 0 an (open) nonempty approach region

at p, denoted ωf
p,ε. Let Bp(ε) denote the ball in M of radius ε > 0 centered at

p, and set (see Figure 1),

Eε := ωf
p0,ε ∩ Bp0(ε).

Let 1 > ε1 > 0. If Eε1 intersects ∂Bp0(ε1) set r1 := ε1. If instead Eε1

does not intersect ∂Bp0(ε1) (in which case we know that ωf
p0,ε1 ∩ Bp0(ε1) is

a nonempty open proper subset of Bp0(ε1) and contains p0 in its closure) set

r1 := maxz∈∂Eε1
|p0 − z| . Define the set,

F1 :=

(
Bp0(r1) \ Bp0

(r1

2

))
∩ Eε1, (7)

is open and nonempty. Denoting B1 := Bp0(
r1

2
), we see that F1 ∩ B1 = ∅, but

that F1 is open and nonempty and dist(F1, p0) ≤ r1. Now define Fk, k ≥ 2,

inductively as follows. If E rk−1
2

intersects ∂Bp0

(rk−1

2

)
set rk := rk−1

2
. If instead

E rk−1
2

does not intersect ∂Bp0

(rk−1

2

)
set rk := maxz∈∂E rk−1

2

|p0 − z| . Set Bk =

Bp0(
rk

2
) and set,

Fk :=

(
Bp0(rk) \ Bp0

(rk

2

))
∩ E rk−1

2
. (8)

We have that Fk∩Bk = ∅, but that Fk is open and nonempty and dist(Fk, p0) ≤
rk. For z ∈ Eε it holds simultaneously that |z − p0| < ε and |f(z) − f(p0)| < ε,

so by construction |f(z) − f(p0)| < rk, as soon as z ∈ Fk. Furthermore, rk → 0

as k → ∞. Finally setting,

Up0 :=
∞⋃

k=1

Fk, (9)



Approach compatible functions 671

Figure 1: Part of the ε-approach region of f at p0 belonging to Bp0(r) and

the intersection with the depicted ball of radius ε shrinks towards p0 as ε

decreases. By definition of approach region each such intersection is open in

M, and the figure depicts a case when there is only one connected component

of the ε-approach region.

we obtain that for any sequence {zj}j∈� in Up0 with zj
j→ p0, it holds that

f(zj)
j→ f(p0). This proves the implication (i)⇒(ii).

(ii)⇒(i).

By assumption there exists a open set Up0 ⊂ M with p0 ∈ U p0, satisfying that

for any sequence {zj}j∈� in Up0 with zj
j→ p0, it holds that f(zj)

j→ f(p0).

Let ε > 0 be fix. If f is not approach compatible at p0 then there exists

a ball Bp0(r0), 0 < r0 < ε, such that Bp0(r0) ∩ ωf
p0,ε = ∅. This implies that

{|f (z) − f(p0)| ≥ ε}∩Bp0(r0) is dense. But Bp0(r0)∩Up0 is open and nonempty

since p0 ∈ Up0, so we can find a sequence {zj}j∈�, zj ∈ Bp0(r0) ∩ Up0, zj → p0

such that |f(zj) − f(p0)| ≥ ε,∀j ∈ N, contradicting the assumed property of

Up0 . This completes the proof.
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Note that if in the proof it holds p ∈ Up, that will imply that f is sequentially

continuous at p and recall that for metric spaces continuity is equivalent to

sequential continuity. Proposition 3.15 immediately yield the following corol-

lary.

Corollary 3.16. Let M be an open subset of some Rn (or Cn) and let

for any approach compatible function f on M, and p0 ∈ M, Up0 be as in

Proposition 3.15 (i.e. Up0 is associated to f). Let G be a self-map on the space

of functions M → K, which preserves convergence along a sequences within

the approach region, in the following sense: if f : M → K, is an approach

compatible function and {zj}j∈� is a sequence in Up0 converging to p0, such

that {f(zj)}j∈� converges (necessarily to f(p0)), then {G(f)(zj)}j∈� converges

to G(f)(p0). Then also G(f) is approach compatible at p0.

