Int. Journal of Math. Analysis, Vol. 5, 2011, no. 46, 2251 - 2257

A Unique Common Fixed Point Theorem

for Six Non Self-Maps in Metric Spaces

¹K. Prudhvi and ²M. Rangamma

Department of Mathematics, Osmania University Hyderabad-500 007, Andhra Pradesh, India ¹prudhvikasani@rocketmail.com ²rangamma1999@gmail.com

Abstract

In this paper, we prove a unique common fixed point theorem for six non self-maps in a metric space. Which generalizes and extends the results of S.L.Singh, Apichai Hematulin and Rajendra Pant [16].

Keywords: Coincidence point; Fixed Point ;Banach Contraction; Asymptotic regularity

1. Introduction

The well known Banach Fixed Point Theorem has been generalized and extended by many authors in various ways. In 2006 Proinov[12] has obtained two types of generalizations of Banach fixed point theorem. The first type involves Meir-Keeler type conditions (See, for instance, Cho et al.[3], Jachymski[4], Lim[8], Matkowski[9], Park and Rhoades[11]) and second type involves contractive guage functions (see, for instance ,Boyd and Wong [1] and Kim et al. [7]). Proinov [12] obtained equilance between these two types of contractive conditions and also obtained a new fixed point theorem. Recently S.L.Singh et al.[16] have extended Proinov [12]Theorem 4.1 for three non self-maps.

In all that follows Y is an arbitrary non-empty set, (X,d) a metric space and N={1,2,3,....}. For T, f : Y \rightarrow X, let C (T, f) denote the set of coincidence points of T and f, that is C(T, f) = { $z \in Y : Tz = fz$ }.

We define common asymptotic regularity of two functions in the following way.

Definition1.1. Let A,B,S,T and f, g be maps on Y with values in a meric space (X, d). The pairs (A,B) and (S,T) are said to be a common asymptotically regular with respect to f and g respectively at $x_0 \in Y$ if there exists $\{x_n\}$ in Y Such that

 $\begin{aligned} & fx_{2n+1} = Ax_{2n} = Sx_{2n+2} = gx_{2n+3}, \\ & fx_{2n+2} = Bx_{2n+1} = Tx_{2n+3} = gx_{2n+4}, \quad n = 0, 1, 2, 3 \dots \\ & \text{and} \quad \lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0 = \lim_{n \to \infty} d(gx_n, gx_{n+1}). \end{aligned}$

Definition 1.2 .(see[16]). Let T, f: $X \rightarrow X$.Then the pair (T,f) is (IT)-Commuting at $z \in X$ if Tfz = fTz with Tz = fz. They are (IT)-Commuting on X (also called weakly compatible, by Jungck and Rhoades[6]) if Tfz = fTz for all $z \in X$ such that Tz = fz.

Definition 1.3: (see [12], Definition 2.1(i)).Let Φ denote the class of all functions φ : $\mathbb{R}^+ \to \mathbb{R}^+$ satisfying: for any $\varepsilon > 0$, there exists $\delta > \varepsilon$ such that $\varepsilon < t < \delta$ implies $\varphi(t) \leq \varepsilon$.

2. Main Result

The following Theorem improves and extends the Theorem 2.7 of [16].

Theorem 2.3. : Let A,B,S,T and f, g be maps on an arbitrary non-empty set Y with values in a metric space(X, d).Let the pairs (A,B) and (S,T) be a common asymptotically regular with respect to f and g respectively at $x_0 \in Y$ and the following conditions are satisfied:

 $(E1): A(Y) \cup B(Y) \cup S(Y) \cup T(Y) \subseteq f(Y) (=g(Y));$

(E2): $d(Ax, By) \le \varphi(h_1(x, y))$ for all $x, y \in Y$,

Where $h_1(x, y) = d(f x, f y) + \gamma [d(Ax, f x) + d(By, f y)]$, for some $\gamma (0 \le \gamma \le 1)$ and $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ a Continuous function with $\varphi(t) \le t$ for all $t \ge 0$.

(E3): $d(S x, Ty) \le \varphi(h_2(x, y))$ for all $x, y \in Y$,

Where $h_2(x, y) = d(g x, g y) + \gamma [d(S x, g x) + d(Ty, g y)].$

If A(Y) or B(Y) or S(Y) or T(Y) or f(Y)(=g(Y)) is a complete subspace of X, then

- (i): C(A, f) is non-empty.
- (ii): C(S, g) is non-empty.
- (iii): C(B, f) is non-empty.
- (iv): C(T, g) is non-empty.
 - Further if Y=X, then

(v): A and f have a common fixed point provided that A and f are (IT)-commuting at a point $u \in C(A, f)$.

