# Introducing Preorder to Hilbert $C^*$ -Modules

#### Biserka Kolarec

Department of Informatics and Mathematics Faculty of Agriculture, University of Zagreb, Croatia bkudelic@agr.hr

#### Abstract

We comment on the triangle (in)equality for a  $C^*$ -valued norm defined on a Hilbert  $C^*$ -module V. A  $C^*$ -valued norm is used to define a preorder on V. In this preorder, one can interpolate the convex combination of two elements "between" any two elements of V that satisfy certain condition.

Mathematics Subject Classification: 46C50, 46L08

**Keywords:** Hilbert  $C^*$ -module,  $C^*$ -valued norm, triangle (in)equality, preorder

### 1 Preliminaries and introduction

Let A be a  $C^*$ -algebra i. e. a Banach linear space with an involution \* and a norm  $\|\cdot\|$  with the  $C^*$ -property  $\|a^*a\| = \|a\|^2$ ,  $a \in A$ . A (right) Hilbert  $C^*$ -module V over a  $C^*$ -algebra A is a right A-module V with an A-valued inner product  $(\cdot, \cdot): V \times V \to A$  with the following properties:

- 1.  $(x, \alpha y + z) = \alpha(x, y) + (x, z)$ , for  $x, y, z \in V, \alpha \in \mathbb{C}$ ,
- 2. (x, ya) = (x, y) a, for  $x, y \in V, a \in A$ ,
- 3.  $(x,y)^* = (y,x)$ , for  $x,y \in V$ ,
- 4.  $(x,x) \ge 0$  and (x,x) = 0 if and only if x = 0, for  $x \in V$ ,

5. V is complete in the norm  $||x|| = ||(x,x)||^{1/2}$ ,  $x \in V$ .

Every  $C^*$ -algebra A becomes a Hilbert  $C^*$ -module over itself with the inner product  $(a,b)=a^*b,\ a,b\in A$ . Furthermore, a Hilbert  $C^*$ -module norm on A coincides with the  $C^*$ -norm on A.

Throughout, V denotes a Hilbert  $C^*$ -module over a  $C^*$ -algebra A.

On V there is the  $C^*$ -valued "norm"  $|\cdot|$  defined by

$$|x| = (x, x)^{\frac{1}{2}}, \ x \in V.$$

For every  $x \in V$ , |x| is positive (a positive square root of  $(x, x) \in A$ ) and we have  $|\alpha x| = |\alpha||x|$ ,  $\alpha \in \mathbb{C}$ . The list of norm properties of the "norm"  $|\cdot|$  stops here.

The triangle inequality  $|x+y| \leq |x| + |y|$  need not hold on V ([5], p. 4). R. Harte gave example of this fact in case of  $C^*$ -algebras in [3]. We begin Section 2 by presenting another example with essentially different proof. After that, we comment on conditions for the triangle inequality to hold.

By [2], the triangle equality |x+y|=|x|+|y| is characterized by the property (x,y)=|x||y|. We use this property extensively in Section 3. There we use the norm  $|\cdot|$  to define a preorder  $\leq$  on V by setting:  $x \leq y \Leftrightarrow |x| \leq |y|$ ,  $x,y \in V$ . In Theorem 4 we prove that for  $x,y \in V$  such that (x,y)=|x||y|,  $x \leq y$  is equivalent to  $x \leq \alpha x + (1-\alpha)y \leq y$ , for a real number  $\alpha, 0 \leq \alpha \leq 1$ . In particular, for  $x,y \in V$  such that  $x \leq y$  and (x,y)=|x||y| we can interpolate the convex combination of x and y "between" x and y.

## 2 On the triangle (in)equality

Let V be a Hilbert  $C^*$ -module over a  $C^*$ -algebra A. The triangle inequality  $|x+y| \leq |x| + |y|, \ x,y \in V$  is in fact an order relation on A. Recall that for selfadjoint  $a,b \in A$  we have  $a \leq b$  if and only if  $b-a \geq 0$  (i.e. b-a is selfadjoint with positive real spectrum). We provide an example that the triangle inequality fails to be true on a Hilbert  $C^*$ -module V.