Proof. For Up0 as in Proposition 3.15, and {zj}j∈� a sequence in Up0 with

zj
j→ p0, we know that f(zj)

j→ f(p0). This yields a sequence of numbers in

K, {G(f)(zj)}j∈�, where the particular preservation of convergence property

for G gives that G(f)(zj) → G(f)(p0). Since this holds for any {zj}j∈� in Up0

with zj
j→ p0, G(f) satisfies the conditions of Proposition 3.15.

Observation 3.17. Let {zj}j∈� be a sequence of complex numbers such that

zj → p0. Let f be a function such that f(zj) → f(p0). Let {εj}j∈� be a se-

quence of positive number εj → 0. For points zj within Bzj
(εj) ∩ ωf

zj ,εj
we

have |f(zj) − f(p0)| < εj. Thus because zj → p0 we can always find {εj}j∈�
such that, |f(p0)| − |f(zj) − f(p0)| ≤ |f(zj)| ≤ |f(zj) − f(p0)| + |f(p0)| im-

plies |f(zj)| → |f(p0)| . A consequence of this is that taking the absolute value

(f �→ |f |) yields a map G which has the property of Corollary 3.16.

3.3 An application in the presence of appropriate ap-

proximation

If M is an open subset of Rn (or Cn) and f ∈ C(M, K) can be locally rep-

resented on say ω � M (� meaning relatively compact) represented as the

pointwise limit of a sequence {Pj}j∈�, then if the moduli of the approximat-

ing elements are constant a.e. on ω, so is the modulus of the local limit. We

consider the analogous statement for approach compatible f .

Proposition 3.18. Let U be an open subset of Rn (or Cn) and let f be

an approach compatible function on U such that |f | is bounded on U . As-

sume the nonnegative real-valued function |f | is the L1-limit of the nonneg-

ative real-valued functions on Rn (or Cn) {ϕj}j∈�, where each ϕj satisfies
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ϕj(z) ≡ cj , ∀z ∈ U (cj a constant cj ∈ R≥0, ∀j ∈ N). Then |f | ≡constant

pointwise on U.

Proof. Set F := |f | . As soon as U has nonzero measure we have that c :=

limj cj exists and is finite because F is locally integrable as a consequence of

f being locally integrable (by definition). Furthermore (F − c) = 0 a.e. on U.

Since f is bounded on U , Observation 3.17 yields that F is approach compatible

on U (since f is). The set of approach compatible functions is closed under

addition by constant functions, see Observation 3.6, thus (F − c) is approach

compatible so if (F (p)− c) > 0 then (F − c) > 0 on some approach region ωF
p,ε,

with ε sufficiently small, which by definition has nonzero Lebesgue measure so

that would contradict vanishing a.e., hence we must have p ∈ F−1(c), ∀p ∈ U.

p being arbitrary in U implies |f | ≡ c pointwise on U.

Remark 3.19. In our application of Proposition 3.18 we shall consider non-

negative real-valued functions of the form {|Pj |}j∈� where each Pj has constant

modulus |Pj(z)| ≡ cj , ∀z ∈ U and where the Pj locally L1-approximate f near

some reference point.

Proposition 3.18 can be combined with the following lemma. As before we let

the field K be R or C.

Lemma 3.20 (Ambient critical point). Let A be a subspace of the C2-

functions on a possibly higher dimensional open superset M̃ (of some RN

or CN) of an open subset M (of some Rn or Cn) whose restrictions to M

obey the weak maximum principle1. Let q ∈ M, and let P ∈ A satisfy

d(ReP )q = d(ImP )q = 0, where q ∈ M. Assume there exists a connected

open M−neighborhood, V, of q such that |P (z)| ≤ |P (q)| , ∀z ∈ V. Then either

|P |M | ≡constant or there exists a point q′ ∈ V with |P (q′)| = |P (q)| , dPq′ �= 0,

or ∃q′′ ∈ M with |P (q′′)| = |P (q)| , dPq′′ = 0 such that both Hess(ReP )q′′,

Hess(ImP )q′′ are singular.

