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Abstract
We investigate the emergent behavior of four types of generic dy-
namical systems under random environmental perturbations. Sufficient
conditions for nearly-emergence in various scenarios are presented. Re-
cent fundamental works of F. Cucker and S. Smale on the construction
and analysis of flocking models directly inspired our present work.
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1 Introduction

The emergent behaviors of a large number of autonomous interacting agents
such as flocking of birds [12, 17], multi-agent cooperative coordination in mo-
bile networks [1, 3] and emergence of a common language in primitive societies
[8, 11] have been attracting great research attentions since the last two decades
from biologists, physicists, sociologists, engineers and mathematicians.

Recently, Cucker and Smale [6] have proposed a remarkable model aiming
to exploring the flocking phenomenon and mathematical analysis is performed
to show the convergence results only depend on some initial states of the popu-
lation. This notable feature is in contrast with the previous models (e.g. the so
called Vicsek model [17]) where convergence relies on the global behavior of the
agents’ trajectories (or on the neighborhood graphs of the underlying dynam-
ical systems), which are quite hard to verify in general. The same authors [5]
extend the model later to a more general setting beyond flocking. [14] further
develops a hierarchical leadership architecture in the Cucker-Smale flocking
model. The work in [4] focuses on a situation where uniform or Gaussian
noises are involved in the environments. A hydrodynamic description and the
mean-field limit of this very model are also provided in [7].
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The starting point of our present work is directly motivated by the afore-
mentioned series work. Primarily, we want to refine the rudimental results
(in the noisy environment) in [4] and extend them to more general scenarios
such as those discussed by [5]; and try to shed some light on the understand-
ing of various emergence behaviors observed in diverse natural, social and
man-made complex systems [15]. To do so, we first introduce four types of
non-autonomous, nonlinear dynamical systems; two ( I(D) and II(D) ) for dis-
crete time and two ( I(C) and II(C) ) for continuous time. In each case, we
provide a convergence analysis. Systems I(D) and I(C) are adapted from [5, 6]
and the underlying idea stems from the birds flocking in a noisy environment.
Whereas the original idea behind systems II(D) and II(C) is the linguistic
evolution with some possible fluctuations in a primitive society. The random
noises considered here may reflect the change of the environment which is usu-
ally unclear to the objects. Moreover, information interaction among agents
may be contaminated or corrupted by errors. Hence, it becomes significant
to analyze systems in the presence of random noises. We mention that the
systems tackled in this paper are quintessential in the sense of reflecting some
typical mechanisms behind emergence (see Remark 1 in Section 2.1), but by
no means limited to flocking or language evolution since we will treat them in
a quite general manner with emphasis on the methodology. Some other related
work about emergent behaviors under random environmental perturbation can
be found in e.g. [9, 10, 16] and references therein.

The rest of this paper is organized as follows. In Section 2, we will study the
discrete time models I(D), II(D). Section 3 is devoted to the continuous coun-
terparts I(C), II(C). We then draw our conclusion and discuss future direction
in Section 4.

2 Discrete-time Emergence

Let k£ € N. We assume the population under consideration consists of k agents
throughout the paper.

2.1 Models Setup (I(D), II(D))

We shall first introduce the dynamical system I(D), which is developed
similarly with that considered in [5].

Suppose X and Y are two given inner product spaces whose elements are
denoted as x and y, respectively. Let z(t) = (z1(t), - ,zx(t)) € X and
(y1(t), - ,yr(t)) € Y* represent two kinds of characteristics of the agents at
time instant ¢t. Convergence of z € X (or y € Y*¥) is naturally understood
as entrywise convergence as t approaches infinity. Let A signify the diagonal
of Yk, that is, A := {(y,---,y)] y € Y}. Denote Y := Y*/A and fix an

inner product (-,-) in Y, which induces a norm || - ||. (Here in the discrete
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case, we do not really need an inner product; what we want is SZ should be
a normed space. The same remark applies to X and Y.) Since Y is a finite
dimensional space, § := (y1(t), -, yx(t)) — (Yo, -+ ,40) for some yo € Y if
and only if [|j — 0|| — 0, where @ := a + A € Y for a € Y*. In what follows,
we denote norms in all different spaces as || - || with some ambiguity, but the
proper meaning will be clear in the context.

