New Properties for Certain Integral Operators

Aabed Mohammed¹ and Maslina Darus²

^{1,2}School of Mathematical Sceinces Faculty of Science and Technology Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D. Ehsan, Malaysia ¹aabedukm@yahoo.com
²maslina@ukm.my (corresponding author)

Abstract

The purpose of the present paper is to use the so-called pre-Schwarzian derivatives to obtain some properties of certain integral operator. We first establish the relationships between the two integral operators F_n and $F_{\gamma_1,...,\gamma_n}$, which were given by Breaz and Breaz [1], and Breaz et.al [2] respectively, under the familiar classes of starlike of order α , $S^*(\alpha)$ and convex functions of order α , $K(\alpha)$. Furthermore, some other properties of the integral operator $F_{\gamma_1,...,\gamma_n}$ by using the concept of the norm and pre-Schwarzian derivatives are obtained.

Mathematics Subject Classification: 30C45

Keywords: Analytic and univalent functions, convex functions, starlike functions, integral operators, pre-Shwarzian derivatives, uniformly locally univalent

1 Introduction

Let $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane C and let H denotes the space of all holomorphic functions on U. Here we think of H as a topological vector space endowed with the topology of uniform convergence over compact subsets of U. For example, a sequence $\{f_i\}$ of holomorphic functions that converges uniformly on compact sets has a holomorphic functions as its limit. Further, let \mathcal{A} denotes the class of functions normalized by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$
 (1.1)

which are analytic in the open unit disk \mathcal{U} and satisfy the condition f(0) = f'(0) - 1 = 0. We also denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions which are also univalent in \mathcal{U} .

A function $f \in \mathcal{A}$ is the convex function of order $\alpha, 0 \leq \alpha < 1$ if f satisfies the following inequality

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}+1\right) > \alpha, \ z \in \mathcal{U}$$

and we denote this class by $\mathcal{K}(\alpha)$.

Similarly, if $f \in \mathcal{A}$ satisfies the following inequality:

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ z \in \mathcal{U}$$

for some α , $0 \leq \alpha < 1$, then f is said to be starlike of order α and we denote this class by $\mathcal{S}^*(\alpha)$. We note that $f \in \mathcal{K} \Leftrightarrow zf'(z) \in \mathcal{S}^*$, $z \in \mathcal{U}$. In particular case, the classes $\mathcal{K}(0) = \mathcal{K}$ and $\mathcal{S}^*(0) = \mathcal{S}^*$ are familiar classes of starlike and convex functions in \mathcal{U} .

A holomorphic function f on the unit disk U is said to be uniformly locally univalent if it is univalent on each hyperbolic disk $D(a, \rho) = \{z \in U : |(z - a)/(z - \overline{a})| < \tanh \rho\}$, with radius ρ and center $a \in U$ for a positive constant ρ .

For a locally univalent holomorphic function f, we define

$$T_f = \frac{f''}{f'},$$

which is said to be pre-Schwarzian derivative (or nonlinearity). For a locally univalent function f in U, we define the norm of T_f by

$$||T_f|| = \sup_{|z| \in U} (1 - |z|^2) |T_f|$$

It is well-known [8] that a holomorphic function f on the unit disk is uniformly locally univalent if and only if the pre-Schwarzian derivative $T_f = \frac{f''}{f'}$ is hyperbolic bounded, i.e., the norm

$$||T_f|| = \sup_{|z|\in U} (1 - |z|^2) |T_f|,$$

is finite. It is well-known that from Becker's univalence criterion [5]: every analytic function f in U with $||T_f|| \leq 1$ is in fact univalent in U. Conversely, $||T_f|| \leq 6$ holds if f univalent.

Lemma 1.1. [3]. Let $\alpha \in [0, 1[$. Then $f \in S^*(\alpha)$ if and only if $g \in S^*$, where $g(z) = z \left[\frac{f(z)}{z}\right]^{\frac{1}{1-\alpha}}, z \in U.$

The branch of the power function is chosen such that $\left[\frac{f(z)}{z}\right]^{\frac{1}{1-\alpha}}\Big|_{z=0} = 1.$

Theorem 1.1. [5, 6, 10]. Let f be analytic and locally univalent in U. Then

i) If $||T_f|| \leq 1$, then f is univalent, and ii) If $||T_f|| \leq 2$, then f is bounded.

Theorem 1.2. [7]. Let $0 \le \alpha < 1$ and $f \in S$.

1) If f is starlike of order α , *i.e.*, $\Re z f'(z)/f(z) > \alpha$, then $||T_f|| \le 6 - 4\alpha$.