Proof. If there is no Cauchy sequence {zj}j≥1, zj ∈ V, such that zj → q,

and such that |P (zj)| = |P (q)| , ∀j ≥ 1, then we can replace V by a smaller

M−open subset containing q such that |P (q)| > |P (z)| , ∀z ∈ V. But the

restriction of an element of A, cannot attain strict local maximum at any point

of M. Thus we can assume that there is a Cauchy sequence {zj}j≥1, zj ∈ V, such

that zj → q, and such that |P (zj)| = |P (q)| , i.e. q is an accumulation point for

a sequence of points, all rendering weak local maximum for |P | on V. We now

1By the weak maximum principle we mean that no element attains strict local maximum
at any point.
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use that a nondegenerate critical point is isolated from other critical points2

(see e.g. Guillemin & Pollack [4], p.43). If d(ReP )zj
= d(ReP )zj

= 0, ∀j ∈ N,

q is not an isolated critical point for neither Re(P ) nor Im(P ). But if q cannot

be a nondegenerate (since it is not isolated zj → q) critical point for Re(P )

or Im(P ) we have that that the real Hessians of Re(P ) and Im(P ), at q are

singular, and we already know that d(ReP )q = d(ReP )q = 0 and q renders a

weak local maximum. This completes the proof of the lemma.

Note that if in Observation 3.20 A consists of holomorphic functions then for

P ∈ A, dPq = 0 ⇒ d(ReP )q = d(ReP )q = 0, (where dPq denotes the complex

differential).

Corollary 3.21. Let M be an open subset of Rn or Cn and A a subspace of

the C2-functions (on a possibly higher dimensional M̃), such that the restric-

tions to M obey the weak maximum principle. Assume (P ∈ A, P |M �≡constant

attains weak local maximum within M at p ∈ M)⇒ (d(ReP )q = d(ReP )q = 0

and at least one of Hess(ReP ), Hess(ImP ) is nonsingular at p). Then any ap-

proach compatible function, f, L1-approximable on some ω � M, by restrictions

of elements in A, satisfies that |f |ω| ≡constant or it is locally L1-approximable

by elements of A which never attain weak maximum on M.

Proof. If infinitely many elements in a local (on ω) approximating sequence

{Pj}j∈� attain weak local maximum on ω then by Lemma 3.20 applied to each

they each have constant modulus. But they also constitute a subsequence

again L1-converging to f on ω thus by Proposition 3.18 |f |ω| ≡constant. If

only finitely many elements of {Pj}j∈� attain weak local maximum we can start

from a sufficiently large index so that the remaining elements never attain weak

local maximum.

Remark 3.22. With regards to Corollary 3.21, note that already in the case

when A consists of functions holomorphic near M it is certainly not true that

restrictions of holomorphic functions in general obey the weak maximum prin-

ciple, for example let M ⊂ C3 be a graph M = {(z, w) ∈ C × C2 : y =

|w|2}, z := x + iy. Then the restriction of the function (holomorphic near M)
1
P
, where, P (z) = i + z = i(1 + y) + x, (note it is a holomorphic polynomial)

attains strict local maximum at the origin since |P (z, w)| =
∣∣i(1 + |w|2) + x

∣∣ ≥
1 + (x2 + 2 |w|2 + |w|4).

2This can be seen by setting G = ( ∂
∂x1

g, . . . , ∂
∂xk

g), then dgx = 0 ⇔ G = 0, and dGx is
nonsingular since it is the (real) Hessian of g thus G is a diffeomorphism to a neighborhood
of the origin, i.e. G = 0 only at x for a small enough neighborhood of x.
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Before we move on we make the following observation on the size of ap-

proach regions for differentiable functions. We shall need the following obser-

vation.

