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We prove a related fixed point theorem for three mappings in three metric spaces 
using an implicit relation. This result generalizes and unifies several of well-known 
fixed point theorems in complete metric spaces.   
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1. Introduction 
 
In [8] and [4] the following theorems are proved:   
 
Theorem 1.1 ( )Nung [8] Let ( , ), ( , )X d Y ρ  and ( , )Z σ  be complete metric 

spaces and suppose T  is a continuous mapping of X  into Y , S  is a continuous 
mapping of Y  into Z  and R  is a continuous mapping of Z  into X  satisfying the 
inequalities  

( , ) max{ ( , ), ( , ), ( , ), ( , )}
( , ) max{ ( , ), ( , ), ( , ), ( , )}
( , ) max{ ( , ), ( , ), ( , ), ( , )}

d RSTx RSy c d x RSy d x RSTx y Tx Sy STx
TRSy TRz c y TRz y TRSy z Sy d Rz RSy
STRz STx c z STx z STRz d x Rz Tx TRz

ρ σ
ρ ρ ρ σ
σ σ σ ρ

≤
≤
≤

 

for all x  in X , y  in Y  and z  in Z , where 0 < 1c≤ . Then RST  has a unique fixed  
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point u  in X , TRS  has a unique fixed point v  in Y  and STR  has a unique fixed 
point w  in Z . Further, = , =Tu v Sv w  and =Rw u .   

  
  Theorem 1.2 ( . .)[7]Jain et al  Let ( , ), ( , )X d Y ρ  and ( , )Z σ  be complete 

metric spaces and suppose T  is a mapping of X  into Y , S  is a mapping of Y  into  
Z  and R  is a mapping of Z  into X  satisfying the inequalities  
 
 

 
 
 
 
 
 
 
 
 

 
 
for all x  in X , y  in Y  and z  in Z , where 0 < 1c≤ . If one of the mappings , ,R S T  
is continuous, then RST  has a unique fixed point u  in X , TRS  has a unique fixed 
point v  in Y  and STR  has a unique fixed point w  in Z . Further, = , =Tu v Sv w  and 

=Rw u .   
  
 
2. Main results 
 
This result generalizes and unifies several well-known fixed point theorems 

obtained in [8,4,10,9]. For this, we will use the implicit relations. 
Let ( )m

kΦ  be the set of continuous functions with k variables  
 :[0, ) [0, )kϕ +∞ → +∞   

satisfying the properties:   
   a.     ϕ  is non decreasing in respect with each variable 1 2, ,..., kt t t   
   b.    ( , ,..., ) ,mt t t t m Nϕ ≤ ∈ .  
Denote   = {1,2,..., }kI k .For 

1 2

( ) ( )
1 2 we have m m

k kk k< Φ ∈Φ .  
For 6k =  we can give these examples:  
  Example 2.1 1 2 3 4 5 6 1 2 3 4 5 6( , , , , , ) = max{ , , , , , }t t t t t t t t t t t tϕ , with = 1m .     
  Example 2.2 1 2 3 4 5 6 6( , , , , , ) = max{ : , }i jt t t t t t t t i j Iϕ ∈ , with = 2m .    

  Example 2.3 1 2 3 4 5 6 1 2 3 4 5 6( , , , , , ) = max{ , , , , , }p p p p p pt t t t t t t t t t t tϕ , with =m p .   

2

2

2

( , ) max { ( , ) ( , ), ( , ) ( , ),
( , ) ( , ), ( , ) ( , )}

( , ) max { ( , ) ( , ), ( , ) ( , ),
( , ) ( , ), ( , ) ( , )}

( , ) max { ( ,

d RSy RSTx c d x RSy y Tx y Tx d x RSTx
d x RSTx Sy STx Sy STx d x RSy

TRz TRSy c y TRz z Sy z Sy y TRSy
y TRSy d Rz RSy d Rz RSy y TRz

STx STRz c z ST

ρ ρ
σ σ

ρ ρ σ σ ρ
ρ ρ

σ σ

≤

≤

≤ ) ( , ), ( , ) ( , ),
( , ) ( , ), ( , ) ( , )}

x d x Rz d x Rz z STRz
z STRz Tx TRz Tx TRz z STx

σ
σ ρ ρ σ
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  Example 2.4 1 2 3 4 5 6 1 2 3 4( , , , , , ) = max{ , , , }p p p pt t t t t t t t t tϕ , with =m p ,  etc.   

