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Abstract
n .
In this paper we study the growth of polynomial p(2) = ap2"+ > an—;2"77,
J=p
1 < u < n, having all its zeros in |z| < k, k& < 1. Using the notation
M(p,t)

M (p,t) = max |p(z)|, we measure the growth of p by estimating from

j21=t M(p,1)
above for any t < 1.
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1 Introduction and Statement of Results

For an arbitrary entire function f(z), let M(f,r) = ‘ ixlf(z)] and m(f, k) =

z|=

|H|1i% |f(2)|. Then for a polynomial p(z) of degree n, it was shown by Zarantonello

and Varga [7]
r‘n‘ax Ip(2)] > r" 1‘rn‘ax Ip(2)| for r<1. (1.1)
z|l=r z|=1

The result is best possible and extremal polynomial is p(z) = Az", || = 1.
For polynomials not vanishing in |z| < 1, Rivlin [6] obtained stronger inequality
and proved that if p(z) is a polynomial of degree n having no zero in |z| < 1, then

1 n
max |p(z)| > (%) max |[p(z)| for r <1, (1.2)

|z|=r |2=1
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1 n
The result is best possible and equality in (1.2) holds for p(z) = ( ;_Z) :

Jain [2] obtained the following result for polynomials having all its zeros in
|z| <k, k> 1.

Theorem A. If p(z) be a polynomial of degree n having all its zeros in |z| < k,
k> 1, then for k < R < k?

R+Ek
> Rl —— . 1.
w2 2 20 ( 20 ) o) (13

where s (< n) is the order of a possible zero of p(z) at origin.

Mir [3] proved the following theorem analogous to Theorem A for polynomials
having all its zeros in |2| < k < 1.

Theorem B. If p(z) is a polynomial of degree n having all its zeros in |z| < k <1
with s-fold zeros at the origin, then forr <k <1

mas [p(2)] < (1 - i) () (1.4

The result is best possible for s = n—1 and equality holds for p(z) = 2" "1 (2 +k).

n .
By involving the coefficients of the polynomial p(2) = a,2" + > a,—;2"7, 1 <
J=n
i < n, having all its zeros in |z| < k < 1 with s-fold zeros at the origin, we have
been able to obtain the precise estimate of its maximum modulus on |z| = 1, where

r < k < 1. In this direction, we have been able to prove the following result.

Theorem 1. Let p(z) = a,2" + Y a,—;2"7, 1 < p < n, be a polynomial of degree

J=n
n having all its zeros in |z| <k, k < 1. Then forr <k <1
( (B2 4 "=k (n — s)|a,| )

Hitlan—p| (B 4 1"70)
max |p(z)| <r max |p(2)], 1.5
maxlp(=)l < ( (R ) (= 5)[an ) max|p(2)] (1:5)

+ptlan—p| (k71 4+ 1)

where s is the order of a possible zero of p(z) at origin with s < n — p.

The following corollary immediately follows by choosing ¢ = 1 in Theorem 1.

Corollary 1. Let p(z) = 3 a;z? be a polynomial of degree n having all its zeros in
j:

|z| <k, k<1. Then forr <k <1

{(k2 + 7" (= s)|an| +[ana (1 + r“)}

max |[p(z)|, (1.6)

max [p(z)| <7°
|z|=1

|z|=r

(k2 +1)(n — s)|an| + 2|an_1|

where s is the order of a possible zero of p(z) at origin with s < n — 1.
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If we involve m = |H|1H]1 Ip(2)|, then we are able to improve upon the bound in
z|l=

Theorem 1. More precisely, we prove

Theorem 2. Let p(z) = apz"+ Y ap—j2" 7, 1 < u < n, be a polynomial of degree

J=n
n having all its zeros in |z| <k, k < 1. Then forr <k <1

(k2 4 =kt~ (n — 8)|an| + plan—,|(E*= + ")
< S
r‘?‘i}: |p<2)| >~ T (k2“ i k“il)(n _ 5)\%] + ,U‘anfu’(k“*l 4 1) gl\i}l( |p(Z)|
r (=" = s)|anlk* " + plan_,|}

s 1 1.
B T B = el + plan o+ 1 kP (D)

where s is the order of a possible zero of p(z) at origin with s < n — p.

If we take p =1 in Theorem 2, we get the following result.