Observation 3.23. If M is a domain in Rn (or Cn), then for a given ball

B0(R) ⊂ M, R > 0, and fix ε > 0, any differentiable function on M satisfies

that the Lebesgue measure of the ωf
ε,p∩Bp(ε), p ∈ B0(R), is bounded from below

(as p varies) by a positive number. Namely on a relatively compact open set

ω, both f and the modulus of its Jacobian are bounded by say C < ∞, where

C is independent of p. Thus given p we have (by the mean value theorem) a

Lipschitz property, |f(p) − f(z)| ≤ C |p − z| , z ∈ ω. Hence the inverse image

f−1 (y ∈ C : {|f (p) − y| < ε}) contains the ball {|p − z| < ε/C} (note that we

are not implying the function is open, since {|f(p) − y| < ε} is not necessarily

open) and {|p − z| < ε/C} ⊆ Bp(ε), as soon as C ≥ 1. For p ∈ B0(R) the

intersection of the balls {|p − z| < ε/C} ∩ Bp(ε) ∩ B0(R) is nonempty and

eventhough the measure can be smaller than the measure of each of the balls

(e.g. when Bp(ε) intersects the complement of B0(R)), C is independent of

p so the Lebesgue measure of ωf
p,ε ∩ Bp(ε), p ∈ B0(R) is, for fix ε, bounded

from below by a positive number (this is not trivial, in fact for the general case

it is necessary that ωf
p,ε contains an open neighborhood of p, to ensure that a

sufficiently large part does not leave B0(R) and even then without a Lipschitz

type of condition we cannot guarantee that the size those parts is bounded from

below). A consequence is the following: Let Ω ⊂ M be a domain and let

U � Ω be a relatively compact domain with smooth boundary and let {Pj}j∈�
be a sequence of C1-functions on M such that the Jacobians {JacPj}j∈� is a

uniformly bounded family on Ω. Then for any fix ε > 0 the Lebesgue measure of

ω
Pj
p,ε∩Bp(ε), p ∈ U, is bounded from below by a positive number ηε (independent

of j). Note that it is vital that the boundary be at least C1, indeed for p ∈ U

the ball Bp(ε) can in general intersect the complement of U in M.

3.4 An asymptotic maximum principle

In this section we show an analogue of the second part of Example 1.1.

Proposition 3.24. Let M be an open subset of Rn (or Cn), let Ω ⊂ M be

a domain and let f be approach compatible on M, which can be locally L1-

approximated by C1-functions which obey the strong maximum principle on Ω

and whose Jacobians are a uniformly bounded sequence on Ω . Then ∀p0 ∈ M, ∃
a domain p0 ∈ U ⊆ Ω such that for any domain ω � U (where by � we mean

relatively compact) with smooth boundary and p0 ∈ ω:

(|f(p0)| > |f(z)|, ∀z ∈ ω \ {p0}) ⇒ (dist({|f (p0)| − ε < |f(z)|}, ∂ω) < ε,∀ε > 0)
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Proof. Approach compatible functions are in particular locally bounded, thus

there is a domain U ′ ⊂ Ω containing p0 on which f is bounded. Also there

is a domain U ′′ ⊂ Ω together with a sequence of C1-functions {Pk(z)}k∈�
on M, and whose restrictions obey the strong maximum principle which L1-

converge on U ′′ to the function f and whose Jacobians are uniformly bounded

family on Ω. If infinitely many of the Pk are constant then f can be L1-

approximated by constant functions, thus we can assume that only finitely

many of the Pk are constant and after passing over to a subsequence (which

we again denote {Pj}j∈� we can assume that Pj �≡constant on Ω, for any j ∈ N.

Set U := U ′ ∩ U ′′, let ω � U and let p0 ∈ ω.

First we prove the result for the case when ω is a ball centered at p0. The proof

is then easily adapted to the case of a relatively compact domain ω � U.

Let ε > 0 be fix and let η0 be half of the Lebesgue measure of the open set

ωf
p0, ε

3
∩ω. L1-convergence implies that there is a subsequence {Pjk

}k∈� with a.e.

pointwise convergence to f on U (see e.g. Rudin [12], p.68). Let rε > 0 be such

that Bp0(rε) ⊂ ω and dist(Bp0(rε), ∂ω) < ε. By Egoroff’s theorem there exists

a set Aη0 of Lebesgue measure < η0 such that Pjk
→ f uniformly on U \Aη0 . In

particular we have uniform convergence on the nonempty set ωf
p0, ε

3
∩ U \ Aη0 .