- (vi): B and f have a common fixed point provided that B and f are(IT)-commuting at a point $v \in C(B, f)$.
- (vii): S and g have a common fixed point provided that S and g

are (IT)-commuting at a point $u^1 \in C(S, g)$.

- (viii): T and g have a common fixed point provided that T and g are (IT)-commuting at a point $v^1 \in C(T, g)$.
- (ix): A,B,S,T and f, g have a unique common fixed point provided that (v), (vi), (vii) and (viii) all are true.

Proof: Let x_0 be an arbitrary point in Y. Since the pairs (A,B) and (S,T) are a common asymptotically regular with respect to f and g respectively at $x_0 \in Y$. Then there exists a sequence $\{x_n\}$ in Y such that.

 $\begin{array}{rl} f \; x_{2n+1} = & A x_{2n} = S x_{2n+2} = g x_{2n+3}, \\ f x_{2n+2} = & B x_{2n+1} = T x_{2n+3} = g x_{2n+4}, & n = 0, 1, 2, \dots, \\ \text{and} & \lim_{n \to \infty} \; d(f x_n, f x_{n+1}) \; = \; 0 \; = \; \lim_{n \to \infty} \; d(g x_n, g x_{n+1}) \, . \end{array}$

First we shall show that $\{fx_n\}$ is Cauchy sequence. Suppose $\{fx_n\}$ is not Cauchy sequence. Then there exists $\mu > 0$ and increasing Sequences $\{m_k\}$ and $\{n_k\}$ of positive integers such that m_k even and n_k odd and for all k, $m_k < n_k$,

 $d(fx_{m_k}, fx_{n_k}) \ge \mu \text{ and } d(fx_{m_k}, fx_{n_k-1}) < \mu$ By the triangle inequality, (2.1)

$$d(fx_{m_k}, fx_{n_k}) \leq d(fx_{m_k}, fx_{n_k-1}) + d(fx_{n_k-1}, fx_{n_k}).$$

Letting $k \rightarrow \infty$, we get that

 $\lim_{k\to\infty} d(fx_{m_k}, fx_{n_k}) < \mu .$

Therefore there exists k₀ such that

$$d(fx_{m_{1}}, fx_{n_{2}}) < \mu \quad \forall k \ge k_{0}$$

$$(2.2)$$

By (2.1) and (2.2), we get that

 $\mu \leq d(fx_{m_k}, fx_{n_k}) < \mu \quad \forall \ k \geq k_0 \quad \text{implies} \quad \lim_{k \to \infty} d(fx_{m_k}, fx_{n_k}) = \mu \quad .$

By (E2), we have

$$d(fx_{m_{k}+1}, fx_{n_{k}+1}) = d(Ax_{m_{k}}, Bx_{n_{k}}) \le \varphi(h_{1}(x_{m_{k}}, x_{n_{k}}))$$

= $\varphi(d(fx_{m_{k}}, fx_{n_{k}}) + \gamma[d(Ax_{m_{k}}, fx_{m_{k}}) + d(Bx_{n_{k}}, fx_{n_{k}})])$

That is $d(fx_{m_k+1}, fx_{n_{k+1}}) \le \varphi(d(fx_{m_k}, fx_{n_k}) + \gamma[d(fx_{m_k+1}, fx_{m_k}) + d(fx_{n_k+1}, fx_{n_k})])$. Letting k $\to\infty$, we get that

 $\mu \leq \varphi(\mu) < \mu$, a contradiction.

Thus $\{fx_n\}$ is Cauchy sequence.

Similarly we can prove that $\{gx_n\}$ is Cauchy sequence.

Suppose f(Y)(=g(Y)) is a complete sub space of X. Then $\{y_n\}$ where $y_n = \{fx_n\}$,

being Cauchy sequence in f(Y) which is complete has a limit in f(Y) say z.

Let $u = f^{-1}z$. Thus fu=z for some $u \in Y$.Note that the sub sequences $\{fx_{2n+1}\}$ and $\{fx_{2n+2}\}$ also converges to z.By E(2),we obtain