**Example 1** Denote by  $M_2(\mathbf{C})$  the space of  $2 \times 2$  matrices with complex entries. With matrix multiplication and involution given by  $(a_{ij})^* = (a_{ji}^*)$ ,  $M_2(\mathbf{C})$  is a  $C^*$ -algebra, hence a Hilbert  $C^*$ -module as indicated in the introduction. Let:

$$x = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, y = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

We have

$$|x| = \left(\begin{array}{cc} \sqrt{2} & 0 \\ 0 & 0 \end{array}\right), |y| = \left(\begin{array}{cc} 0 & 0 \\ 0 & \sqrt{2} \end{array}\right).$$

Further,

$$x + y = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = (x + y)^*.$$

The above matrix is positive, hence

$$|x+y| = \left(\begin{array}{cc} 1 & 1\\ 1 & 1 \end{array}\right).$$

Let  $\mathbf{b} = |x| + |y| - |x + y|$ , i. e.

$$\mathbf{b} = \begin{pmatrix} \sqrt{2} - 1 & -1 \\ -1 & \sqrt{2} - 1 \end{pmatrix}.$$

In general (see [8]) a selfadjoint matrix  $\mathbf{a} \in M_n(A)$  (where a  $C^*$ -algebra A is taken to be faithfully represented on a Hilbert space  $\mathbf{H}$ , and therefore  $M_n(A)$  is considered as a  $C^*$ -algebra of operators on  $\mathbf{H}^n = \mathbf{H} \oplus \ldots \oplus \mathbf{H}$ ) is positive if and only if  $(\mathbf{a}\xi, \xi) \geq 0$  for all vectors  $\xi \in \mathbf{H}^n$ . If we take a vector  $\xi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  to test matrix  $\mathbf{b}$  for positivity, we get

$$(\mathbf{b}\xi,\xi) = (\mathbf{b}\xi)^*\xi = (\sqrt{2} - 2\sqrt{2} - 2)\begin{pmatrix} 1\\1 \end{pmatrix} = 2\sqrt{2} - 4 < 0.$$

Under what conditions does the triangle inequality hold on a Hilbert  $C^*$ -module? Consider first a  $C^*$ -algebra case. It was proved in [1] that for a  $C^*$ -algebra A with unit e, for every a, b in A and arbitrary  $\epsilon \geq 0$  there are unitaries  $u, v \in A$  such that

$$|a+b| \le u|a|u^* + v|b|v^* + \varepsilon e.$$

In order to get the triangle inequality on A, it suffices for |a| and |b| to fall into Z(A), the center of A. In the case of Hilbert  $C^*$ -modules we have the similar result.

**Theorem 1** (Theorem 2 in [4]) Let V be a Hilbert  $C^*$ -module over a  $C^*$ -algebra A. For  $x, y \in V$  such that  $|x|, |y| \in Z(A)$ , we have

$$|x+y| \le |x| + |y|.$$

The condition on  $x, y \in V$  for which the triangle equality |x + y| = |x| + |y| holds is already known.

**Theorem 2** (Theorem 2.3 of [2]) Let V be a Hilbert  $C^*$ -module over a  $C^*$ -algebra A and let  $x, y \in V$ . Then |x+y| = |x| + |y| if and only if (x, y) = |x||y|.

The next Theorem asserts that the condition (x, y) = |x||y|, together with  $|x| \le |y|$  is both necessary and sufficient for |y - x| = |y| - |x| to hold.

**Theorem 3** Let V be a Hilbert  $C^*$ -module and  $x, y \in V$ . Then  $(|x| \le |y|)$  and (x, y) = |x||y| if and only if |y| = |x| + |y - x|.

**Proof:** Let  $x, y \in V$  be such that  $|x| \leq |y|$  and (x, y) = |x||y|. Notice that

$$|y - x|^2 = (y - x, y - x) = (y, y) - (y, x) - (x, y) + (x, x) =$$

$$= |y|^2 - |y||x| - |x||y| + |x|^2 =$$

$$= |y|(|y| - |x|) - |x|(|y| - |x|) = (|y| - |x|)^2$$

and the claim follows.

Now suppose that |y| = |x| + |y - x|. Then obviously  $|x| \le |y|$ . We can write the supposition in the equivalent form |x + y - x| = |x| + |y - x|. This equality is by Theorem 2 equivalent to (x, y - x) = |x||y - x|. Now

$$(x, y - x) = |x||y - x| = |x|(|y| - |x|) = |x||y| - |x|^2,$$

hence (x, y) = |x||y| as claimed.