Let zε ∈
(
ωf

p0, ε
3
∩ ω

)
\ Aη0 , and let Ũk denote the connected component of

{|Pjk
| > |Pjk

(zε)|} containing zε on the boundary. Since the restrictions of the

Pjk
obey the strong maximum principle it must hold that each Ũk is open and

furthermore that Ũk ∩ ∂ω �= ∅. Setting Uk := Ũk ∩ (
ω \ Bp0(rε)

)
implies that

Uk is open connected nonempty (for finite k) and all points of Uk have distance

< ε to ∂ω. Let N ∈ N, N < ∞ be such that (using uniform convergence on

U \ Aη0),

|PjN
(z) − f(z)| ≤ ε

3
, ∀z ∈ U \ Aη0 . (10)

Now assume that there is a sufficiently large choice of integer N such that

UN \ Aη0 contains at least one point wN (see Figure 3.4), by construction

dist(wN , ∂ω) < ε. Furthermore we have (because wN ∈ UN ),

|PjN
(wN)| ≥ |PjN

(zε)| ≥ |f(p0)| − |PjN
(zε) − f(p0)|︸ ︷︷ ︸

≤|PjN
(zε)−f(zε)|+|f(zε)−f(p0)|

> |f(p0)| − 2
ε

3

(11)

On the other hand we have noted that the inequality of Eqn.(10) holds on

U \ Aη0 which we are assuming contains wN thus,

|PjN
(wN)| ≤ |PjN

(wN) − f(wN)| + |f(wN)| <
ε

3
+ |f(wN)| . (12)
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p0

Figure 2: The choice of wN in the proof of Proposition 3.24 has distance < ε

to ∂ω and simultaneously lies in UN . For simplicity the figure depicts a case

when there is one and only one connected component of the approach region

at p0.

Eqn.(11) in combination with Eqn.(12) yield,

|f(wN)| + ε

3
> |f(p0)| − 2

ε

3
,

i.e. we have found a point wN ∈ ω satisfying,

|f(wN)| > |f(p0)| − ε, dist(wN , ∂ω) < ε. (13)

This proves the the result for the case when there exists a sufficiently large N

such that UN \ Aη0 contained at least one point wN (and ω a ball centered at

p0).

Assume now that for the fixed ε, UN ⊂ Aη0 for all sufficiently large N. Let l0
be half of the Lebesgue measure of the open set ωf

p0, ε
4
∩ ω. Since the {Pjk

}k∈�
had Jacobians which formed a uniformly bounded sequence, we have by Ob-

servation 3.23 that the Lebesgue measure of the ω
Pjk

z, ε
4
∩ Bz(

ε
4
), z ∈ ω, are
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bounded from below by a positive number, say κ ε
4
, independent of k. Set

η1 =min{l0, κ ε
4
}. We know that the Lebesgue measure of Aη1 is < η1 ≤ l0. We

can choose an integer N ′ such that,∣∣PjN′ (z) − f(z)
∣∣ <

ε

4
, ∀z ∈ U \ Aη1 . (14)

Let ζε ∈ ωf
p0, ε

4
\ Aη1 , and let Ṽ k denote the connected component of {|Pjk

| >

|Pjk
(ζε)|} with ζε on the boundary and V k := Ṽ k ∩ (

ω \ Bp0(rε)
)
. By the

choice of η1, there is a point wN ′ ∈ V N ′ ∩ Aη1∩
{

7ε
16

< dist(z, ∂ω) < 9ε
16

}
, such

that the set ω
Pj

N′
wN′ , ε

4
∩ BwN′

(
ε
4

) \Bp0(ε) has Lebesgue measure ≥ κ ε
4
, so has

nonempty intersection with Ac
η1

(c denoting complement). We can thus find

vN ′ ∈ ω
Pj

N′
wN′ , ε

4
\ Aη1 with dist(vN ′ , ∂ω) < ε. This gives,

∣∣PjN′ (vN ′)
∣∣ ≥ ∣∣PjN′ (wN ′)

∣∣ − ∣∣PjN′ (wN ′) − PjN′ (vN ′)
∣∣ >

∣∣PjN′ (wN ′)
∣∣ − ε

4
. (15)

We have by Eqn.(14) that
∣∣PjN′ (vN ′) − f(vN ′)

∣∣ < ε
4

and
∣∣PjN′ (ζ

ε)
∣∣ > |f(ζε)| −∣∣f(ζε) − PjN′ (ζ

ε)
∣∣ > |f(ζε)| − ε

4
. By the choice of V N ′

and vN ′ we know that,∣∣PjN′ (wN ′)
∣∣ >

∣∣PjN′ (ζ
ε)

