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Abstract

In this paper, we prove a unique common fixed point theorem for six
non self-maps in a metric space. Which generalizes and extends the results of
S.L.Singh, Apichai Hematulin and Rajendra Pant [16].
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1. Introduction

The well known Banach Fixed Point Theorem has been generalized and
extended by many authors in various ways. In 2006 Proinov[12] has obtained two
types of generalizations of Banach fixed point theorem. The first type involves
Meir-Keeler type conditions (See, for instance, Cho et al.[3], Jachymski[4],
Lim[8], Matkowski[9], Park and Rhoades[11]) and second type involves
contractive guage functions (see, for instance ,Boyd and Wong [1] and Kim et al.
[7] ). Proinov [12] obtained equilance between these two types of contractive
conditions and also obtained a new fixed point theorem. Recently S.L.Singh et
al.[16] have extended Proinov [12]Theorem 4.1 for three non self-maps. In this
paper we extend the Theorem 2.7 of S.L.Singh et al.[16] for six non self-maps.

In all that follows Y is an arbitrary non-empty set, (X,d) a metric space
and N={1,2,3,...... }.For T, f: Y — X, let C (T, f) denote the set of coincidence
points of T and f, thatis C(T, f) = {z € Y : Tz = {Z}.

We define common asymptotic regularity of two functions in the following way.
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Definition1.1. Let A,B,S,T and f, g be maps on Y with values in a meric space
(X, d).The pairs (A,B) and (S,T) are said to be a common asymptotically regular
with respect to f and g respectively at xo€Y if there exists {x,} in Y Such that
fXont1 = AXon = SXonr2 = gXon+3,
fX2n+2 = BX2n+1 = TX2H+3 = €Xon+4, n= 0,1,2,3 ......
and lim d(fx, fx, ) =0= %im d(gx,, 9X..,) -

n—o0

Definition 1.2 .(see[16]). Let T, f: X—X.Then the pair (T ,f) is (IT)-Commuting
atze X if Tfz = fTz with Tz = {fz . They are (IT)-Commuting on X ( also called
weakly compatible,by Jungck and Rhoades[6] ) if Tfz =fTz for all ze X such that
Tz = fz.

Definition 1.3: (see [12], Definition 2.1( i )).Let @ denote the class of all
functions ¢: R™— R satisfying: for any & >0, there exists &> ¢ such that e< t< §
implies @(t)<e.

2. Main Result

The following Theorem improves and extends the Theorem 2.7 of [16].

Theorem 2.3. : Let A,B,S,T and f, g be maps on an arbitrary non-empty set Y
with values in a metric space(X, d).Let the pairs (A,B) and (S,T) be a common
asymptotically regular with respect to f and g respectively at xo € Y and the
following conditions are satisfied:

(ED) : A(Y) U B(Y) U S(Y) U T(Y) = f(Y) (=g(Y));

(E2): d(Ax, By)< o(hi(x,y)) forallx,y € Y,
Where hi(x, y) =d(fx, fy)+y[d(Ax, f x)+d(By, fy)],for some y(0<y<l) and
¢:R"—R" a Continuous function with ¢(t)<t for all 0.

(E3): d(Sx, Ty) < op(ha(x,y)) forallx,y € Y,
Where hy(x, y) =d(g x, g y) + v[d(S x, g x) + d(Ty, g y)].

If A(Y) or B(Y) or S(Y) or T(Y) or f(Y)(=g(Y)) is a complete subspace of

X, then

(1): C(A, f) is non-empty.

(1) : C(S, g) is non-empty.

(ii1) :  C(B, f) is non-empty.

(iv):  C(T, g) is non-empty.

Further if Y=X, then
(v): A and f have acommon fixed point provided that A and f
are (IT)-commuting at a point u € C(A, f).
(vi): B and f haveacommon fixed point provided that B and f
are(IT)-commuting at a point v € C(B, f).
(vi): S and g haveacommon fixed point provided that S and g
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are (IT)-commuting at a pointu' € C(S, g).
(viii): T and g have a common fixed point provided that T and g are
(IT)-commuting at a point vl e (T, 2).
(ix) : A,B,S,T and f, g have a unique common fixed point provided that (v),
(vi), (vii) and (viii) all are true.