  Example 2.5  1 2 3 1 2
1 2 3 4 5 6( , , , , , ) 1, .

3 2
t t t t tt t t t t t or with m etcϕ + + +

= =  

 
  Theorem 2.6. Let ( , ), ( , )X d Y ρ  and ( , )Z σ  be complete metric spaces and 

suppose T  is a mapping of X  into Y , S  is a mapping of Y  into Z  and R  is a 
mapping of Z  into X , such that at least one of them is a continuous mapping. Let 

( )
6
m

iϕ ∈Φ  for = 1, 2,3i . If there exists [0,1)q∈  and the following inequalities hold  

1

2

3

(1) ( , ) ( ( , ), ( , ), ( , ),
( , ), ( , , ( , ))

(2) ( , ) ( ( , ), ( , ), ( , ),
( , ), ( , ), ( , ))

(3) ( , ) ( ( , ), ( , ), ( ,

m

m

m

d RSy RSTx q d x RSy d x RSTx y Tx
y TRSy Tx TRSy Sy STx

TRz TRSy q y TRz y TRSy z Sy
z STRz Sy STRz d Rz RSy

STx STRz q z STx z STRz d x Rz

ϕ ρ
ρ ρ σ

ρ ϕ ρ ρ σ
σ σ

σ ϕ σ σ

≤

≤

≤ ),
( , ), ( , ), ( , ))d x RSTx d Rz RSTx Tx TRzρ

 

for all ,x X y Y∈ ∈  and z Z∈ , then RST  has a unique fixed point Xα ∈ , TRS  has 
a unique fixed point Yβ ∈  and STR  has a unique fixed point Zγ ∈ . Further, 

= , =T Sα β β γ  and =Rγ α .   
Proof.  Let 0x X∈  be an arbitrary point. We define the sequences ( ), ( )n nx y  

and ( )nz  in ,X Y  and Z  respectively as follows:  
 0 1= ( ) , = , = , = 1,2,...n

n n n n nx RST x y Tx z Sy n−   
 Denote  

 1 1 1= ( , ), = ( , ), = ( , ), = 1, 2,...n n n n n n n n nd d x x y y z z nρ ρ σ σ+ + +   
We will assume that 1 1 1,n n n n n nx x y y and z z+ + +≠ ≠ ≠  for all n, otherwise if 1n nx x +=  
for some n , then 1 2 1 2,n n n ny y z z+ + + += = we can take 1 1 1, ,n n nx y zα β γ+ + += = = .  

 By the inequality (2), for = ny y  and 1= nz z −  we get:  

  1 2 1 1

1 1

( , ) ( ( , ), ( , ), ( , ),
( , ), ( , ), ( , ))

m
n n n n n n n n

n n n n n n

y y q y y y y z z
z z z z d x x

ρ ϕ ρ ρ σ
σ σ

+ + −

− −

≤  

or  
  ( )2 1 1 1(0, , , ,0, ) 4m

n n n n nq dρ ϕ ρ σ σ− − −≤  
           For the coordinates of the point 1 1, 1(0, , , 0, )n n n ndρ σ σ− − −  we have:  

 1 1max{ , } ,n n nd n Nρ σ λ− −≤ = ∀ ∈                            (5) 
because, in case that 1 1> max{ , }n n ndρ σ− −  for some n , if we replace the coordinates 
with nρ  and apply the property (b) of 2ϕ  we get:  

 2 ( , , , , , )m m
n n n n n n n nq qρ ϕ ρ ρ ρ ρ ρ ρ ρ≤ ≤   
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 This is impossible since 0 < 1q≤ . 
By the inequalities (4), (5) and properties of 2ϕ  we get:  