For z € X, y € Y, consider the following dynamical system:

' x(t+h) =x(t) + hJ(x(t),y(t))
[(D): { y(t+h) = S(x(t))y(t) + hH(t)

Here h is the time step and we shall denote in the sequel x[t] := z(th), y[t] ==
y(th) and H[t] := H(th) for brevity. Take t € N herein. We now explain the
notations in system I(D). Let J : X x Y — X be a Lipschitz or C'' operator
satisfying, for some C,0 > 0, 0 < v < 1, that

1€, )l < QA+ [Ja]])]ly]]° (1)

forallz € X,y€Y. Let §: X — End(?) be an operator satisfying, for some
G >0, 3 >0, that

hG
I1S@)I| <1 = =75 (2)
(1 + [[]])?
for all z € X. The operator norm in (2) is defined as ||.S(x)|| = sup y=o0 %
yey

Let H : (Q,F,P) — (Y,B(Y)) be a random element. (Q,F,P) is some
probability space and 8(57) is the Borel o-algebra on Y. We assume H [t] is
independent and identically distributed for different ¢t € N. Notice that ||H]| :
(Q,F,P) — (R,B(R)) is a random variable and let F'(z) := P(||H|| < z) for
x € R be the distribution function of ||H||.

Next, we present our dynamical system I1(D) as follows. The spaces X, Y, Y
are defined as before. For z € X, y € )7, consider the following dynamical
system:

. z(ty + hi) = Si(y(ta))x(t1) + haHi ()
IHD): s s S e+ et

Here hq, hy are the time steps w.r.t. z and y. Take t;,%5 € N and we denote
z[ti] = x(tiha), ylta] = y(t2he), Hilt:] = Hi(t1h) and Halts] = Ha(tzhs). In
light of these notations, the system II(D) can be rewritten as follows

{ xft + 1] = Si(y[t])z[t] + hy Hi[t]
ylt + 1] = So(x[t])y[t] + hoHalt]
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In analogy with the system I(D), suppose S : Y — End(X) and Sy : X —

End(Y') are two operators satisfying, for some G1,Gs > 0, 1, B2 > 0, that

hi1G4 hoGo
- S <]-— 3
T+ Pl =arEmE . ©

forally € Y,z € X. Let Hy : (0, Fi, P1) — (X, B(X)) and Hy : (Q, Fo, P2) —
(Y, B(Y)) be two random elements as before. We assume H; [#] is independent
and identically distributed for different t € N and so is Hs[t]. Furthermore,
H, is assumed to be independent with Hy. The distribution functions of ran-
dom variables ||H;|| and ||Hs|| are defined as Fi(z) := Pi(||H;|| < z) and
Fy(y) := Pa(||Hal| < y) for x,y € R, respectively. It is worth noting that we
do not ask the time scales hy, hy to be the same; and the coupled system may
thus work in a kind of asynchronous way.

Before going further, we give a definition for nearly-emergence that we
adopt in this paper.

151l <1 -

Definition 1. Let p,v >0, x€ X, y € 37, v(or i )-nearly-emergence occurs
for the population {1,---  k} if [ly|]| < v(or ||z|| < u).

Clearly, the exact emergence is no longer possible due to the random per-
turbation.
Remark 1. The two features x and y of agents in the system I(D) are asym-
metric and y 1s the object whose emergence behavior is of interest. In the
system I1(D), the status of x and y is symmetric and both emergence behaviors
may be of interest. The same can be said for the continuous case in Section 3
below.

2.2 Main Results

We define several constants that are only related with the initial state
((0),y(0)) of the population.
For system I(D):

1 2C
QU) =1V%, a="ZQOIyOI, b=1+][(0)
o510y max{(2a) =7, 20}, if B+ < 1
By =Uy—1, Hy= 0 Uo = ﬁa it g+vy=1
0 _éﬂﬁjfl’, if G+~>1
For system II(D):
G1 G2
Hy = ; Hy =
C2(1+ [y(0)[)* S 21+ [[=(0)]])

The main results in this section are stated as follows.
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Theorem 1. For dynamical system (D), we assume

1 G |2
8
G’ 217C|y(0 )\\5(27-[0) }’

and one of the following hypotheses holds:
(i) B+ <1,
(ii)B +~v =1, and ||y(0)|| < (20@(5))37

B+~—1 B+ 7 _aG
(iti)3 +~ > 1, and (- ﬁﬂ))ﬁ” TR > b+ h((5E5)D) 2Q05) "

Then, for v < |ly(0)||, v-nearly-emergence occurs in a number of iterations
5
bounded by Ty := % In (W) with probability at least F(Hov)™. In addition,

o+
if p < aUP, let Ty = ?1[1]2;1 (aU‘; 7), then the events {||x[t] — z[7]|| <

w, for v >t > Ty V Ti} and {v-nearly-emergence occurs in a number of
iterations bounded by To V T} hold simultaneously with probability at least

F(Hov)™V7.

h<m1n{

Theorem 2. For dynamical system 1I(D), we assume h1 % and hy <
GLQ. Then, for p < [lz(0)||, v < [ly(0)]| with Ty = hHl ln(”zf)“) and
T3 = ﬁln(”y(ym) u-nearly-emergence and v-nearly-emergence both oc-

cur in a number of iterations bounded by Ty V T3 with probability at least
(P (Hap) Fo(Hav)) V55,

We now give some concrete substances to illustrate emergence behaviors of
the general models I(D) and TI(D).