Proof: Let xo be an arbitrary point in Y. Since the pairs (A,B) and (S,T) are a
common asymptotically regular with respect to f and g respectively at xpeY.
Then there exists a sequence { X, } in Y such that.

f Xon+1 =AXon =SXont2 = gXon+3,

fX2n+2 = Binﬂ = Tin +3=2Xon+4, N= 0, 1 ,2,. ceee
and lim d(fx,,fx ) =0 = liﬁm d(gx,, gx,.,)-

n—o0

First we shall show that {fx,} is Cauchy sequence. Suppose {fx,} is not Cauchy
sequence. Then there exists p>0 and increasing Sequences {my} and {ny} of
positive integers such that mg even and ny odd and for all k, my < n,
d(fx,, , fx, ) = pand d(fx,, fx, ) < u (2.1)
By the triangle inequality,
d(fx, ., fx, ) <d(fx,, fx, )+ d(fx
Letting k—oo, we get that
&im d(fx, , fx, )< u.

X, )

n,—1°

Therefore there exists kg such that
d(fx,, , fx, ) < p Vk=k, (2.2)
By (2.1) and (2.2), we get that
po<d(fx, , fx, ) < p Vk=k, implies &im d(fx, , X, )= u .
By (E2), we have
d(fX fxnkﬂ) = d(Aka 4 ank ) < ® (hl(xmk 4 Xnk ))
=@ (d(fx, , X, )+ [d(AX, , X, ) +d(Bx, , X, )]

m+12

Thatis d(fx X, )< o (X, , X, )+ y[d(fx

Letting k—oo, we get that
pu< o(p) <, a contradiction.
Thus {fx,} is Cauchy sequence.

my +12 my +12 mek) + d(fxnkJrl’ ank )]) :

Similarly we can prove that {gx,} is Cauchy sequence.
Suppose f(Y)(=g(Y)) is a complete sub space of X. Then {y,} where y, ={fx,},

being Cauchy sequence in f(Y) which is complete has a limit in f(Y) say z.
Let u = f'z. Thus fu=z for some u € Y.Note that the sub sequences {fXa,+1} and
{fxon12} also converges to z.By E(2),we obtain
d(Au, Bxon+1)<o(hi(u,X2n+1))
= (P(d (fu,fX2n+1) + y[d(Au, fu) + d(BinH, fX2n+2)]).
Letting n—oo, we get that
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d(Au, z) < o(d(fu, z) + y[d(Au, fu) + 0])
< ¢ (d(z, 2) + y[d(Au, fu)]),
d(Au, fu) < (yd(Au, fu)) < d(Au, fu) ,a contradiction.

Therefore Au=fu=z.Thus C(A, f) is non empty . This proves (i). (2.3)
Since we get {gX,} 1s a cauchy sequence in f(Y) which is complete.

Hence {gx,} has a limit in f(Y). Note that lim(fx,) = lim(gx,).

we get %1_r)n gX, =2z € g(Y) .Therefore there exists u' € Y such that gu1= z

implies u1=g'lz. Note that the subsequences {gxyn:3} and {gXyn:4}are also
converges to z. By E(3) ,we obtain
d(Su', Txans3) < ¢ (ha(u', X20+3))
= ¢(d(gu', gxans3) +7[d(Su’, gu') + d(Txan:3, gXan3)])
= (d(gu', gxans)ty[d (Su', gu')+ d(gxans4, gXans3)])-
Letting n—oo,we get that
d(Su', gu') <@ (d(z 2) +v[d (su', gu) + d(z 2)])
<p(y d (su', gu'))<d (su', gu'),a contradiction.

Therefore su' = gu' =z . Thus C(S, g) is non-empty. This proves (ii).  (2.4)
In view of (2.3) and (2.4) it follows that
Au=fu=Su' =gu'=z. (2.5)
Since A(Y) UB(Y) U S(Y) UT(Y) < f(Y) (=g(Y)).
Therefore there exists v,0' € Y such that
Au=fo and su'=gv'. (2.6)
We claimthat fo=Bv and gv'=Tv'.
Using (E2) and (E3) ,we obtain
d(fu, Bv) = d(Au, Bv) < ¢(h;(u,v))
= ¢ (d(fu, fu )+y[d (Au, fu) + d(Bv,fv)])
< ¢ (d(Au, Au)+y[(d(Au, Au) + d(fv, Bv))),
or d(fu, Bu)<o(d(z,z) +7v[(d(z z)+d (fu, Bv)]),
d(fu, Bv) < ¢(yd(fu, Bv))< d(fu, Bv),a contradiction.