Corollary 2. Let p(z) = . a;z? be a polynomial of degree n having all its zeros in
=0
having all its zeros in |z| <k, k < 1. Then forr <k <1

s (B2 +7"7%)(n = s)|an| + |an—1|(1 +7"7%)
max [p(z < r max [p(z
|z|=r |p< )| a (kQ + 1)(n — s)|an| + 2|an_1| |z|=1 |p< )|

r* (L =7r""){(n = s)|an| + |an—1]} .
i %2+1Xn—sﬂmJ+2mm4|{$i@@”’

where s is the order of a possible zero of p(z) at origin with s < n — 1.

2 Lemmas

For the proof of these theorems we need the following lemmas. The first lemma
is due to Qazi [5].

Lemma 1. If p(z) = ap + > a,2”, 1 < p < m, is a polynomial of degree n not
v=p
vanishing in |z| < k, k > 1, then

1+H@k#+l
ax p'(z)] < "0 p(2)] (2.1)
max [p'(2)] <n max |p(2)]. )
|z|=1 Hnia |z|=1

14 kptt 4 =1 £

(ko1 + f2m)
n|ag
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Lemma 2. If p(z) = ap+ Y. a;z’, 1 < u < n, is a polynomial of degree n having
J=H
all its zeros in |z| > k, k > 1, then

max |/ ()] < n( nlaol + play |k ) ()

B nlaol (11 ki) + jrla, [ (R#+7 1 k2

n nlaol kT + pla, |k | (2.2)
111 .

T \nlaol (1+ B#F0) + pla, | (ke + k20 ) ez

The above lemma is due to Dewan, Singh and Yadav [1].

Lemma 3. If p(z) = ap+ > a;z7, 1 < u < n, is a polynomial of degree n having

all its zeros in |z| > k, k > 1, then forr < k < R,

( nlag|r" =t (rH Tt kAT )

+play|rr ket (et 4 kR
n|ao|{ R™ + krTipn—r=1ypn
+play|rt R R 4 kp oty

|z|=r 2|=R

max [p(z)| > ( ) max [p(z)]. (2.3)

Proof of Lemma 3. The proof of Lemma 3 follows on the same lines as that of
Lemma 4, by using Lemma 1 instead of Lemma 2. We omit the details.

Lemma 4. If p(z) = ag+ Y. a;z?, 1 < u < n, is a polynomial of degree n having

j=n
all its zeros in |z| > k, k > 1, then forr <k < R,

nlag|{ R™ + krlyn—n=11pn
ma ma
HERIPE = o] (T + )T EE
+pfay|r ket (e 4 ke

1" YR —r")(n]ao b + pla,[k*r)
2.4
iz n‘aoy(r/ﬁ‘l 4 ku—i—l)rn—l ‘H‘lll}ﬂ |p< )| ( )
+p|ay, [k (4 ke

Proof of Lemma 4. Let 0 < r < k. Since p(z) has all its zeros in |z| > k, k > 1,

k k
the polynomial T'(z) = p(rz) has all its zeros in |z| > —, — > 1, therefore applying
rr
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Lemma 2 to T'(2), we get

p+l
, n|&0\ + u’r“&u‘ i1
Eﬁ)f ]T (2)‘ < n [ . el L2u Ea)f ’T( )’
nlao| [ 1+ v + plrtay| L 2
pt1 k2
m -
_nrn n|a0‘7"‘+1 + plr a;t‘rm min |T(z2)]
kn orl Frtt o f2e k .
n|a0’(1 + 7““+1) +,U‘7"l‘au’(7au+1 + @) \Z\:;
Replacing T'(z) by p(rz), we get
nlao|r” + play |r'
<
[P P (2)] < n(nlao\(rl“rl + kr) + play| (ketire 4 k2er) - )
_nrnfl n|a0|k}“+1 + M|au‘rk}2“ in [p(z)|. (2.5)
i n‘aoy(wﬁ_l T k“'H) i Iu‘a#’(ku—i-lru + kQMT) |Z| k .