2) If f is convex of order α , *i.e.*, $\Re z f(z) / f'(z) + 1 > \alpha$, then $||T_f|| \le 4(1-\alpha)$.

The constants are sharp.

The study of the integral operators has been rapidly investigated by many authors in the field of univalent functions. The integral operator

$$\Upsilon[f](z) = \int_{0}^{z} \frac{f(\zeta)}{\zeta} d\zeta,$$

was introduced by Alexander [4]. Note that $f \in S^*(\alpha) \Leftrightarrow \Upsilon[f] \in K(\alpha)$.

For the complex number γ , Kim and Merkes [9] considered the nonlinear integral transform $\Upsilon_{\gamma}[f](z)$, defined by

$$\Upsilon_{\gamma}[f](z) = \int_{0}^{z} \left(\frac{f(\zeta)}{\zeta}\right)^{\gamma} d\zeta.$$

For $f_i(z) \in A$ and $\gamma_i > 0$, for all $i \in \{1, 2, 3, ..., n\}$, Breaz and Breaz [1], introduced the following integral operator

$$F_{n}[f](z) = \int_{0}^{z} \left(\frac{f_{1}(t)}{t}\right)^{\gamma_{1}} \dots \left(\frac{f_{n}(t)}{t}\right)^{\gamma_{n}} dt.$$
(1.2)

In [11] Kim, Ponnusamy and Sugawa defined the following integral operator

$$I_{\gamma}[f](z) = \int_{0}^{z} \left[f'(t)\right]^{\gamma} dt,$$

for $\gamma \in \mathcal{C}$, $f \in A$.

Recently Breaz et.al [2] introduced the following integral operator

$$F_{\gamma_1,\dots,\gamma_n}[f](z) = \int_0^z [f_1'(t)]^{\gamma_1} \dots [f_n'(t)]^{\gamma_n} dt.$$
(1.3)

In this paper, we first establish the relationships between the two integral operators F_n and $F_{\gamma_1,\ldots,\gamma_n}$ which defined as in (1.2) and (1.3) respectively, under the familiar classes of starlike of order α , $S^*(\alpha)$ and convex functions of order α , $K(\alpha)$.

Furthermore, some other properties of the integral operator $F_{\gamma_1,\dots,\gamma_n}$ are obtained by using the concept of the norm and pre-Schwarzian derivatives .

2 Main results

Theorem 2.1. For $\gamma_i \in \mathcal{R}, \ \gamma_i > 0, \ 0 \le \alpha_i < 1, \ i \in \{1, 2, 3, ..., n\}$, we have

$$F_n(S^*) = F_{(1-\alpha_1)\gamma_1,\dots,(1-\alpha_n)\gamma_n}(K),$$

where, F_n and $F_{\gamma_1,\ldots,\gamma_n}$ are the integral operators defined as in (1.2) and (1.3) respectively, and S^* and K are the classes of starlike and convex functions respectively.

Proof. Let $f \in F_n$ (S^{*}), then there exist $g_i(z) \in S^*(\alpha_i)$, for $i = \{1, 2, 3, ..., n\}$ such that

$$f(z) = \int_{0}^{z} \left(\frac{g_{1}(t)}{t}\right)^{\gamma_{1}} \dots \left(\frac{g_{n}(t)}{t}\right)^{\gamma_{n}} dt.$$

Since $g_i(z) \in S^*(\alpha_i)$, for $i = \{1, 2, 3, ..., n\}$, then by apply Lemma 1.1, there exist $s_i(z) \in S^*$, for $i = \{1, 2, 3, ..., n\}$, such that

$$\frac{s_i(z)}{z} = \left(\frac{g_i(z)}{z}\right)^{\frac{1}{1-\alpha_i}}, \text{ for } i = \{1, 2, 3, ..., n\}.$$

Therefore

$$f(z) = \int_{0}^{z} \left(\frac{s_1(t)}{t}\right)^{(1-\alpha_1)\gamma_1} \dots \left(\frac{s_n(t)}{t}\right)^{(1-\alpha_n)\gamma_n} dt.$$

By using the Alexander relation between the classes S^* and K, there exist $u(z) \in K$ such that s(z) = zu'(z), then

$$f(z) = \int_{0}^{z} \left(u_{1}^{'}(z) \right)^{(1-\alpha_{1})\gamma_{1}} \dots \left(u_{n}^{'}(z) \right)^{(1-\alpha_{n})\gamma_{n}} dt.$$