  { }12 1( , , , , , } max , .
n

m m m
n nq q q dρ ϕ λ λ λ λ λ λ λ σ

−−
⎡ ⎤≤ ≤ = ⎣ ⎦  

 Thus  
 { }1 1max ,m m

n n nq q dρ λ σ− −≤ =      (6) 
By the inequality (3), for 1= nx x −  and = nz z  we get:  

  1 3 1 1

1 1

( , ) ( ( , ), ( , ), ( , ),
( , ), ( , , ( , ))

m
n n n n n n n n

n n n n n n

z z q z z z z d x x
d x x d x x y y

σ ϕ σ σ
ρ

+ + −

− +

≤
 

or  
                                 3 1 1(0, , , ,0, )m

n n n n nq d dσ ϕ σ ρ− −≤             (7) 
 
In similar way, we get:  

 1max{ , },m
n n nq d n Nσ ρ−≤ ∀ ∈ .  

 
By this inequality and (6) we get:  

 1 1max{ , },m
n n nq d n Nσ σ− −≤ ∀ ∈                    (8)  

By (1) for = nx x  and = ny y  we get:  

  1 1 1 1

1 1 1 1

( , ) ( ( , ), ( , ), ( , ),
( , , ( , , ( , ))

m
n n n n n n n n

n n n n n n

d x x q d x x d x x y y
y y y y z z
ϕ ρ

ρ ρ σ
+ + +

+ + + +

≤
 

or  
                               1(0, , , ,0, )m

n n n n nd q dϕ ρ ρ σ≤                      (9) 
In similar way, we get: 

max{ , },m
n n nd q n Nρ σ≤ ∀ ∈ .  

By this inequality and the inequalities (6), (8) we get:  

  1 1

1 1 1 1

max{ , } ( max{ , }) =

= ( ) max{ , } max{ , }

m m m
n n n n n

m m m
n n n n

d q q q d

q q d q d

ρ σ σ

σ σ
− −

− − − −

≤ ≤

≤
 

or  
 1 1max{ , }m

n n nd q d σ− −≤                  (10)  
 
By the inequalities (6), (8) and (10), using the mathematical induction, we get:  

  

1
1 1 2 1 2

1
1 1 2 1 2

1
1 1 2 1 2

( , ) max{ ( , ), ( , )}

( , ) max{ ( , ), ( , )}

( , ) max{ ( , ), ( , )}

n
n n

n
n n

n
n n

d x x r d x x z z

y y r d x x z z

z z r d x x z z

σ

ρ σ

σ σ

−
+

−
+

−
+

≤

≤

≤
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where = < 1m q r . 

Thus the sequences ( ), ( )n nx y  and ( )nz  are Cauchy sequences. Since the metric 
spaces ( , ), ( , )X d Y ρ  and ( , )Z σ  are complete metric spaces, we have:  

 lim = , lim = , lim =n n nn n n
x X y Y z Zα β γ

→∞ →∞ →∞
∈ ∈ ∈ .  

 
Assume that T is a continuous mapping. Then by  

 lim = limn nn n
Tx y

→∞ →∞
.  

it follows  
  = .Tα β                                         (11)    
By (1), for =y Tα  and = nx x  we get:  

1 1 1 1

1 1

( , ) ( ( , ), ( , ), ( , ),
( , ), ( , ), ( , ))

m
n n n n n

n n

d RST x q d x RST d x x T y
T TRST y TRST ST z

α ϕ α ρ α
ρ α α ρ α σ α

+ + +

+ +

≤
 

By this inequality and (11), letting n tend to infinity, we get:            
                                               

{ }
1( , ) ( ( , ),0,0, ( , ), ( , ), ( , ))

[max ( , ), ( , ) ]

m

m

d RST q d RST TRS TRS S

q TRS S

α α ϕ α α ρ β β ρ β β σ β γ

ρ β β σ β γ

≤

≤
    (12)   

By (2), for = nz z  and =y β  we get:  