For the system I(D), take Y = R® with standard inner product (-,-), and
X =Y = (R3*/A = AL Foru= (ul, coug),v = (vi,--- ) € Y, define
the inner product on Y as (u, Vg = 3 Z” (u; —uj,v; —v;). Here z € X
represents the spatial positions of agents (e.g. birds, fishes, robots,...) and
Yy € Y their velocities both projected to the subspace At [6]. Given x € X, let
the k x k matrix A, has entries a;; > m Let D, be the k x k diagonal
matrix whose ith diagonal element is d; = > .., a;; and L, := D, — A,. Then
L, is the Laplacian of A,. Fort € N, take J(x[t], y[t]) = y[t], S(z[t]) = [,—hL,,
here [ is the identity matrix of order k, and let the noise term H has the
uniform distribution Us(0,7) for some r > 0 or the Gaussian distribution
N(0,02I3;) in the model I(D), and then we recover the situations encountered
in [4]. Thm.1 in [4] is clearly a special case of Theorem 1 (and note that
we really said more). Other kinds of flocking scenarios such as flocking with
unrelated pairs and flocking with leader-follower schemes can also be dealt
with under our present framework (c.f. [5] Sect. 3). We mention here that the
asymmetric conclusions of z and y in Theorem 1 indeed give what we desire
in a flocking phenomenon; see [6] (Rem. 2).

For the system II(D), let Ax be the diagonal of (R*)* and take X =
(R*)*/Ax with inner product defined as (-, )5 above. Let Y be the space of
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languages with some appropriate distance defined on it (c.f. [6]); and the metric
of Y is inherited from that of Y. Givenz € X,y € Y, let A, = (a;;), B, = (by;)
be the k x k matrices with entries a;; = f(||z; — x]||) and b;; = g(||yz —y;l])-
f,g : Rt — R* are some bounded non-increasing functions. For ¢ € N,
take S1(y[t]) = Ix — hiLvy and Sa(z[t]) = Iy — hoLex with L1y := D, — By,
Lyx = D, — A, in the model II(D). Here D, and D, are k x k diagonal
matrices defined similarly as above. Computation of the distributions of || H ||
and ||Hs|| from some proper random noises H;, Hj is a routine [2]. Here
r € X is interpreted as the geographical positions of agents projected to A
and y € Y as the space of languages projected to A+. This specification of
system II(D) can be used to model emergence behavior in linguistic evolution,
since each agent tends to move to others using similar languages and meanwhile
the influence from other agents’ languages decreases according to distances [6]

(Sect. 6).
2.3 Proof of Theorem 1 and 2

The proof closely follows that of [4], and we prove Theorem 1 and 2 through
some intermediate steps. Due to the limitation of space, we refer the reader
to [13] for more details.

Proposition 1. LetT € N orT = 0. Suppose ||H|| < Holly[t]]| for 0 <t <
T and h < min{
holds:

(1) B+~ <1, 1
(i)3 +~v =1, and |[y(0)]] < (208(5))37

(111)3 +~v > 1, cmd( )ﬁ”lﬂJ”’ Bl > b+ h(( Bty )b) 5

(B+7) B+ B+y—1 2Q(9)
Twnl——— (0,1), for 0 <t < T, ||z[t]]| < By and [ly[t]]| < [[y(0)[|(1 -

é, W(ﬁo) R }, and one of the following hypotheses

2Uﬁ) If T = o, then ||y[t]|]| — 0 ast — oo, and moreover, there exists & € X
such that x[t] — & ast — oo, and ||z[t] — z|| < aUOﬁﬂ(l - %)& fort > 0.
0

