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Abstract

There are two different approaches in the definition of absolutely n-
th continuous function. It is shown that these two approaches give the
same class of functions on the closed intervals. Necessary and sufficient
conditions under which a function is absolutely n-th continuous function
on closed intervals are obtained for each approach. It is also shown that
the two n-th variation norms give the same topology on the space of all
absolutely n-th continuous functions.
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1 Introduction

There are two different approaches to introduce the concepts of functions of
bounded variation and absolute continuity of higher order. One approach is
based on the concept of higher order divided difference. This was followed by
Russell [5, 6], Das and Lahiri [2] and others (see, for example, [3] and [9]).
Another approach is based on the notion of generalized derivatives. This was
followed by Sargent [11], Mukhopadhyay and Sain [4]. Though, the two ap-
proaches are different, it is proved in [4] that the two definitions of function
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of bounded n-th variation are equivalent on closed interval. Therefore, it is
natural to search a connection between the two approaches of absolute conti-
nuity of higher order. In this paper a connection between the two approaches
is established by obtaining necessary and sufficient conditions under which a
function is absolutely n-th continuous. Actually, it is shown that these defini-
tions when considered on closed interval are equivalent.
It may be recalled that each absolutely n-th continuous function is also a func-
tion of bounded n-th variation and it was pointed out in [8, p.233] that no
relation is known between the two variations of the same function, one in-
troduced by Russell [5] and the other introduced by Mukhopadhyay and Sain
[4]. In this paper a relation between the two variations of an absolutely n-th
continuous function is obtained and it is shown that the two n-th variation
norms define the same topology on the space of all absolutely n-th continuous
functions.

2 Preliminary Notes

Let f be a real-valued function defined in some neighbourhood of the point x
on the real line. If there are real numbers α0(= f(x)), α1, ..., αr depending on
x but not on h such that

f(x + h) =
r∑

i=0

αi
hi

i!
+ o(hr), (h −→ 0)

then αr is called the Peano derivative of f at x of order r and is denoted by
f(r)(x). Clearly, if f(r)(x) exists then f(i)(x) exists for all i, 1 ≤ i < r. Also,
if the ordinary rth derivative f (r)(x) exists, then f(r)(x) exists and equal to
f (r)(x). The converse is true only for r = 1.
Let f(r)(x) exist. If

(r + 1)!

(t − x)r+1

[
f(t) −

r∑
i=0

f(i)(x)
(t − x)i

i!

]
,

tends to a limit as t → x+, then this limit is called the right-hand Peano

derivative of f at x of order (r + 1) and is denoted by f+
(r+1)(x). The left-hand

Peano derivative f−
(r+1)(x) is defined similarly.

Let n ≥ 1 be a fixed integer and let f+
(n)(x) exist and be finite. Define

ε+
n (f, x, t) =

⎧⎪⎨
⎪⎩

n!
(t−x)n

[
f(t) − ∑n−1

i=0
(t−x)i

i! f(i)(x) − (t−x)n

n! f+
(n)(x)

]
if t �= x

0 if t = x

Similarly if f−
(n)(x) exists (always in finite sense), define ε−n (f, x, t) as above

replacing f+
(n)(x) by f−

(n)(x). If however f(n)(x) exists, we shall write εn(f, x, t)
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for ε+
n (f, x, t) and ε−n (f, x, t).

Let us suppose that f be defined in the closed interval [a, b] and let a ≤ c <
d ≤ b. If f+

(n)(c) and f−
(n)(d) exist, define

ω̄∗
n(f, [c, d]) = max[ sup

c≤t≤d
ε+
n (f, c, t), sup

c≤t≤d
{−ε−n (f, d, t)}]

ω∗
n(f, [c, d]) = min[ inf

c≤t≤d
ε+
n (f, c, t), inf

c≤t≤d
{−ε−n (f, d, t)}]

ω∗
n(f, [c, d]) = ω̄∗

n(f, [c, d]) − ω∗
n(f, [c, d]).

Supposing the existence of f(n)(c) and f(n)(d), Sargent [11] defined

ωn(f, [c, d]) = max[ sup
c≤t≤d

|εn(f, c, t)|, sup
c≤t≤d

|εn(f, d, t)|].

Definition 2.1 ([4, p.193]) Let f+
n , f+

n exist on a set E ⊂ [a, b]. The
strong n-th variation of f on E, denoted by V ∗

n (f, E), is the upper bound of the
sums

∑
i ω

∗
n(f, [ci, di]) where the summation is taken over all sequences {[ci, di]}

of non-overlapping intervals whose end points belong to E. If V ∗
n (f, E) < ∞,

then f is said to be of bounded n-th variation in the restricted sense, briefly
VnB∗, on E and the class of all functions of bounded n-th variations on E is
denoted by VnB∗(E).