         1 2 1

1 1

( , ) ( ( , ), ( , ), ( , ),
( , ), ( , ), ( , ))

m
n n n

n n n n

y TRS q y TRS z S
z z S z d x RS

ρ β ϕ ρ β ρ β β σ β
σ σ β β

+ +

+ +

≤
 

By this inequality letting n  tend to infinity and using (11), we get:  

{ }
2( , ) (0, ( , ), ( , ),0, ( , ), ( , ))

[max ( , ), ( , ) ]

m

m

TRS q TRS S S d RST

q d RST S

ρ β β ϕ ρ β β σ γ β σ β γ α α

α α σ γ β

≤

≤
. (13) 

 By (3) for =x α , = nz z  we get:  

1 3 1

1

( , ) ( ( , ), ( , ), ( , ),
( , ), ( , ), ( , ))

m
n n n n n

n n

ST z q z ST z z d x
d RST d x RST T y

σ α ϕ σ α σ α
α α α ρ α

+ +

+

≤
 

By this inequality letting n  tend to infinity and using (11), we have: 
3( , ) ( ( , ),0,0, ( , ), ( , ),0, )

( , )

m

m

S q S d RST d RST

qd RST

σ β γ ϕ σ γ β α α α α

α α

≤

≤
(14) 

By the inequalities (12),(13) and (14) we get:  
2( , ) ( , )m md RST q d RSTα α α α≤  

 
Thus 
                  ( , ) 0d RST or RSTα α α α= = (15) 
By (14) and (13) we obtain 
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Sβ γ=  
                                                                    TRSβ β=   

                                 ( ) ( )STR STR S S TRS Sγ β β β γ= = = =  
Thus, we proved that the points , andα β γ  are fixed points of ,RST TRS  and 

STR  respectively. 
In the same conclusion we would arrive if one of the mappings R  or T  would 

be continuous. 
We now prove the uniqueness of the fixed points ,α β  and γ . Let us prove forα . 
Assume that there is α′  a fixed point of RST  different from α . 

By (1) for =x α′  and =y Tα  we get:  
                   

1

1

( , ) = ( , )
( ( , ), ( , ), ( , ),

( , ), ( , , ( , ))
( ( , ),0, ( , ),0, ( , ), ( , )

[max{ ( , ), ( , ), ( , )}]

m m

m

d d RST RST
q d RST d RST T T

T TRST T TRST ST ST
q d T T T T ST ST

q d T T ST ST

α α α α
ϕ α α α α ρ α α
ρ α α ρ α α σ α α
ϕ α α ρ α α ρ α α σ α α

α α ρ α α σ α α

′ ′ ≤
′ ′ ′ ′≤

′ ′ =
′ ′ ′ ′=

′ ′ ′≤

 

or  
 ( , ) = (max )m md q Aα α′                           (14)  

where = { ( , ); ( , ); ( , )}A d T T ST STα α ρ α α σ α α′ ′ ′ . 
We distinguish the following three cases: 
Case I: If max = ( , )A d α α′ , then the inequality (14) implies  

 ( , ) ( , ) =m md qdα α α α α α′ ′ ′≤ ⇔ .  
Case II: If max = ( , )A T Tρ α α′ , then the inequality (14) implies  

 ( , ) ( , )m md q T Tα α ρ α α′ ′≤  (15)  
Continuing our argumentation for the Case 2, by (2) for =z STα  and =y Tα′  

we have: 

2

2

( , ) = ( , )
( ( , ), ( , ), ( , ),

( , ), ( , ), ( , )) =
= ( ( , ),0, ( , ),0, ( , ), ( , )) =

(max )

m m

m

T T TRST TRST
q T TRST T TRST ST ST

ST STRST ST STRST d RST RST
q T T ST ST ST ST d

q A

ρ α α ρ α α
ϕ ρ α α ρ α α σ α α

σ α α σ α α α α
ϕ ρ α α σ α α σ α α α α

′ ′ ≤
′ ′ ′ ′≤

′ ′
′ ′ ′ ′

≤

   (16) 