The following fact will be used in the next section.

**Proposition 1** Let V be a Hilbert  $C^*$ -module over a  $C^*$ -algebra A and let  $x, y \in V$  be such that (x, y) = |x||y|. Let  $\alpha$  be a real number,  $0 \le \alpha \le 1$ . Then

$$|\alpha x + (1 - \alpha)y| = \alpha |x| + (1 - \alpha)|y|.$$

**Proof:** We have

$$|\alpha x + (1 - \alpha)y|^2 = (\alpha x + (1 - \alpha)y, \alpha x + (1 - \alpha)y) =$$

$$= \alpha^2 |x|^2 + \alpha (1 - \alpha)|x||y| + \alpha (1 - \alpha)|y||x| + (1 - \alpha)^2 |y|^2 =$$

$$= \alpha |x|(\alpha |x| + (1 - \alpha)|y|) + (1 - \alpha)|y|(\alpha |x| + (1 - \alpha)|y|) =$$

$$= (\alpha |x| + (1 - \alpha)|y|)^2.$$

The set of all positive elements of A is a cone, so the claim follows by taking the square root.

## 3 Interpolation of elements in a preorder on V

**Definition 1** Let V be a Hilbert  $C^*$ -module over a  $C^*$ -algebra A and  $x, y \in V$ . We define

$$x \leq y \stackrel{def}{\Longleftrightarrow} |x| \leq |y|.$$

The relation  $\leq$  is reflexive  $(x \leq x)$  and transitive  $(x \leq y)$  and  $y \leq z \Rightarrow x \leq z$ , but not antisymmetric  $(x \leq y)$  and  $y \leq x \Rightarrow x = y$ , and therefore it is a preorder on V.

#### Remark 1

- 1. If we consider a  $C^*$ -algebra A as a Hilbert  $C^*$ -module with the inner product  $(a,b)=a^*b$  and take two positive  $a,b\in A$ , then obviously  $a\leq b$  if and only if  $a\leq b$ .
- 2. If V is a Hilbert  $C^*$  module over a commutative  $C^*$ -algebra A, then  $x \leq y$  if and only if  $(x,x) \leq (y,y)$ . Namely, we know from [6] that  $|x| \leq |y|$  implies  $(x,x) \leq (y,y)$ . (The opposite implication is allways true on A.)
- 3. Let V be a Hilbert  $C^*$ -module over a  $C^*$ -algebra A. Due to Theorem 2, for  $x, y \in V$  such that (x, y) = |x||y| we have  $x \leq x + y$  and  $y \leq x + y$ .

The following Lemma recalls equivalences for the order on a  $C^*$ -algebra A.

**Lemma 1** Let A be a  $C^*$ -algebra,  $\alpha$  a real number and  $a, b \in A$  selfadjoint. The relation  $a \leq b$  is equivalent to every of the following order relations on A:

$$a \le \alpha a + (1 - \alpha)b \le b \quad for \quad 0 \le \alpha \le 1,$$
  
$$b \le \alpha a + (1 - \alpha)b \quad for \quad \alpha \le 0,$$
  
$$\alpha a + (1 - \alpha)b \le a \quad for \quad \alpha \ge 1.$$

We have the next generalization of the first relation to a preorder on V.

**Theorem 4** Let V be a Hilbert  $C^*$ -module and  $x, y \in V$  such that (x, y) = |x||y|. For a real number  $\alpha$ ,  $0 \le \alpha \le 1$  we have

$$x \leq y \Leftrightarrow x \leq \alpha x + (1 - \alpha)y \leq y$$
.

**Proof:** By Proposition 1, the condition (x, y) = |x||y| implies  $|\alpha x + (1 - \alpha)y| = \alpha |x| + (1 - \alpha)|y|$ , for  $0 \le \alpha \le 1$ . The claims now follow after noticing that

$$x \leq y \Leftrightarrow |\alpha x + (1 - \alpha)y| - |x| = (1 - \alpha)(|y| - |x|) \geq 0$$

and

$$x \leq y \Leftrightarrow |y| - |\alpha x + (1 - \alpha)y| = \alpha(|y| - |x|) \geq 0.$$

We can continue with interpolation of elements in a preorder on V. First notice the following.