Definition 2.2 ([8, p.232]) A function f is said to be absolutely n-th con-
tinuous in the restricted sense, briefly AC∗

n, on a set E ⊂ [a, b], written
f ∈ AC∗

n(E), if f(n) exists on E and for every ε > 0 there is a δ > 0 such that∑
i ω

∗
n(f, [ci, di]) < ε for every sequence of non-overlapping intervals {[ci, di]}

with end points on E such that
∑

i(di − ci) < δ.

Definition 2.3 ([11, p.366]) A function f is said to have an n-th gen-
eralized derivative f(n)(x) which is Vn-AC∗ over a bounded set E, written
f ∈ Vn-AC∗(E), if f(n) exists at all points of an interval containing E and
to each positive number ε, there corresponds a number δ > 0 such that

m∑
i=1

ωn(f, [ai, bi]) < ε

for all finite set of non-overlapping intervals (a1, b1), (a2, b2), (a3, b3), ...., (am, bm)
with end points on E and such that

∑m
i=1(bi − ai) < δ.

Definition 2.4 Let f be defined on a subset E of real numbers. Let x0, x1, ..., xn

be n + 1 distinct points in E, not necessarily in the linear order. The n-th di-
vided difference of f at these points is defined by

Qn(f, x0, x1, ..., xn) =
n∑

i=0

[f(xi)/
n∏

j=0,j �=i

(xi − xj)].
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Definition 2.5 ([5, p.160]) Let f be defined on [a, b] and let a ≤ x0 <
x1 < x2 < ... < xm ≤ b, m ≥ n be any subdivision of [a, b]. The total n-th
variation of f on [a, b] is defined by

Vn[f, a, b] = sup
m−n∑
i=0

(xi+n − xi)|Qn(f, xi, ..., xi+n)|

where sup is taken over all such sub-divisions. If Vn[f, a, b] < ∞, then f is
said to be of bounded n-th variation on [a, b] and is written f ∈ BVn[a, b].

Definition 2.6 ([2, p.160]) The real valued function f(x) defined on [a, b]
is said to be absolutely n-th continuous on [a, b], written f ∈ ACn([a, b]), if for
any arbitrary ε > 0 there is δ > 0 such that for any sub-division of the form
a ≤ x1,0 < x1,1 < .... < x1,n−1 < x1,n ≤ x2,0 < x2,1 < .... < x2,n−1 < x2,n ≤
... ≤ xm,0 < xm,1 < ... < xm,n−1 < xm,n ≤ b of [a, b] with

∑m
i=1(xi,n − xi,0) < δ,

the inequality
m∑

i=1

(xi,n − xi,0)|Qn(f, xi,0, xi,1, ..., xi,n)| < ε

holds.

Definition 2.7 ([3, p.92]) Let f be a real-valued function defined on a set
E. Let c, d ∈ E and c < d. The oscillation of f on [c, d] ∩ E of order n is
defined to be

On(f, [c, d] ∩ E) = sup |(d − c)Qn(f, c, x1, ....xn−1, d)|

where sup is taken over all possible choices of the points x1, x2, ...., xn−1 in
(c, d) ∩ E.

Definition 2.8 ([3, p.92]) If for every ε > 0, there is a σ > 0 such that
for every sequence of non-overlapping intervals {(cν , dν)} with end points on
E and with

∑
ν(dν − cν) < σ, we have

∑
ν

On(f , [cν , dν] ∩ E) < ε

then f is said to be absolutely n-th continuous on E in the wide sense and is
written f ∈ ACω

n (E).

Remark 2.9 These definitions of bounded variation and absolute continu-
ity of higher order are analogous to those defined in [10, pp 221-231].
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3 Class of absolutely continuous functions of

higher order defined in terms of generalized

derivatives.

Theorem 3.1 A function f is Vn-AC∗ over [a, b] if and only if f is AC∗
n

on [a, b].

Proof 3.2 Clearly for a ≤ c < d ≤ b,

ω∗
n(f, [c, d]) ≤ 2ωn(f, [c, d]) (1)

Again

sup
c≤t≤d

|εn(f, c, t)| = max[ sup
c≤t≤d

εn(f, c, t), sup
c≤t≤d

{−εn(f, c, t)}]
≤ sup

c≤t≤d
εn(f, c, t) + sup

c≤t≤d
{−εn(f, c, t)}

≤ ω̄∗
n(f, [c, d]) − ω∗

n(f, [c, d])

= ω∗
n(f, [c, d])

Similarly

sup
c≤t≤d

|εn(f, d, t)| ≤ ω∗
n(f, [c, d]).