∣∣ and |f(vN ′)| ≥ ∣∣PjN′ (vN ′)
∣∣ − ε

4
. (16)

Also it is clear that |f(ζε)| ≥ |f(p0)| − |f(ζε) − f(p0)| > |f(p0)| − ε
4
. This in

combination with Eqn.(16) and Eqn.(15) yields,

|f(vN ′)| > |f(p0)| − ε. (17)

Since dist(vN ′ , ∂ω) < ε, this proves the proposition for the case when ω is a

ball centered at p0. The proof can now be repeated for the case of a relatively

compact domain ω � U containing p0 by replacing the sets Bp0(rε) ⊂ ω which

satisfied dist(Bp0(rε), ∂ω) < ε, with domains ωε ⊂ ω such that,

max
z∈∂ωε

dist(z, ∂ω) < ε. (18)

Such ωε always exists, namely we can cover ∂ω by
⋃

z∈∂ω Bz(
ε
2
). Since ∂ω is

compact we can find a finite subcover {Bzj
( ε

2
)}1≤j<R, some R < ∞, of ∂ω.

Thus we can set ωε := ω \ ⋃
1≤j<R Bzj

( ε
2
). This completes the proof.

The restriction of a holomorphic function a smooth hypersurface M ⊂ Cn

which is convex-concave at every point, satisfies the strong maximum principle

(i.e. a weak local maximum implies reduction to a constant). By this is meant

the following: Assume M has local defining function ρ ∈ C∞(U, V ), for some

domains U ⊂ Cn and V ⊂ R, M ∩ U = {ρ = 0}, dρz �= 0, z ∈ U. If the matrix[
∂2ρ

∂zj∂z̄k
(p)

]
jk

has at least one positive and one negative eigenvalue then M is

called convex-concave at p. This immediately gives the following corollary.
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Corollary 3.25. If M ⊂ Cn is a smooth hypersurface which is convex-

concave at each point of an open U � M. If f is an approach compatible

function which is locally L1-approximable by restrictions of entire functions,

then f satisfies the asymptotic maximum principle of Proposition 3.24 on U.

Finding examples of approach compatible functions locally L1-approximable

by entire functions can under some circumstances be easy indeed for real

smooth embedded submanifolds it sufficient (see Hounie & Malagutti [5]) that

the function be L1
loc and annihilated by the so called tangential CR vector

fields in the weak sense, and for hypersurfaces in Cn of the form {Imzn = 0},
these vector fields simply reduce to ∂

∂z̄j
, j = 1, . . . , n − 1.

Example 3.26. Define the smooth hypersurface, M := {(z1, z2) ∈ C2 :

y2 = 0}, z2 := x2 + iy2. Then the function, f = x2 · χ ({|x2| < 1}) · ez1 , f =

0, otherwise, where χ denotes the characteristic function, is an L1
loc-function

locally L1-approximable by entire functions. This example is clearly approach

compatible, noncontinuous on {|x2| = 1}, and also not open, since for any

ambient open neighborhood, Up0 , of p0 ∈ {|x2| = 1}, the image of f will contain

0, as an isolated point.
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[6] L. Hörmander, An introduction to complex analysis in several variables,

North-Holland Publishing Company, 1973



680 Abtin Daghighi

[7] L.V. Kantorovich, Sur les suites des fonctions presque partout continues,

Fund. Math., 16 (1932), 25-28

[8] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932),

184-197

[9] S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Coll.

Math., 8 (1961), 47-53

[10] I.P. Natanson, Theorie der Funktionen einer reellen Veränderlichen, H.

Deutsch, Frankfurt a.M., 1961

[11] T. Neubrunn, Quasi-continuity, Real Analysis Exchange, 14 (1988-89),

259-306

[12] B. Rodriguez-Salinas, On the uniform limit of quasi-continuous functions,

Rev. R. Acad. Cien. Serie A. Mat., 95 (1) (2001), 29-37

[13] W. Rudin, Real and Complex Analysis, McGraw Hill 1987

Received: October, 2011