Proof of Theorem 1. Suppose the conditions of Proposition 1 hold for some
T > 0. Then we have [|y[t]]| < |[y(0)]|(1 — 2UB) for t <T and ||z[r] — z[t]|| <

anﬁH(l_ Uﬁ) fort <7 <T. T = o0, ||z[t] — 2|| SaUOﬂﬂ(l_QhU%)&

for t > 0. By the proof of Proposition 1 and straightforward calculations, we
have ||y[T]|| < v when T" > Tp; ||z[r] — z[t]|] < p when 7 > ¢t > Tj; and
l|z[t] — z|| < p when t > T3. If v-nearly-emergence has not occurred, then
lly[t]|| > v, wherefore by the definition of function F,

P(|[HIt][] < Hollylt]l]) = P(IH[t]] < Hov) = F(Hov).
Since {H[t]} are i.i.d. for varying ¢, we get
P(|[HH < HollylA)l| for t =0, To = 1) = F(Hor)"™
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which yields the first part of the conclusions. Likewise, we have
P(|H[t]]] < Holly[H]]] for t =0, Ty v T1 = 1) > F(Hov)™"".

We then conclude the proof. O

Proposition 2. Let T',7? € NU {oc}. Suppose ||H:|| < Hi||z[t1]]| for 0 <
ty < T |[Hy|| < Hally[ta]l] for 0 <ty <T? and hy < &=, hy < z;. Then, for
0<t<T'AT? |[z[t]]] < [lz(0)[[(1 = haH1)" and [[y[H]]] < |ly(0)]|(1 — haHa)".
Proof of Theorem 2. Suppose the conditions of Proposition 2 hold for
some T',T? > 0. Then we have ||z[t]|| < [|z(0)]|(1 — hyH1)" and ||y[t]|] <
I|y(0)][(1 — hoHy)t for t < T := T' AT?. By direct calculations, we get
||z[T]|| < pwhen T > Ty and ||y[T]|| < v when T' > Tj3. If y-nearly-emergence
and v-nearly-emergence have not occurred at time t1hy and tsho resp., then
||z[ta]l] = o and [[y[t]|] = v. Whence,

Pi([[Ha[t]l] < Hall=[ta]l]) = Pu([[Hi[ta]l] < Hap) = Fi(Hap),
and
Po([|Ha[to]|] < Hally[ta][]) = Pa([|Ha[to]|| < Hov) = Fa(Hav).
Since { H;[t;]} are i.i.d. for varying t;, i = 1,2, and H; is independent with Hs,
by letting P = P; X P, be the independent product of P; and Py (c.f. [2]), we
get
P(|[Hy[t]|| < Hallz[t]]] and [[Ha[t]]] < Hally[t]l], for t=0,--- Ty VT3 —1)
> (F1(Hap) Fa(Hov)) ™V,

which concludes the proof. O

3 Continuous-time Emergence
3.1 Models Setup (I(C), II(C))

In principle, by letting the time steps h, h; approach zero, we may derive
the continuous counterparts of systems I(D) and II(D). We shall, however,
make some modifications for technical reason and it is at this time the inner
product structures of spaces X,Y,Y take effect.

Let t € R, for z € X, y € Y, consider the following dynamical system:

‘ 2'(t) = J(x(t),y(t))
I(C): { y'(t) = _ny(t)y+ hH(t)

Here, as in the system I(D), J : X x Y > Xisa Lipschitz or C! operator. We
now require, for some C,d > 0, 0 < v < 1, that

1@, )l < CL+ |2l 2 [[y])° (4)
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forall x € X, y € Y. Denote RF** as the space of k x k real matrices. Let
L : X — R** be a Lipschitz or C' operator with L : « ~ L,. L, can
be seen as a linear transformation on Y* by mapping (y1,---,yx) € Y* to
(L (i, D)yy + -+ + Ly(4, k)yr)i<k. Here, L,(i,7) is the (i,j) entry of matrix

L,. For z € X, define ¢, := min yxo ﬁﬁ’lgw We impose the following two
yey

hypotheses on L: (i) Forz € X, y € Y, L,(y,---,y) = 0. (ii) there exists
K > 0,3 > 0 such that