Hence

ωn(f, [c, d]) ≤ ω∗
n(f, [c, d]) (2)

Combining (1) and (2), we get

ωn(f, [c, d]) ≤ ω∗
n(f, [c, d]) ≤ 2ωn(f, [c, d]) (3)

Since (3) is true for every sub-interval [c, d] ⊂ [a, b], it follows that

f ∈ Vn-AC∗([a, b]) if and only if f ∈ AC∗
n([a, b]).

Lemma 3.3 If f is absolutely continuous on [a, b] then F ∈ AC∗
1 ([a, b]),

where F (x) =
∫ x
a f(t)dt. If f ∈ AC∗

n([a, b]), n ≥ 1 then F ∈ AC∗
n+1([a, b]).

Proof 3.4 Clearly F ′ exists and is equal to f on [a, b]. Therefore if [c, d] ⊂
[a, b] then for c < x ≤ d we have

ε1(F, c, x) =
1

x − c
[F (x) − F (c) − (x − c)f(c)]

=
1

x − c

∫ x

c
[f(t) − f(c)]dt.
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Let O(f, c, d) denote the oscillation of f on [c, d]. Then

|ε1(F, c, x)| ≤ O(f, c, d).

Similarly for c ≤ x < d we have

|ε1(F, d, x)| ≤ O(f, c, d)

and hence

ω∗
1(F, [c, d]) ≤ 2O(f, c, d).

Let ε > 0 be arbitrary. Then there is a δ > 0 such that for every sequence of
non-overlapping intervals {[cν , dν ]} with

∑
ν(dν − cν) < δ we have

∑
ν

O(f, cν, dν) < ε/2

and so ∑
ν

ω∗
1(f, cν , dν) < ε

Thus the first part is proved. The proof of the second part follows that of [11,
Lemma 4] and Theorem 3.1.

Lemma 3.5 If f ∈ AC∗
n([a, b]) then f (n) exists and is absolutely continuous

on [a, b].

Proof 3.6 Let [c, d] ⊂ [a, b]. Then proceeding similarly as [4, Lemma 3.1]
it can be proved that

|f(n)(d) − f(n)(c)| ≤ Kω∗
n(f, [c, d])

where K is a constant depending only on n. Hence if f ∈ AC∗
n([a, b]) then

it is clear from above that f(n) is absolutely continuous on [a, b]. So, by [12,
Theorem 1] f (n) exists and is equal to f(n).

The following theorem follows from Lemma 3.5 and repeated application of
Lemma 3.3.

Theorem 3.7 A function f ∈ AC∗
n([a, b]) if and only if f (n) exists and is

absolutely continuous on [a, b].
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4 Class of absolutely continuous functions of

higher order defined in terms of divided dif-

ferences

Lemma 4.1 If f ∈ ACω
n ([a, b]) then f (n−1) exists and is absolutely contin-

uous on [a, b].

The proof of this Lemma follows that of [3, Theorem 6].

Lemma 4.2 Let f(n−1) exists finitely on [a, b] and f(n) exist, possibly infinite
in (a, b), then for every (n + 1) tuple of distinct points xi, 0 ≤ i ≤ n in [a, b]
there is a point ξ, mini xi < ξ < maxi xi such that

n!Qn(f, x0, x1, ...., xn) = f(n)(ξ).

This is Theorem 8 of [1].

Lemma 4.3 If f ∈ ACω
n ([a, b]) and F (x) =

∫ x
a f(t)dt, then F ∈ ACω

n+1([a, b]).

Proof 4.4 Since f ∈ ACω
n ([a, b]), by Lemma 4.1, f (n−1) exists and is ab-

solutely continuous on [a, b]. So, given ε > 0, there is a δ > 0 such that for
every sequence {(cν , dν)} of pair wise disjoint intervals with

∑
ν(dν − cν) < δ

we have ∑
ν

O(fn−1, ξν , ην) < ε

whenever ξν , ην ∈ [cν , dν ]. Let {(cν , dν)} be such a sequence of intervals and
let cν < xν,1 < xν,2 < .... < xν,n < dν. Since F (n) exists on [a, b] therefore by
Lemma 4.2 there are ξν , ην ∈ (cν , dν) such that

n!Qn(F, cν, xν,1xν,2, ..., xν,n−1, xν,n) = F (n)(ξν)

and
n!Qn(F, xν,1xν,2, ..., xν,n−1, xν,n, dν) = F (n)(ην).

Since F (n) = f (n−1), we have

|(dν − cν)Qn+1(F, cν , xν,1xν,2, ..., xν,n−1, xν,n, dν)|
= |Qn(F, xν,1xν,2, ..., xν,n−1, xν,n, dν) − Qn(F, cν , xν,1xν,2, ..., xν,n−1, xν,n)|
=

1

n!
|f (n−1)(ην) − f (n−1)(ξν)|

≤ O(f (n−1), cν , dν)

Hence
On+1(F, [cν , dν]) ≤ O(fn−1, cν , dν).
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Therefore ∑
ν

On+1(F, [cν , dν ]) < ε

and so
F ∈ ACω

n+1([a, b]).