As p/(2) is a polynomial of degree atmost n — 1, by Maximum Modulus Principle
[4, p. 158, Problem III, 269], we have

M@Lt) M@, r)

tn—l — Tn—l

for t>r. (2.6)

Inequality (2.6) in conjunction with inequality (2.5) yields

maX‘ ( )’ - nt”_1< n|&o\r”+u\au\r“‘1k”“ maX’ (2)’
S = T T fagl (T ) + (e k)
! nlag |k 4 pila k> min | <z>l>
Gy e T PN [ o e

Now, for 0 < 6 < 27, we have
Ip(Re) — p(re'®)|
R
< [ Wl

< nl|ao|r" —i—,u\au\ru—lkuﬂ o
max z
= \nlaol (T + BT + gl (T k) o1
e nfaol k" + play [Tk J) tn 1
B mlaol( 4+ k) & o (ke & o) ik P

ax [p(2)|

R" — 1" n|ag|r* + M|au\r“*1kﬂ+1
T\ lag (A T+ kL) + gl | (kA1 + k2 [elor
! nfag|k*+ + pla,|rk* .
- e T i (=) )
ke nlaol (rHt - kit prlay [ (ke 4 K2 Jai
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This is equivalent to

R" —r™ nlao|r® + pla, |r*—1kH
M(p,R) <1 L
(p, ) = +( rn )n|a0\(r“+1 + ku—i—l) + M|au‘(1€“+17’“ + ]{32“7’) ﬁl‘i}: |p(2)|
(R” — T”) nlao|k* T + pla,|rk*
kn n|ag|(

I 2.7
ratl ]{;H-‘rl) + M|au|(k5”+17’“ + k2”7“) \Izr\lirli ’p(Z)’, ( )

from which we get the desired result.

3 Proofs of the theorems

Proof of Theorem 1. The proof of Theorem 1 follows on the same lines as that of
Theorem 2, but instead of using Lemma 4, we use Lemma 3. We omit the details.

Proof of Theorem 2. Since p(z) has all its zeros in |z| < k < 1 with s-fold zeros
at the origin, therefore ¢(z) = 2"p(1/Z) is of degree (n — s) and has all its zeros in

1
|z| > z > 1. On applying Lemma 4 to ¢(z) with » = 1, we have

L1 L Jpns . 1
) - {R + kuﬂ}(n—s)\an\ +M’anu‘W{R + kﬂl}
z

- . : max|q(z)]
(1 + ]{3“+1)(n - 5)|an‘ + M|an—u‘ pt (1 + k“_l)

1 1
(R — 1){(” = s)lanl oy + H|an—u|@}

1 + kli‘i‘l (n - S)’an‘ + /’L’an*#‘ lﬂu+1 1 + k“_l

max |q
|z|=R

B

which is equivalent to

n—s 1 Rn—s 1

{R +ku+1}(n_s)’a”’+“‘a"M’{W‘f‘ﬁ}

|2]=1 1 1 1 max Ip(2)]
7 (1+ ku+1)(n—s)|an\+u|an_u\(W+ k;?lt)

1 1
fn—s (R”S—1){(”—3)|an\m+ﬂ|an—u\@} ‘
- min [p(z)].

kn 1 1 1\ |z]=k
1+W (n—s)\an\—i-,u\an,“] W—i_ﬁ
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1

1
Now replacing R by — in above inequality so that — <k <1, we get
r

1
k
1 1
rn—s + kutl (n_s)‘a"’ +’u‘a" “’ = sku—i—l 2#
max [p(z)] < " 0 ) max [p(2))

|z|=r
( ku+1)(n |an‘ +M|an “‘(k#‘i’l + k2u

(7“" S 1) n—s |an|]€“+1 +M| Qp— 'U|l€2'“}
(

—k 1 T min p(2)],
(14 gt ) = sl ol (s +

from which we get the desired result.

<

References

[1] K.K. Dewan, Harish Singh and R.S. Yadav, Inequalities concerning polynomials
having zeros in closed exterior or closed interior of a circle, Southeast Asian
Bull. Math., 27(2003), 591-597.

[2] V.K. Jain, On polynomials having zeros in closed exterior or interior of a circle,
Indian J. Pure Appl. Math., 30 (1999), 153-159.

3] A. Mir, On extremal properties and location of zeros of polynomials, Ph.D.
Thesis submitted to Jamia Millia Islamia, New Delhi, 2002.

[4] G. Pélya and G. Szego, Problems and Theorems in Analysis, Vol. 1, Springler-
Verlag, Berlin, 1972.

[5] M.A. Qazi, On the mazimum modulus of polynomials, Proc. Amer. Math. Soc.,
115 (1992), 337-343.

[6] T.J. Rivlin, On the mazimum modulus of polynomials, Amer. Math. Monthly,
67 (1960), 251-253.

[7] R.S. Varga, A comparison of the successive over relaxation method and
semi-iterative methods using Chebyshev polynomials, J. Soc. Indust. Appl.
Math., 5 (1957), 44.

Received: September, 2010