K
>
%2 0 Py ®)
for all z € X. It is easy to see from (i) that L, induces a linear transformation
on Y, which will also be denoted as L, for notational simplicity. Let H(t) be a
continuous time stochastic process defined on some probability space (€2, F, P)
taking value in (Y,B(Y)). Let F : RT x Rt — [0,1] be a real function (not
necessarily a distribution function) such that P(maxo<;<7 ||H(t)|] < z) >
F(x,T), for z, T € RT. We may observe that F'(z,T') is non-decreasing w.r.t.
x while non-increasing w.r.t. 7. N
Next, we introduce a continuous version of II(D). For z € X, y € Y,
consider the following dynamical system:

ey | = v

(©) V() = ~Lary(t) + Hal?)
Here operators Ly, L, are given similarly as L above with L; defined on Y
and Ly, on X. For x € X, y € Y, define &, := minyz <L2;y’y> and 7, =

e e

min «o <Lﬁ;‘:|vf>. The corresponding hypothesis (ii) above becomes (i'): there
reX

exist K1, Ky > 0, (1, f2 > 0 such that

Ky Ky
SRR T P o
forall z € X, y € Y. Let Hy(t) : (,F,P) — (X,B(X)) and Hy(t) :
(Q, Fo, Py) — (Y, B(Y)) be two continuous time stochastic processes, which
are independent with each other. Let ¢ = 1,2, F; : Rt x RT™ — [0, 1] be real
functions such that P;(maxo<i<r ||Hi(t)|| < x) > F;(x,T), for x,T € R*.

For notational convenience we sometimes write L; 1= Ly, ¢ = Qu),
ft = gx(t) and = 77y(t)'
3.2 Main Results

As in the discrete case, we define several constants which are only depen-
dent on the initial state (z(0),y(0)) of the population.
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For system I1(C):

v 1— 1—v 1y v 2
(6K)™ L=~
3+8 _g—
2C]ly(O)11°B; 207G

By=Uy—1, Bi= 5K , Ho= Ul
max{(Qa)lflv_j%,Qb}, if 260+ <1
Up=3 =, if 2864+~ =1
(L), if 284+~ >1

For system II(C):
KQ Kl
Hy = , Hsy =
L 201+ ([y(0)])% S 2(1+ [[2(0)[]2)

The main results in this section are stated as follows.
Theorem 3. Let 2(0) € X and y(0) € Y, then there exists a unique solution

(x(t),y(t)) of the dynamical system I(C) for allt € R. Moreover, assume one
of the following hypotheses holds:

(i) 26+~ <1,
.. 2 L
(7'7')25 + Y= 17 and Hy(O>H < (21+v+2(g€87»y)0)2>26’
1
(iii)20 + v > 1, and (X)L > b.

8
Then, forv < ||ly(0)||, v-nearly-emergence occurs before time Ty := % In (”y(O)H)

with probability at least F(Hov, To). In addition, if p < By, let T} 1= % In (%),
then the events {||z[t] — z[7]|| < wu, for 7 >t > Ty v 11} and {v-nearly-
emergence occurs before time Ty V T1} hold simultaneously with probability at
least F(Hov, Ty V T7).

As in Section 2.2, we may readily recover the continuous-time result in [4]
by letting L, be the Laplacian of A,, for x € X; and taking J(z,y) = y and
the coordinate processes of H(t) as independent smoothed Wiener processes.

Theorem 4. Let 2(0) € X and y(0) € Y, then there exists a unique so-
lution (x(t),y(t)) of the dynamical system II(C) for all t € R. Further-
more, for p < ||x(0)||, v < ||y(0)|| with Ty = Q(HHZ}Q)”QW ln(”xf)u) and

Ts = 2(1+Hi§0)”2)ﬁ1 In (||y§/0)\|)’ either pi-nearly-emergence or v-nearly-emergence

occurs before1 time T5 V T with probability at least
Fi(Hip, To vV T3) Fo(Hov, To V T3).

Compared with Theorem 2, the last result is weaker due to the fact that
in the continuous case the stochastic processes H;(t) do not possess “indepen-
dence property” among different “time steps”. However, if the noise does not
impose on both equations of system II(C), we have the following corollary.
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Corollary 1. Suppose Hi(t) = 0. Under the assumptions of Theorem 4, the
events {p-nearly-emergence occurs before time Ty} and {v-nearly-emergence
occurs before time Ty} hold simultaneously with probability at least Fo(Hav, T3).
An analogous result holds for the case Ho(t) = 0.

We mention that it is possible to have results similar with Corollary 1
when H;(t) is small enough or possesses independent increments. The main
procedure of the proofs follow that of [4]. Those interested readers may consult
[13] for details.

4 Conclusion

In this paper, we have studied the emergent behavior of four dynamical systems
(I(D), I(C), II(D), II(C)) in the presence of random fluctuation contained in the
environments. In all these cases, “nearly-emergence” phenomena of interested
objectives are shown under certain conditions on the systems and the noises.
Our results are presented in a quite general setting and reveal some intrinsic
mechanisms of emergence which come up in a variety of disciplines [15]. We
will extend the results herein onto other dynamical systems and different kinds
of random environment will be treated in future work.
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