 $d(Au, Bx_{2n+1}) \le \phi(h_1(u, x_{2n+1}))$

 $= \varphi(d(fu, fx_{2n+1}) + \gamma[d(Au, fu) + d(Bx_{2n+1}, fx_{2n+2})]).$

Letting $n \rightarrow \infty$, we get that

 $d(Au, z) \le \varphi(d(fu, z) + \gamma[d(Au, fu) + 0])$ $\leq \varphi (d(z, z) + \gamma [d(Au, fu)]),$ $d(Au, fu) \le \varphi (\gamma d(Au, fu)) \le d(Au, fu)$, a contradiction. Therefore Au=fu=z. Thus C(A, f) is non empty. This proves (i). (2.3)Since we get $\{gx_n\}$ is a cauchy sequence in f(Y) which is complete. Hence $\{gx_n\}$ has a limit in f(Y). Note that $\lim(fx_n) = \lim(gx_n)$. we get $\lim gx_n = z \in g(Y)$. Therefore there exists $u^1 \in Y$ such that $gu^1 = z$ implies $u^1=g^{-1}z$. Note that the subsequences $\{gx_{2n+3}\}$ and $\{gx_{2n+4}\}$ are also converges to z. By E(3), we obtain $d(Su^1, Tx_{2n+3}) \le \varphi(h_2(u^1, x_{2n+3}))$ $= \varphi(d(gu^{1}, gx_{2n+3}) + \gamma[d(Su^{1}, gu^{1}) + d(Tx_{2n+3}, gx_{2n+3})])$ = $\varphi(d(gu^{1}, gx_{2n+3}) + \gamma[d(Su^{1}, gu^{1}) + d(gx_{2n+4}, gx_{2n+3})]).$ Letting $n \rightarrow \infty$, we get that $d(Su^1, gu^1) \leq \varphi(d(z, z) + \gamma[d(su^1, gu^1) + d(z, z)])$ $\leq \varphi(\gamma d (su^1, gu^1)) \leq d (su^1, gu^1), a contradiction.$ Therefore $su^1 = gu^1 = z$. Thus C(S, g) is non-empty. This proves (ii). (2.4)In view of (2.3) and (2.4) it follows that $Au=fu=Su^1=gu^1=z$. (2.5)Since $A(Y) \cup B(Y) \cup S(Y) \cup T(Y) \subseteq f(Y) (=g(Y))$. Therefore there exists $v,v^1 \in Y$ such that Au = fv and $su^1 = gv^1$. (2.6)We claim that $f \upsilon = B \upsilon$ and $g \upsilon^1 = T \upsilon^1$. Using (E2) and (E3), we obtain $d(f_{\upsilon}, B_{\upsilon}) = d(A_{\upsilon}, B_{\upsilon}) \le \varphi(h_1(u, \upsilon))$ $= \phi (d(fu, fv) + \gamma [d(Au, fu) + d(Bv, fv)])$ $\leq \varphi$ (d(Au, Au)+ γ [(d(Au, Au) + d(fv, Bv)]), or $d(f_{\upsilon}, B_{\upsilon}) \le \varphi(d(z, z) + \gamma[(d(z, z) + d(f_{\upsilon}, B_{\upsilon})]))$ $d(fv, Bv) \le \varphi(\gamma d(fv, Bv)) \le d(fv, Bv)$, a contradiction. Therefore fu=Bu. (2.7)Inview of (2.7), (2.6) and (2.3) it follows Bv = fv = Au = fu = z.(2.8)From (2.5) and (2.8) it follows $Bv = fv = Au = fu = Su^1 = gu^1 = z$. (2.9)Thus C(B, f) is non-empty. This proves (iii). Now using (E3), we obtain $d(gv^1, Tv^1) = d(su^1, Tv^1) \le \varphi(h_2(u^1, v^1))$ $= \phi (d (gu^{1}, gv^{1}) + \gamma [d(su^{1}, gu^{1}) + d(Tv^{1}, gv^{1})])$ $= \phi (d(z, z) + \gamma [d(z, z) + d(gv^{1}, Tv^{1})]),$ $d(g\upsilon^1, T\upsilon^1) \le \phi (\gamma d(g\upsilon^1, T\upsilon^1)) \le d(g\upsilon^1, T\upsilon^1)$,a contradiction. Therefore $Tv^1 = gv^1$. (2.10)In view of (2.5), (2.6) and (2.10) it follows $Tv^1 = gv^1 = Su^1 = gu^1 = z$. (2.11)