Then $f(z) \in F_{(1-\alpha_1)\gamma_1,...,(1-\alpha_n)\gamma_n}(K)$. As a result $F_n(S^*) \subset F_{(1-\alpha_1)\gamma_1,...,(1-\alpha_n)\gamma_n}(K)$. Conversely, let $f(z) \in F_{(1-\alpha_1)\gamma_1,...,(1-\alpha_n)\gamma_n}(K)$. Then there exist $u_i(z) \in K$, for $i = \{1, 2, 3, ..., n\}$ such that

$$f(z) = \int_{0}^{z} \left(u_{1}'(z) \right)^{(1-\alpha_{1})\gamma_{1}} \dots \left(u_{n}'(z) \right)^{(1-\alpha_{n})\gamma_{n}} dt.$$

Since $u_i(z) \in K$, for $i = \{1, 2, 3, ..., n\}$, then $s_i(z) = zu'_i(z) \in S^*$.

$$f(z) = \int_{0}^{z} \left(\frac{s_1(t)}{t}\right)^{(1-\alpha_1)\gamma_1} \dots \left(\frac{s_n(t)}{t}\right)^{(1-\alpha_n)\gamma_n} dt.$$

Since $s_i(z) \in S^*$, for $i = \{1, 2, 3, ..., n\}$, then by apply Lemma 1.1, there exist $g_i(z) \in S^*(\alpha_i)$, for $i = \{1, 2, 3, ..., n\}$, such that

$$\frac{s_i(z)}{z} = \left(\frac{g_i(z)}{z}\right)^{\frac{1}{1-\alpha_i}}$$
, for $i = \{1, 2, 3, ..., n\}$

Then

$$f(z) = \int_{0}^{z} \left(\frac{g_1(t)}{t}\right)^{\gamma_1} \dots \left(\frac{g_n(t)}{t}\right)^{\gamma_n} dt.$$

Thus $f \in F_n$ (S^{*}), and therefore

$$F_{(1-\alpha_1)\gamma_1,\dots,(1-\alpha_n)\gamma_n}(K) \subset F_n \ (S^*).$$

From the above proof, we obtain that $F_n(S^*) = F_{(1-\alpha_1)\gamma_1,\dots,(1-\alpha_n)\gamma_n}(K)$.

Letting n = 1 in Theorems 2.1, we have

Corollary 2.1 For $\gamma_1 \in \mathcal{R}, \ \gamma_1 > 0, \ 0 \le \alpha_1 < 1$, we have

$$F_1(S^*) = F_{(1-\alpha_1)\gamma_1}(K).$$

Now by using the concept of norm and the so-called pre-Schwarzian derivative and applying the theorems 1.1 and 1.2, we introduce some properties for the integral operator $F_{\gamma_1,\ldots,\gamma_n}$.

Theorem 2.2. Let $\gamma_i \in \mathcal{R}, i \in \{1, 2, ..., n\}$, $\gamma_i > 0$ and $f_i \in A$. Suppose that $F_{\gamma_1,...,\gamma_n}$ is locally univalent in U,

1) If

$$\|T_{f_i}\| \le \frac{1}{\sum\limits_{i=1}^n \gamma_i} \tag{2.1}$$

then $F_{\gamma_1,\ldots,\gamma_n}$ is univalent.

2) If

$$\|T_{f_i}\| \le \frac{2}{\sum\limits_{i=1}^{n} \gamma_i} \tag{2.2}$$

then $F_{\gamma_1,\ldots,\gamma_n}$ is bounded, where $F_{\gamma_1,\ldots,\gamma_n}$ is the integral operator defined as in (1.3).

Proof. Since

$$\left\| T_{F_{\gamma_1,\dots,\gamma_n}} \right\| = \sup_{z \in U} (1 - |z|^2) \left| T_{F_{\gamma_1,\dots,\gamma_n}} \right|$$

Then

$$\left\| T_{F_{\gamma_{1},...,\gamma_{n}}} \right\| = \sup_{z \in U} (1 - |z|^{2}) \left| \frac{\left(\int_{0}^{z} [f_{1}'(t)]^{\gamma_{1}} ... [f_{n}'(t)]^{\gamma_{n}} dt \right)''}{\left(\int_{0}^{z} [f_{1}'(t)]^{\gamma_{1}} ... [f_{n}'(t)]^{\gamma_{n}} dt \right)'} \right.$$

$$= \sup_{z \in U} (1 - |z|^2) \left| \sum_{i=1}^n \gamma_i \frac{f_i''}{f_i'} \right|.$$

Therefore

$$\left\| T_{F_{\gamma_1,\dots,\gamma_n}} \right\| \leq \sup_{z \in U} (1 - |z|^2) \sum_{i=1}^n \gamma_i \left| \frac{f_i''}{f_i'} \right|.$$