**Lemma 2** Let V be a Hilbert  $C^*$ -module and  $x, y \in V$  such that (x, y) = |x||y|. For a real number  $\alpha$ ,  $0 \le \alpha \le 1$  we have:

$$(x, \alpha x + (1 - \alpha)y) = |x||\alpha x + (1 - \alpha)y|,$$
  
$$(\alpha x + (1 - \alpha)y, y) = |\alpha x + (1 - \alpha)y||y|.$$

Proof: Indeed,

$$(x, \alpha x + (1 - \alpha)y) = \alpha |x|^2 + (1 - \alpha)|x||y| = |x|(\alpha |x| + (1 - \alpha)|y| = |x||\alpha x + (1 - \alpha)y|.$$

Similarly, 
$$(\alpha x + (1 - \alpha)y, y) = |\alpha x + (1 - \alpha)y||y|$$
.

The relation  $x \leq y$  implies  $x \leq \alpha x + (1 - \alpha)y \leq y$  for  $0 \leq \alpha \leq 1$ . With the same reasoning, from the relations  $x \leq \alpha x + (1 - \alpha)y$  and  $\alpha x + (1 - \alpha)y \leq y$  we get the next interesting result.

**Theorem 5** Let V be a Hilbert  $C^*$ -module and  $x, y \in V$  such that (x, y) = |x||y|. If  $x \leq y$ , then for real numbers  $\alpha, \beta, 0 \leq \alpha, \beta \leq 1$  we have

$$(\alpha + \beta - \alpha \beta)x + [1 - (\alpha + \beta - \alpha \beta)]y \leq \alpha x + (1 - \alpha)y \leq \alpha \beta x + (1 - \alpha \beta)y.$$

**Proof:** For  $0 \le \alpha \le 1$ , by Theorem 4 we have  $x \le \alpha x + (1 - \alpha)y \le y$ . Further, by Lemma 2 we have  $(x, \alpha x + (1 - \alpha)y) = |x||\alpha x + (1 - \alpha)y|$  and  $(\alpha x + (1 - \alpha)y, y) = |\alpha x + (1 - \alpha)y||y|$ . Now, for  $0 \le \beta \le 1$ , again by Theorem 4 we have:

$$x \prec \beta x + (1-\beta)[\alpha x + (1-\alpha)y] \prec \alpha x + (1-\alpha)y$$

$$\alpha x + (1 - \alpha)y \leq \beta(\alpha x + (1 - \alpha)y) + (1 - \beta)y \leq y.$$

In particular,

$$(\alpha + \beta - \alpha \beta)x + [1 - (\alpha + \beta - \alpha \beta)]y \leq \alpha x + (1 - \alpha)y \leq \alpha \beta x + (1 - \alpha \beta)y$$

as claimed.

At the end, let us mention that it seems promising to consider this preorder in the setting of Finsler modules introduced in [7].

The author was supported in part by the Ministry of Science, Education and Sports of the Republic of Croatia (Project no. 037-0372784-2757 and Project no. 178-1782223-2216).

## References

- [1] C. A. Ackeman, J. Anderson and G. K. Pedersen, Triangle inequalities in operator algebras, Linear and Multilinear Algebra 11 (1982), no. 2, 167-178.
- [2] Lj. Arambašić and R. Rajić, On the  $C^*$ -valued tiangle equality and inequality in Hilbert  $C^*$ -modules, Acta Mathematica Hungarica 119 (4) (2008), 373-380.
- [3] R. Harte, The triangle inequality in  $C^*$ -algebras, Filomat 20:2(2006), 51-53.
- [4] B. Kolarec, Inequalities for the  $C^*$ -valued norm on a Hilbert  $C^*$ -module, Mathematical Inequalities and Applications 12, no. 4 (2009), 745-751
- [5] E. C. Lance, Hilbert  $C^*$ -modules, a toolkit for an operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, 1995.
- [6] T. Ogasawara, A theorem on operator algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1955), 307-309.
- [7] N. C. Philips and N. Weaver, Modules with norms that take values in a  $C^*$ -algebra, Pacific Journal of Mathematics, vol. 185, no. 1 (1998), 163-181.
- [8] N. E. Wegge-Olsen, K-theory and  $C^*$ -algebras: a friendly approach, Oxford University Press, 1993.

Received: January, 2010