Therefore fuo=Bv. (2.7)
Inview of (2.7), (2.6) and (2.3) it follows

Buv=fo=Au=fu=z (2.8)
From (2.5) and (2.8) it follows

Bu=fo=Au=fu= Su'=gu'=z. (2.9)

Thus C(B, f) is non-empty. This proves (iii).
Now using (E3), we obtain
d(gv', Tv') = d(su', Tv") < e(hy(u', v'))
= (d(gu', go") +y[d(su', gu') + d(Tv', gu)])
= (d(z, 2) +7[d(z, 2) + d(gu', TL))),
d(gv', Tv") <o (y d(gv', Tv")) < d(gv', Tv"),a contradiction.
Therefore Tu' = gu'. (2.10)
In view of (2.5), (2.6) and (2.10) it follows
To'=gu'=Su'=gu'=z. (2.11)
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Thus C(T,g) is non-empty. This proves (iv).
In view of (2.9), (2.11) it follows
Au=fu=Buo=fo=Su'=gu' =Tv'= gv' . (2.12)
Now, if Y=X, (A, 1), (B, f) and (S, g),(T, g) are (IT)-Commuting, then
Afu=fAu implies AAu= Afu="fAu=ffu,
Bfv=1fBv implies BBv=Bfv={Bv=ffv, (2.13)
Sgu' = gSu' implies SSu' =Sgu' = gSu'= ggu'
Tgv' = gTv'implies TTv' =Tgv' =gTv'=ggv'.
In view of (E2) it follows that
d(AAu, Au) = d(AAu, Bv) < ¢ (hi(Au,v))
= ¢ (d(fAu, fo)+y[d(AAu, fAu)+ d(Bv, fv))]),
d(AAu, Au) < ¢ (y d(AAu, Au)) < d(AAu, Au), a contradiction.
Therefore AAu=Au=fAu(=z),

Au is a common fixed point of A and f. (2.14)
Similarly, we get BBu=Bv.
Therefore Bv is a common fixed point of B and f. (2.15)

Followed by (2.13)
BBv = Bv = {Bv (=2).
Since Av=Bv.From (2.14) and (2.15), we conclude that
Au(=z) is a common fixed point of A,B and f. (2.16)
Now in view of (E3), we obtain

d(SSu', Su') = d (SSu', Tv) < ¢ (hy (Su', v'))

= p(d(gSu', gu') +y[d (SSu', gSu')+ d(Tv', goh))),

d(SSu', Su') < ¢ (y d(SSu', Su')) <d (SSu', Su'),a contradiction.
Therefore SSu! = Su' ,SSul = gSul =Sul= z,

Su' is a common fixed point of S and g. (2.17)
Similarly we get ,TTv' =gTv'=Tv' =z

Tv' is a common fixed point of T and g. (2.18)
Since Su' = Tv' =z .From (2.17) and (2.18), we conclude that

Su'(=z)is common fixed point of S, T and g . (2.19)

Since Au = Su' (= z) .Therefore from (2.16) and (2.19),we conclude that A,B,S,T
and f,g are having a common fixed point.The proof is similar when A(Y) or B(Y)
or S(Y) or T(Y) are complete subspaces of X. Since , A(Y) L B(Y) U S(Y) UT(Y)
< f(Y) (=g(Y)).Finally, in order to prove uniqueness, let w be a common fixed
point of A,B,S,T and f, g.
Consider d(z, w) =d (A z, Bw) < ¢ (hi(z, w))
=¢ (d(fz, fw)+y[d(fz, A z) +d(fw, Bw)]),
d(z, w) < o ((d(z, w)) <d(z, w), a contradiction .
Therefore z=w. Hence A,B,S,Tand f, g have unique common fixed point.
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