 
Since in Case II , max = ( , )A T Tρ α α′ , by (16) it follows  

 ( , ) ( , )m mT T q T Tρ α α ρ α α′ ′≤   
or  

 ( , ) = 0T Tρ α α′ .  
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By (15), it follows ( , ) = 0d α α′ . 
Case III: If  max = ( , )A ST STσ α α′ , then by (14) it follows  

 ( , ) ( , )m md q ST STα α σ α α′ ′≤  (17)  
 
By the inequality (3), for = , =x RST z STα α′ , in similar way we obtain:  

 ( , ) (max ) = ( , )m m mST ST q A q ST STσ α α σ α α′ ′≤   
 
It follows  

 ( , ) = 0ST STσ α α′   
and by (17) it follows  

 ( , ) = 0d α α′ .  
 
Thus, we have again =α α′ . 
In the same way, it is proved the uniqueness of β  andγ . 

   Example 2.7. Let = [0,1], [1, 2], [1,2] = =X Y Z and d ρ σ= =   is the usual 
metric for the real numbers. Define: 

  

 

5 10
4 2=
3 1 1
2 2

if x
Tx

if x

⎧ ≤ <⎪⎪
⎨
⎪ ≤ ≤
⎪⎩

        3
2

Sy =          

3 51
4 4=

51 2
4

if z
Rz

if z

⎧ ≤ <⎪⎪
⎨
⎪ ≤ ≤
⎪⎩

 

Then S is continuous but T and R are not continuous.  
We have  

3 3= , = 1,
2 2

STx RSy TRz =  

 3 3= 1, = ,
2 2

RSTx TRSy STRz =  

and 

                          RST1=1, TRS 3
2

= 3
2

, STR 3
2

= 3
2

 and T1= 3
2

, S 3
2

= 3
2

, R 3
2

=1 

      These inequalities (1), (2) and (3) are satisfies since the value of left hand side of 
each inequality is 0. 
Hence all the conditions of Theorem 2.6 are satisfies     
 

We emphasize the fact that it is necessary the continuity of at least one of the 
mappings ,T S  and R . The following example shows this.   

  Example 2.8. Let = = = [0,1]; = =X Y Z d ρ σ  such that 
( , ) =| |, , [0,1]d x y x y x y− ∀ ∈ . We consider the mappings , , :[0,1] [0,1]T S R →  such  
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that  

  
1 = 0

= = =
(0,1]

2

for x
Tx Rx Sx x for x

⎧
⎪
⎨

∈⎪⎩

 

We have  
1 = 0
2= = =

(0,1]
4

for x
STx RSx TRx

x for x

⎧
⎪⎪
⎨
⎪ ∈
⎪⎩

 

and  

 

1 = 0
4= = =

(0,1]
8

for x
RSTx TRSx STRx

x for x

⎧
⎪⎪
⎨
⎪ ∈
⎪⎩

 

      We observe that the inequalities (1), (2) and (3) are satisfied for 
(1)

1 2 3 6= = =ϕ ϕ ϕ ϕ∈Φ  with 1 2 3 4 5 6 1 2 3 4 5 6( , , , , , ) = max{ , , , , , }t t t t t t t t t t t tϕ and 1=
2

q . It can 

be seen that none of the mappings , ,RST TRS STR  has a fixed point. This is because 
none of the mappings , ,T R S  is a continuous mapping. 
 

                                            3. Corollaries 
 
 Corollary 3.1  Let ( , ), ( , )X d Y ρ  and ( , )Z σ  be complete metric spaces and 

suppose T  is a mapping of X  into Y , S  is a mapping of Y  into Z  and R  is a 
mapping of Z  into X , such that at least one of them is a continuous mapping. If 
there exists [0,1)q∈  and m N∈  such that the following inequalities hold  