Thus C(T,g) is non-empty. This proves (iv). In view of (2.9), (2.11) it follows $Au = fu = Bv = fv = Su^1 = gu^1 = Tv^1 = gv^1$. (2.12)Now, if Y=X, (A, f), (B, f) and (S, g), (T, g) are (IT)-Commuting, then Afu = fAu implies AAu = Afu = fAu = ffu, Bfv = fBv implies BBv=Bfv=fBv=ffv, (2.13) $Sgu^1 = gSu^1$ implies $SSu^1 = Sgu^1 = gSu^1 = ggu^1$ $Tgv^{1} = gTv^{1}$ implies $TTv^{1} = Tgv^{1} = gTv^{1} = ggv^{1}$. In view of (E2) it follows that $d(AAu, Au) = d(AAu, Bv) \le \varphi(h_1(Au, \upsilon))$ $= \varphi (d(fAu, fv) + \gamma [d(AAu, fAu) + d(Bv, fv)]),$ $d(AAu, Au) \le \varphi (\gamma d(AAu, Au)) \le d(AAu, Au)$, a contradiction. Therefore AAu=Au=fAu(=z), Au is a common fixed point of A and f. (2.14)Similarly, we get BBu=Bu. Therefore By is a common fixed point of B and f. (2.15)Followed by (2.13) $BB\upsilon = B\upsilon = fB\upsilon (=z).$ Since $A \cup = B \cup$. From (2.14) and (2.15), we conclude that Au(=z) is a common fixed point of A,B and f. (2.16)Now in view of (E3), we obtain $d(SSu^1, Su^1) = d(SSu^1, T\upsilon) \le \varphi(h_2(Su^1, \upsilon^1))$ $= \varphi(d(gSu^1, gv^1) + \gamma[d(SSu^1, gSu^1) + d(Tv^1, gv^1)]),$ $d(SSu^1, Su^1) \le \varphi(\gamma d(SSu^1, Su^1)) \le d(SSu^1, Su^1)$, a contradiction. Therefore $SSu^1 = Su^1$, $SSu^1 = gSu^1 = Su^1 = z$, Su^1 is a common fixed point of S and g. (2.17)Similarly we get $,TT\upsilon^1 = gT\upsilon^1 = T\upsilon^1 = z$, Tv^{1} is a common fixed point of T and g. (2.18)Since $Su^1 = Tv^1 = z$. From (2.17) and (2.18), we conclude that $Su^{1}(=z)$ is common fixed point of S, T and g. (2.19)Since $Au = Su^{1} (= z)$. Therefore from (2.16) and (2.19), we conclude that A,B,S,T and f,g are having a common fixed point. The proof is similar when A(Y) or B(Y)or S(Y) or T(Y) are complete subspaces of X. Since , $A(Y) \cup B(Y) \cup S(Y) \cup T(Y)$ \subseteq f(Y) (=g(Y)). Finally, in order to prove uniqueness, let w be a common fixed point of A,B,S,T and f, g. Consider d(z, w) = d (A z, B w) $\leq \phi$ (h₁(z, w)) $= \varphi \left(d(f z, f w) + \gamma [d(f z, A z) + d(f w, B w)] \right),$ $d(z, w) \leq \phi ((d(z, w)) < d(z, w))$, a contradiction.

Therefore z = w. Hence A,B,S,Tand f, g have unique common fixed point.

References

- D.W.Boyd and J.S.W.Wong, on nonlinear contractions, Proc. Amer.Math. Soc. 20 (1966),458-464.
- [2] F.E.Browder and W.V.Petershyn, The solution by iteration of nonlinear functional equations in Banach Spaces, Bull. Amer. Math. Soc 72 (1966), 571-575.
- [3] Y.J.Cho,P.P.Murthy and G.Jungck ,A theorem of Meir-Keeler type revisited Internat J.Math. Math. Sci. 23 (2000), 507-511.
- [4] J.Jachymski,Equivalent conditions and the Meir–Keeler type theorems, J.Math. Anal. Appl.**194** (1995), 293-303.
- [5] G.Jungck,Commuting mappings and fixed points,Amer.Math.Monthly **83** (1976),261-263.
- [6] G.Jungck and B.E.Rhoades, Fixed points for set valued functions without continuity Indian J.Pure Appl.Math.**29**,no.3 (1988),227-238.
- [7] K.H.Kim,S.M.Kang and Y.J.Cho,Common fixed point of Φ-contractive mappings,East.Asian Math.J.15 (1999),211-222.
- [8] T.C.Lim, on characterization of Meir –Keeler contractive maps, Non linear Anal. **46** (2001), 113-120
- [9] J.Matkowski, Fixed point theorems for contractive mappings in metric spaces, Cas. Pest. Mat. **105** (1980),341-344.
- [10] A.Meir and E.Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. **28** (1969), 326-329.
- [11] S.Park and B.E.Rhoades, Meir –Keeler type contractive conditions, Math. Japon. **26** (1981), 13-20.
- [12] P.D.Proinov, Fixed point theorems in metric spaces , Non linear Anal.64 (2006), 546-557.

- [13] B.E.Rhoades ,S.L.Singh and Chitra Kulshrestha, Coincidence theorems for Some multivalued mappings. Internat. J. Math. Math. Sci. 7, no.3(1984), 429-434.
- K.P.R.Sastry, S.V.R.Naidu, I.H.N.Rao and K.P.R.Rao, Common fixed points for asymptotically regular mappings, Indian J.Pure Appl.Math. 15, no 8 (1984), 849- 854.
- [15] S.L.Singh, K.Ha and Y.J,Cho, Coincidence and fixed point of nonlinear hybrid contractions, Internat. J. Math. Math. Sci. 12, no.2(1989), 247-256.
- [16] S.L.Singh, Apichai Hematulin and Rajendra pant, New coincidence and Common fixed point theorems, Applied General Topology Vol.10,No.1(2009),121-130.

Received: May, 2011