By repeated application of Lemma 4.3 we can prove

Lemma 4.5 If f (n−1) exists and is absolutely continuous on [a, b] ten f ∈
ACω

n ([a, b]).

Combining Lemma 4.1 and Lemma 4.5 we get

Theorem 4.6 A function f ∈ ACω
n ([a, b]) if and only if fn−1 exists and is

absolutely continuous on[a, b].

In a similar manner we can prove that

Theorem 4.7 A function f ∈ ACn([a, b]) if and only if fn−1 exists and is
absolutely continuous on[a, b].

5 Equivalence of the two concepts of absolute

continuity of higher order

From Theorems 3.1, 3.7, 4.6,4.7 we have

Theorem 5.1 For each positive integer n,

AC∗
n([a, b]) = Vn-AC∗([a, b]) = ACω

n+1([a, b]) = ACn+1([a, b])

Theorem 5.1 shows that when considered on closed intervals the concepts of
AC∗ and AC of higher order are equivalent. The apparent difference in the
order does not matter, since Sargent [11] introduced the scale from n = 0 while
Das and Lahiri [2] started it from n = 1.
The result of Theorem 5.1 is true for the usual AC∗ and AC ([10, pp 221,231]).

6 Space of absolutely n-th continuous func-

tions

The space AC∗
n([a, b]) is studied in [8] with respect to the norm ‖.‖∗ defined

by

‖f‖∗ =
n∑

i=0

|f (i)
+ (a)| + V ∗

n (f, [a, b]).
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On the other hand, in view of Theorem 5.1, one can study the same space
under the norm

‖f‖ =
n∑

i=0

|f (i)
+ (a)| + Vn+1[f, a, b]

introduced by Russell [7].
In this section, we will show that these two norms define the same topology
on AC∗

n([a, b]). To show it, we first prove the following lemma.

Lemma 6.1 If f ∈ AC∗
n([a, b]) then

1

2.n!
V ∗

n (f, [a, b]) ≤ Vn+1[f, a, b] ≤ K

n!
V ∗

n (f, [a, b])

where K = 2
∑n

r=0

(
n
r

)
rn

n!
.

Proof 6.2 Since f ∈ AC∗
n([a, b]), by Lemma 3.5, f (n) exists and is abso-

lutely continuous on [a, b].
Now by Taylor’s Theorem, if t ∈ (c, d) ⊂ [a, b] we have

εn(f, c, t) = f (n)(ξ) − f (n)(c), c < ξ < t

and
εn(f, d, t) = f (n)(η) − f (n)(d), t < η < d

and so
ω∗

n(f, [c, d]) ≤ 2O(f (n), c, d).

Hence
V ∗

n (f, [a, b]) ≤ 2V (f (n), a, b) (4)

where V (f (n), a, b) denotes the usual variation of f (n) on [a, b].
Again we have mentioned in the Proof 3.6 of Lemma 3.5 that

|f (n)(d) − f (n)(c)| ≤ Kω∗
n(f, [a, b])

for every [c, d] ⊂ [a, b]. Hence

V (f (n), a, b) ≤ KV ∗
n (f, [a, b]) (5)

On the other hand, since f ∈ AC∗
n([a, b]), therefore by Theorem 5.1, f ∈

ACn+1([a, b]) and hence by [6, Theorem 8]

n!Vn+1[f, a, b] = V (f (n), a, b) (6)

Combining (4), (5) and (6) we get

1

2.n!
V ∗

n (f, [a, b]) ≤ Vn+1[f, a, b] ≤ K

n!
V ∗

n (f, [a, b]).



2268 D. N. Sain and S. N. Mukhopadhyay

Theorem 6.3 The two norms ‖.‖∗ and ‖.‖ define the same topology on
AC∗

n([a, b]).

Proof 6.4 By Lemma 6.1, we have

‖f‖ =
n∑

i=0

|f (i)
+ (a)| + Vn+1[f, a, b]

≤
n∑

i=0

|f (i)
+ (a)| + K

n!
V ∗

n (f, [a, b])

≤ K‖f‖∗

Again using the Lemma 6.1, we have

‖f‖ ≥
n∑

i=0

|f (i)
+ (a)| + 1

2.n!
V ∗

n (f, [a, b])

≥ 1

2.n!
‖f‖∗

Hence
1

2.n!
‖f‖∗ ≤ ‖f‖ ≤ K‖f‖∗.

Therefore the two norms are equivalent and so they define the same topology
on AC∗

n([a, b]).
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