( , ) max{( ( , ), ( , ), ( , ),
( , ), ( , , ( , )}

( , ) max( ( , ), ( , ), ( , ),
( , ), ( , ), ( , )}

( , ) max( ( , ), ( ,

m m m m

m m m

m m m m

m m m

m m m

d RSy RSTx q d x RSy d x RSTx y Tx
y TRSy Tx TRSy Sy STx

TRz TRSy q y TRz y TRSy z Sy
z STRz Sy STRz d Rz RSy

STx STRz q z STx z STR

ρ

ρ ρ σ

ρ ρ ρ σ

σ σ

σ σ σ

≤

≤

≤ ), ( , ),
( , ), ( , ), ( , )}

m

m m m

z d x Rz
d x RSTx d Rz RSTx Tx TRzρ

 

for all ,x X y Y∈ ∈  and z Z∈ , then RST  has a unique fixed point Xα ∈ , TRS  has 
a unique fixed point Yβ ∈  and STR  has a unique fixed point Zγ ∈ . Further, 

= , =T Sα β β γ  and =Rγ α .   
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Proof. The proof follows by Theorem 2.6 in the case ( )

1 2 3 6= = = mϕ ϕ ϕ ϕ∈Φ  such 

that 1 2 3 4 5 6 1 2 3 4 5 6( , , , , , ) = max{ , , , , , }m m m m m mt t t t t t t t t t t tϕ . 
 Corollary 3.2 Theorem 1.1 (Nung [8]) is taken by theorem 2.6 for = 1m and 

1 2 3ϕ ϕ ϕ ϕ= = =  such that  1 2 3 4 5 6 1 2 3 6( , , , , , ) max{ , , , }t t t t t t t t t tϕ =  
  Corollary 3.3 Theorem 1.2 (Jain et. al. [4]) is taken by Theorem 2.6 in case 

(2)
1 2 3 6= = =ϕ ϕ ϕ ϕ∈Φ  such that 1 2 3 4 5 6 1 3 2 3 2 6 6 1( , , , , , ) = max{ , , , }t t t t t t t t t t t t t tϕ .   

  Corollary 3.4 Theorem Telci (Theorem 2 [10]).Let ( , ), ( , )X d Y ρ  be complete 
metric spaces and T  is a mapping of X  into Y , S  is a mapping of Y  into X. 

3
m

iϕ ∈Φ  for = 1, 2i . If there exists [0,1)q∈  such that the following inequalities hold  

1

2

(1 ) ( , ) ( ( , ), ( , ), ( , )).
(2 ) ( , ) ( ( , ), ( , ), ( , ).

d Sy STx q d x Sy d x STx y Tx
Tx TSy q y Tx y TSy d x Sy

ϕ ρ
ρ ϕ ρ ρ

′ ≤
′ ≤

 

for all ,x X y Y∈ ∈ , then ST  has a unique fixed point Xα ∈  and TS  has a unique 
fixed point Yβ ∈ . Further , = , =T Sα β β γ .   
Proof. The proof follows by Theorem 2.6 in the case = , =Z X dσ , 1m =  and the 
mapping R  as the identity mapping in X . Then the inequality (1)  takes the form 
(1') , the inequality (2)  takes the form (2 ')  and the inequality (3) is always satisfied 
since his left side is ( , ) = 0STx STxσ . Thus, the satisfying of the conditions (1) , (2)  
and (3)  is reduced in satisfying of the conditions (1') , (2 ') . 

The mappings T  and S  may be not continuous, while from the mappings ,T S  
and R  for which we applied Theorem 2.6, the identity mapping R  is continuous. 
This completes the proof. 

We have the following corollary. 
 Corollary 3.5 Theorem Popa (Theorem 2, [9]) is taken by Corollary 3.4 for 

1 2= =ϕ ϕ ϕ  such that 1 2 3 1 2 1 3 2 3( , , ) = max{ , , }t t t t t t t t tϕ  with = 2m  .   
We also emphasize here that the constants 1 2,c c  can be replaced by 1 2= max{ , }q c c . 
Conclusions.  
In this paper it has been proved a related fixed point theorem for three mappings in 
three metric spaces, one of mappings is continuous. This theorem generalizes and 
unifies several of well-known fixed point theorems for contractive-type mappings on 
metric spaces, for example the theorems of Nung [8], Jain et.al [4],  Popa [9],  Telci 
[10] and the theorem of   Fisher [1]. As corollaries of main result we can obtain other 
propositions determined by the form of implicit relations.    
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