Then

$$\|T_{F_{\gamma_1,\dots,\gamma_n}}\| \le \sum_{i=1}^n \gamma_i \sup_{z \in U} (1-|z|^2) \left| \frac{f_i''}{f_i'} \right|.$$

Thus

$$\|T_{F_{\gamma_1,\dots,\gamma_n}}\| \le \sum_{i=1}^n \gamma_i \|T_{f_i}\|.$$
 (2.3)

From (2.1), (2.2) and (2.3) and applying Theorem 1.1, we obtain the assertions. **Theorem 2.3.**Let f_i , $i \in \{1, 2, ..., n\}$ be a family of functions and $f_i \in S$. 1) If f_i are starlike of order β_i , $i \in \{1, 2, ..., n\}$, then

$$\left\| T_{F_{\gamma_1,\ldots,\gamma_n}} \right\| \le 2\sum_{i=1}^n \gamma_i (3-2\beta_i)$$

2) If f_i are convex of order β_i , $i \in \{1, 2, ..., n\}$, then

$$\left\| T_{F_{\gamma_1,\ldots,\gamma_n}} \right\| \le 4 \sum_{i=1}^n \gamma_i (1-\beta_i).$$

Proof. The results follow from (2.3) and by using Theorem 1.2.

Corollary 2.2.Let f_i , $i \in \{1, 2, ..., n\}$ be a family of functions and $f_i \in S$. 1) If f_i , $i \in \{1, 2, ..., n\}$, are starlike of order β , then

$$\left\| T_{F_{\gamma_1,\dots,\gamma_n}} \right\| \le 2(3-2\beta) \sum_{i=1}^n \gamma_i$$

2) If $f_i, i \in \{1, 2, ..., n\}$, are convex of order β , then

$$\left\| T_{F_{\gamma_1,\ldots,\gamma_n}} \right\| \le 4(1-\beta) \sum_{i=1}^n \gamma_i.$$

Proof. We consider in Theorem 2.2 such that $\beta_1 = \beta_2 = ... = \beta_n$.

Letting n = 1 in theorems 2.2 and 2.3 respectively, we have the following:

Corollary 2.3. Let $\gamma_1 \in \mathcal{R}$, $\gamma_1 > 0$ and $f_1 \in A$. Suppose that F_{γ_1} is locally univalent in U:

1) If

$$\|T_{f_1}\| \leq \frac{1}{\gamma_1}.$$

Then F_{γ_1} is univalent.

2) If

$$||T_{f_1}|| \leq \frac{2}{\gamma_1}.$$

Then F_{γ_1} is bounded.

Corollary 2.4. Let $f_1 \in S$.

1) If f_1 are starlike of order β_1 , then

$$|T_{F_{\gamma_1}}|| \le 2\gamma_1(3-2\beta_1).$$

2) If f_1 are convex of order β_1 , then

$$||T_{F_{\gamma_1}}|| \le 4\gamma_1(1-\beta_1).$$

Acknowledgement: The work presented here was fully supported by UKM-ST-06-FRGS0107-2009.

References

[1] D. Breaz and N. Breaz, *Two integral operators*, Studia Universitatis Babes-Bolyai, Mathematica, 47:3(2002), 13-19.

[2] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Universitatis Apulensis, No 16/2008, pp. 11-16.

[3] I. Graham and G. Kohr, *Geometric function theory in one and higher dimensions*, Marcel Dekker, New York, 2003.

2108

[4] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math, 17. (1915), 12-22.

[5] J. Becker, Lownersche diferentialgleichung und quasikonform fortstzbare schlichte funktionen, J. Reine Angew, Math. 255. (1972), 23-43.

[6] J. Becker and Ch. Pommerenke, *Schlichtheit-skriteriend und Jordangebiete*, J. Reine Angew, Math. 356 (1984), 74-94.

[7] S. Yamashita, Norm estimates for functions starlike or convex of order α , Hokkaido. Math. J. 28 (1999) 217-230.

[8] S. Yamashita, Almost locally univalent functions, Monatsh. Math.81 (1976), 235-240.

[9] Y. J. Kim and E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook. Math. J. 12 (1972), 249-253.

[10] Y. C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math. 32 (2002), 179-200.

[11] Y.C. Kim, S. Ponnusamy and T. Sugawa, *Mapping properties of nonlin*ear integral operators and pre-Schwarzian derivatives, J. Math. Anal. Appl., 299 (2004), 433-447.

Received: May, 2010